CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 158

_id acadia21_70
id acadia21_70
authors McAndrew, Claire; Jaschke, Clara; Retsin, Gilles; Saey, Kevin; Claypool, Mollie; Parissi, Danaë
year 2021
title House Block
doi https://doi.org/10.52842/conf.acadia.2021.070
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 70-75.
summary House Block was a temporary housing prototype in East London, UK from April to May 2021. The project constituted the most recent in a series of experiments developing Automated Architecture (AUAR) Labs’ discrete framework for housing production, one which repositions the architect as curator of a system and enables participants to engage with active agency. Recognizing that there is a knowledge gap to be addressed for this reconfiguration of practices to take form, this project centred on making automation and its potential for local communities tangible. This sits within broader calls advocating for a more material alignment of inclusive design with makers and 21st Century making in practice (see, for example, Luck 2018).

House Block was designed and built using AUAR’s discrete housing system consisting of a kit of parts, known as Block Type A. Each block was CNC milled from a single sheet of plywood, assembled by hand, and then post-tensioned on site. Constructed from 270 identical blocks, there are no predefined geometric types or hierarchy between parts. The discrete enables an open-ended, adaptive system where each block can be used as a column, floor slab, wall, or stair—allowing for disconnection, reconfiguration, and reassembly (Retsin 2019). The democratisation of design and production that defines the discrete creates points for alternative value systems to enter, for critical realignments in architectural production.

series ACADIA
type project
email
last changed 2023/10/22 12:06

_id acadia21_76
id acadia21_76
authors Smith, Rebecca
year 2021
title Passive Listening and Evidence Collection
doi https://doi.org/10.52842/conf.acadia.2021.076
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 76-81.
summary In this paper, I present the commercial, urban-scale gunshot detection system ShotSpotter in contrast with a range of ecological sensing examples which monitor animal vocalizations. Gunshot detection sensors are used to alert law enforcement that a gunshot has occurred and to collect evidence. They are intertwined with processes of criminalization, in which the individual, rather than the collective, is targeted for punishment. Ecological sensors are used as a “passive” practice of information gathering which seeks to understand the health of a given ecosystem through monitoring population demographics, and to document the collective harms of anthropogenic change (Stowell and Sueur 2020). In both examples, the ability of sensing infrastructures to “join up and speed up” (Gabrys 2019, 1) is increasing with the use of machine learning to identify patterns and objects: a new form of expertise through which the differential agendas of these systems are implemented and made visible. I trace the differential agendas of these systems as they manifest through varied components: the spatial distribution of hardware in the existing urban environment and / or landscape; the software and other informational processes that organize and translate the data; the visualization of acoustical sensing data; the commercial factors surrounding the production of material components; and the apps, platforms, and other forms of media through which information is made available to different stakeholders. I take an interpretive and qualitative approach to the analysis of these systems as cultural artifacts (Winner 1980), to demonstrate how the political and social stakes of the technology are embedded throughout them.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id cdrf2021_286
id cdrf2021_286
authors Yimeng Wei, Areti Markopoulou, Yuanshuang Zhu,Eduardo Chamorro Martin, and Nikol Kirova
year 2021
title Additive Manufacture of Cellulose Based Bio-Material on Architectural Scale
doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_27
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

summary There are severe environmental and ecological issues once we evaluate the architecture industry with LCA (Life Cycle Assessment), such as emission of CO2 caused by necessary high temperature for producing cement and significant amounts of Construction Demolition Waste (CDW) in deteriorated and obsolete buildings. One of the ways to solve these problems is Bio-Material. CELLULOSE and CHITON is the 1st and 2nd abundant substance in nature (Duro-Royo, J.: Aguahoja_ProgrammableWater-based Biocomposites for Digital Design and Fabrication across Scales. MIT, pp. 1–3 (2019)), which means significantly potential for architectural dimension production. Meanwhile, renewability and biodegradability make it more conducive to the current problem of construction pollution. The purpose of this study is to explore Cellulose Based Biomaterial and bring it into architectural scale additive manufacture that engages with performance in the material development, with respect to time of solidification and control of shrinkage, as well as offering mechanical strength. At present, the experiments have proved the possibility of developing a cellulose-chitosan- based composite into 3D-Printing Construction Material (Sanandiya, N.D., Vijay, Y., Dimopoulou, M., Dritsas, S., Fernandez, J.G.: Large-scale additive manufacturing with bioinspired cellulosic materials. Sci. Rep. 8(1), 1–5 (2018)). Moreover, The research shows that the characteristics (Such as waterproof, bending, compression, tensile, transparency) of the composite can be enhanced by different additives (such as xanthan gum, paper fiber, flour), which means it can be customized into various architectural components based on Performance Directional Optimization. This solution has a positive effect on environmental impact reduction and is of great significance in putting the architectural construction industry into a more environment-friendly and smart state.
series cdrf
email
last changed 2022/09/29 07:53

_id acadia21_340
id acadia21_340
authors Zhang, Yu; Tatarintseva, Liz; Clewlow, Tom; Clark, Ed; Botsford, Gianni; Shea, Kristina
year 2021
title Mortarless Compressed Earth Block Dwellings
doi https://doi.org/10.52842/conf.acadia.2021.340
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 340-345.
summary This project develops a template design and an adaptive fabrication process for sustainable Compressed Earth Block (CEB) dwellings for low-income countries. Most existing projects (Wilton et al. 2019; WASP 2021) on sustainable dwellings involve high-tech equipment or skilled workers on-site. This project integrates digital technologies into the design and fabrication processes to reduce these requirements and make the design compatible with conventional construction methods that are actively adopted in low-income countries using minimum infrastructure, skilled labor, and investment.
series ACADIA
type project
email
last changed 2023/10/22 12:06

_id acadia20_202p
id acadia20_202p
authors Battaglia, Christopher A.; Verian, Kho; Miller, Martin F.
year 2020
title DE:Stress Pavilion
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 202-207
summary Print-Cast Concrete investigates concrete 3D printing utilizing robotically fabricated recyclable green sand molds for the fabrication of thin shell architecture. The presented process expedites the production of doubly curved concrete geometries by replacing traditional formwork casting or horizontal corbeling with spatial concrete arching by developing a three-dimensional extrusion path for deposition. Creating robust non-zero Gaussian curvature in concrete, this method increases fabrication speed for mass customized elements eliminating two-part mold casting by combining robotic 3D printing and extrusion casting. Through the casting component of this method, concrete 3D prints have greater resolution along the edge condition resulting in tighter assembly tolerances between multiple aggregated components. Print-Cast Concrete was developed to produce a full-scale architectural installation commissioned for Exhibit Columbus 2019. The concrete 3D printed compression shell spanned 12 meters in length, 5 meters in width, and 3 meters in height and consisted of 110 bespoke panels ranging in weight of 45 kg to 160 kg per panel. Geometrical constraints were determined by the bounding box of compressed sand mold blanks and tooling parameters of both CNC milling and concrete extrusion. Using this construction method, the project was able to be assembled and disassembled within the timeframe of the temporary outdoor exhibit, produce <1% of waste mortar material in fabrication, and utilize 60% less material to construct than cast-in-place construction. Using the sand mold to contain geometric edge conditions, the Print-Cast technique allows for precise aggregation tolerances. To increase the pavilions resistance to shear forces, interlocking nesting geometries are integrated into each edge condition of the panels with .785 radians of the undercut. Over extruding strategically during the printing process casts the undulating surface with accuracy. When nested together, the edge condition informs both the construction logic of the panel’s placement and orientation for the concrete panelized shell.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id ijac201917103
id ijac201917103
authors Bejarano, Andres; and Christoph Hoffmann
year 2019
title A generalized framework for designing topological interlocking configurations
source International Journal of Architectural Computing vol. 17 - no. 1, 53-73
summary A topological interlocking configuration is an arrangement of pieces shaped in such a way that the motion of any piece is blocked by its neighbors. A variety of interlocking configurations have been proposed for convex pieces that are arranged in a planar space. Published algorithms for creating a topological interlocking configuration start from a tessellation of the plane (e.g. squares colored as a checkerboard). For each square S of one color, a plane P through each edge E is considered, tilted by a given angle ? against the tessellated plane. This induces a face F supported by P and limited by other such planes nearby. Note that E is interior to the face. By adjacency, the squares of the other color have similarly delimiting faces. This algorithm generates a topological interlocking configuration of tetrahedra or antiprisms. When checked for correctness (i.e. for no overlap), it rests on the tessellation to be of squares. If the tessellation consists of rectangles, then the algorithm fails. If the tessellation is irregular, then the tilting angle is not uniform for each edge and must be determined, in the worst case, by trial and error. In this article, we propose a method for generating topological interlocking configurations in one single iteration over the tessellation or mesh using a height value and a center point type for each tile as parameters. The required angles are a function of the given height and selected center; therefore, angle choices are not required as an initial input. The configurations generated using our method are compared against the configurations generated using the angle-choice approach. The results show that the proposed method maintains the alignment of the pieces and preserves the co-planarity of the equatorial sections of the pieces. Furthermore, the proposed method opens a path of geometric analysis for topological interlocking configurations based on non-planar tessellations.
keywords Topological interlocking, surface tessellation, irregular geometry, parametric design, convex assembly
series journal
email
last changed 2019/08/07 14:04

_id caadria2021_115
id caadria2021_115
authors Chen, Qin Chuan, Lakshmi Narasimhan, Vaishnavi and Lee, Hyunsoo
year 2021
title The potential of IoT-based smart environment in reaction to COVID-19 pandemic
doi https://doi.org/10.52842/conf.caadria.2021.2.709
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 709-718
summary COVID-19 was first reported in late December 2019 and quickly become a global health crisis. In the COVID-19 pandemic context, the dense and open characteristics make the public spaces a potential virus transmission hotspot. Therefore, it is extremely critical to adopt a more advanced and effective method in public environments to slow down its spread until a vaccine is widely used. A smart environment in the form of IoT, also known as the architecture of IoT, consists of three layers: perception layer, network layer, and application layer. A smart environment allows data and activities that happen in this environment to be collected, processed, and shared in real-time through various sensors. It can be introduced for early detection, tracking, and monitoring of potential confirmed cases. The smart environment is considered one of the most promising approaches to face and tackle the current scenario. However, research focusing on the potential of IoT smart environment in reaction to COVID-19 is still meager. Therefore, this paper identifies the smart environments potential based on the concept of IoT architectures three layers and further discusses how IoT can be introduced in public spaces to help battle the pandemic.
keywords Internet of Things; Smart environment; COVID-19
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2021_089
id caadria2021_089
authors Cristie, Verina, Ibrahim, Nazim and Joyce, Sam Conrad
year 2021
title Capturing and Evaluating Parametric Design Exploration in a Collaborative Environment - A study case of versioning for parametric design
doi https://doi.org/10.52842/conf.caadria.2021.2.131
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 131-140
summary Although parametric modelling and digital design tools have become ubiquitous in digital design, there is a limited understanding of how designers apply them in their design processes (Yu et al., 2014). This paper looks at the use of GHShot versioning tool developed by the authors (Cristie & Joyce, 2018; 2019) used to capture and track changes and progression of parametric models to understand early-stage design exploration and collaboration empirically. We introduce both development history graph-based metrics (macro-process) and parametric model and geometry change metric (micro-process) as frameworks to explore and understand the captured progression data. These metrics, applied to data collected from three cohorts of classroom collaborative design exercises, exhibited students' distinct modification patterns such as major and complex creation processes or minor parameter explorations. Finally, with the metrics' applicability as an objective language to describe the (collaborative) design process, we recommend using versioning for more data-driven insight into parametric design exploration processes.
keywords Design exploration; parametric design; history recording; version control; collaborative design
series CAADRIA
email
last changed 2022/06/07 07:56

_id cf2019_006
id cf2019_006
authors Di Mascio, Danilo
year 2019
title Visualizing Mackintosh’s alternative design proposal for Scotland Street School
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 25
summary This paper describes the process of creation of a set of visualizations (elevations, perspective views and a short animation) of C.R. Mackintosh’s original but unrealized first design proposal for Scotland Street School (dated January 1904). Moreover, the piece of writing reflects upon some key aspects of the project such as how architectural historians were involved and how ambiguities due to the discrepancies between the drawings and missing details were resolved by studying multiple drawings and transferring clues from other Mackintosh’s built works. The contributions of this research are important for several reasons: it proposes a methodology that can be applied to similar research projects; it explains the educational value of the development work, which can be defined as digitally handcrafted, behind the visualisations; it contributes to studies of buildings designed by C.R. Mackintosh by using digital technologies that open up new insights to aspects still overlooked of his architectural production.
keywords digital handcrafter, digital heritage, 3D digital reconstruction, visualisation, Charles Rennie Mackintosh
series CAAD Futures
email
last changed 2019/07/29 14:08

_id acadia23_v1_34
id acadia23_v1_34
authors Gascon Alvarez, Eduardo; Curth, Alexander (Sandy); Feickert, Kiley; Martinez Schulte, Dinorah; Mueller, Caitlin; Ismail, Mohamed
year 2023
title Algorithmic Design for Low-Carbon, Low-Cost Housing Construction in Mexico
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 34-38.
summary Mexico is one of the most urbanized countries in the Global South, and simultaneously faces a rapidly increasing population and a deluge of inadequate housing (URBANET 2019). In 2016, it was estimated that 40 percent of all private residences in Mexico were considered inadequate by UN-Habitat (UN-Habitat 2018). As informal housing constitutes over half of all Mexican housing construction, the most vulnerable groups of the population are particularly impacted. Therefore, there is a serious need to innovate in the area of low-cost building construction for housing in Mexico. This research explores how shape-optimized concrete and earth construction could help provide adequate housing without jeopardizing the country’s commitment to sustainability.
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id caadria2020_426
id caadria2020_426
authors Goepel, Garvin and Crolla, Kristof
year 2020
title Augmented Reality-based Collaboration - ARgan, a bamboo art installation case study
doi https://doi.org/10.52842/conf.caadria.2020.2.313
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 313-322
summary ARgan is a geometrically complex bamboo sculpture that relied on Mixed Reality (MR) for its joint creation by multiple sculptors and used latest Augmented Reality (AR) technology to guide manual fabrication actions. It was built at the Chinese University of Hong Kong in the fall of 2019 by thirty participants of a design-and-build workshop on the integration of AR in construction. As part of its construction workflow, holographic setups were created on multiple devices, including a series of Microsoft HoloLenses and several handheld Smartphones, all linked simultaneously to a single digital base model to interactively guide the manufacturing process. This paper critically evaluates the experience of extending recent AR and MR tool developments towards applications that centre on creative collaborative production. Using ARgan as a demonstrator project, its developed workflow is assessed on its ability to transform a geometrically complex digitally drafted design to its final physically built form, highlighting the necessary strategic integration of variability as an opportunity to relax notions on design precision and exact control. The paper concludes with a plea for digital technology's ability to stimulate dialogue and collaboration in creative production and augment craftsmanship, thus providing greater agency and more diverse design output.
keywords Augmented-Reality; Mixed-Reality; Post-digital; High-tech vs low-tech; Bamboo
series CAADRIA
email
last changed 2022/06/07 07:51

_id ecaadesigradi2019_353
id ecaadesigradi2019_353
authors Gönenç Sorguç, Arzu, Kruºa Yemiºcio?lu, Müge and Özgenel, Ça?lar F?rat
year 2019
title A Computational Design Workshop Experience for 21st Century Architecture Education
doi https://doi.org/10.52842/conf.ecaade.2019.1.127
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 127-136
summary With the rapid increase in the accessible data, available information surpasses one's ability to extract knowledge from, which puts a great emphasis on the skills of the individual to reach and use relevant information, adapt to changing conditions and sustain respective skills. ICT skills, critical thinking skills, and communication/collaboration skills emerge as the survival skills and key factors for individuals to cope with the demands of the 21st-century. It is known that educational institutions have struggles in changing the curricula/teaching system in coping with the requirements of the rapidly evolving industry. Thus, workshops gained more importance in different levels which are a part of curricular or extracurricular activities to re-furnish existing skills or gain new skills. In the scope of this study, the learning and teaching approaches based on STEAM approach are assessed through a three-day workshop aiming to illustrate how these survival skills can be conveyed and embedded into the architecture education. The workshop is designed to be inclusive for all architecture students regardless of their level of education or background knowledge/skills. Within the scope of this paper, the conduction strategies of the workshop are covered in detail to highlight the importance of these survival skills along with the modes of teaching and share the best practices and gained knowledge for future works.
keywords Computational Design Workshop; Architectural Education Strategies; Survival Skills
series eCAADeSIGraDi
email
last changed 2022/06/07 07:50

_id caadria2019_449
id caadria2019_449
authors Lin, Yuqiong, Yao, Jiawei, Huang, Chenyu and Yuan, Philip F.
year 2019
title The Future of Environmental Performance Architectural Design Based on Human-Computer Interaction - Prediction Generation Based on Physical Wind Tunnel and Neural Network Algorithms
doi https://doi.org/10.52842/conf.caadria.2019.2.633
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 633-642
summary As the medium of the environment, a building's environment performance-based generative design cannot be separated from intelligent data processing. Sustainable building design should seek an optimized form of environmental performance through a complete set of intelligent induction, autonomous analysis and feedback systems. This paper analyzed the trends in architectural design development in the era of algorithms and data and the status quo of building generative design based on environmental performance, as well as highlighting the importance of physical experiments. Furthermore, a design method for self-generating environmental performance of urban high-rise buildings by applying artificial intelligence neural network algorithms to a customized physical wind tunnel is proposed, which mainly includes a morphology parameter control and environmental data acquisition system, code translation of environmental evaluation rules and architecture of a neural network algorithm model. The design-oriented intelligent prediction can be generated directly from the target environmental requirements to the architectural forms.
keywords Physical wind tunnel; neural network algorithms; dynamic model; environmental performance; building morphology self-generation
series CAADRIA
email
last changed 2022/06/07 07:59

_id acadia20_136p
id acadia20_136p
authors López Lobato, Déborah; Charbel, Hadin
year 2020
title Foll(i)cle
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 136-141
summary In the early months of 2019, air pollution in Bangkok reached a record high, bringing national and international attention to the air quality in the South East Asian cosmopolitan. Although applications such as real-time pollution maps provide an environmental reading from the exterior, such information reveals the ‘here and now,’ where its record is inevitably lost through the ‘refreshing’ process of the live update and does not take increment and accumulation as factors to consider. The project was conceived around understanding the human body as precisely that medium that resists classification as either an interior or exterior environment that inherently performs as an impressionable record of its surroundings. Can a city’s toxicity be read through its living constituents? Can the living bodies that dwell, navigate, breathe, and process habitable environments be accessed? Can architecture retain a degree of independence while also performing as a beacon for the collective? Along this line of questioning, it was found that human hair can be transformed from a material that is effortlessly and continuously grown, cut, stylized, and discarded, and instead be intercepted and used in the production of public information gathering. Foll(i)cle is a collective being made of discarded human hair. Performing as a parliament for collectivity embedded with a protocol; the hairy pavilion invites the public in and presents them with a device at the center that hosts all the necessary equipment and information for anonymously and voluntarily providing hair samples for heavy metal analysis, the data of which is used in making a publically accessible toxi-cartography. Although humans are the primary subject for this study, the results suggest that extending the methodology to non-humans could prove useful in reading urban toxicity through various life forms.
series ACADIA
type project
email
last changed 2021/10/26 08:03

_id caadria2021_251
id caadria2021_251
authors Ma, Chun Yu and van Ameijde, Jeroen
year 2021
title Participatory Housing: Discrete Design and Construction Systems for High-Rise Housing in Hong Kong
doi https://doi.org/10.52842/conf.caadria.2021.1.271
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 271-280
summary There has been a recent increase in the exploration of mereological systems, speculating on how digital design, assembly and reconfiguration of digital materials (Gershenfeld, 2015) enables digitally informed physical worlds that change over time. Besides opportunities for construction and design automation, there is a potential to reimagine how multiple stakeholders can participate in the computational decision-making process, using the benefits of the mass customization of logistics (Retsin, 2019). This paper presents a research-by-design project that applies a digital and discrete material system to high-rise housing in Hong Kong. The project has developed an integrated approach to design, construction, and inhabitation, using a system of discrete parts which can be assembled in various apartment configurations, to incorporate varying occupants requirements and facilitate negotiations and changes over time.
keywords Participatory Design; Generative Design; Adaptable Architecture; High-rise Housing
series CAADRIA
email
last changed 2022/06/07 07:59

_id sigradi2023_416
id sigradi2023_416
authors Machado Fagundes, Cristian Vinicius, Miotto Bruscato, Léia, Paiva Ponzio, Angelica and Chornobai, Sara Regiane
year 2023
title Parametric environment for internalization and classification of models generated by the Shap-E tool
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 1689–1698
summary Computing has been increasingly employed in design environments, primarily to perform calculations and logical decisions faster than humans could, enabling tasks that would be impossible or too time-consuming to execute manually. Various studies highlight the use of digital tools and technologies in diverse methods, such as parametric modeling and evolutionary algorithms, for exploring and optimizing alternatives in architecture, design, and engineering (Martino, 2015; Fagundes, 2019). Currently, there is a growing emergence of intelligent models that increasingly integrate computers into the design process. Demonstrating great potential for initial ideation, artificial intelligence (AI) models like Shap-E (Nichol et al., 2023) by OpenAI stand out. Although this model falls short of state-of-the-art sample quality, it is among the most efficient orders of magnitude for generating three-dimensional models through AI interfaces, offering practical balance for certain use cases. Thus, aiming to explore this gap, the presented study proposes an innovative design agency framework by employing Shap-E connected with parametric modeling in the design process. The generation tool has shown promising results; through generations of synthetic views conditioned by text captions, its final output is a mesh. However, due to the lack of topological information in models generated by Shap-E, we propose to fill this gap by transferring data to a parametric three-dimensional surface modeling environment. Consequently, this interaction's use aims to enable the transformation of the mesh into quantifiable surfaces, subject to collection and optimization of dimensional data of objects. Moreover, this work seeks to enable the creation of artificial databases through formal categorization of parameterized outputs using the K-means algorithm. For this purpose, the study methodologically orients itself in a four-step exploratory experimental process: (1) creation of models generated by Shap-E in a pressing manner; (2) use of parametric modeling to internalize models into the Grasshopper environment; (3) generation of optimized alternatives using the evolutionary algorithm (Biomorpher); (4) and classification of models using the K-means algorithm. Thus, the presented study proposes, through an environment of internalization and classification of models generated by the Shap-E tool, to contribute to the construction of a new design agency methodology in the decision-making process of design. So far, this research has resulted in the generation and classification of a diverse set of three-dimensional shapes. These shapes are grouped for potential applications in machine learning, in addition to providing insights for the refinement and detailed exploration of forms.
keywords Shap-E, Parametric Design, Evolutionary Algorithm, Synthetic Database, Artificial Intelligence
series SIGraDi
email
last changed 2024/03/08 14:09

_id caadria2021_445
id caadria2021_445
authors Noel, Vernelle A. A., Nikookar, Niloofar, Pye, Jamieson, Tran, Phuong 'Karen' and Laudeman, Sara
year 2021
title The Infinite Line Active Bending Pavilion: Culture,Craft and Computation
doi https://doi.org/10.52842/conf.caadria.2021.1.351
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 351-360
summary Active bending projects today employ highly specialized, complex computer software and machines for design, simulation, and materialization. At times, these projects lack a sensitivity to cultures limited in high-tech infrastructures but rich in low-tech knowledges. Situated Computations is an approach to computational design that grounds it in the social world by acknowledging historical, cultural, and material contexts of design and making, as well as the social and political structures that drive them. In this article, we ask, how can a Situated Computations approach to contemporary active bending broaden the design space and uplift low-tech cultural practices? To answer this question, we design and build "The Infinite Line"- an active bending pavilion that draws on the history, material practices, and knowledges in design in the Trinidad Carnival - for the 2019 International Association for Shell and Spatial Structures (IASS) exhibition in Barcelona, Spain. We conclude that Situated Computations provide an opportunity to integrate local knowledges, histories, design practices, and material behaviors as drivers in active bending approaches, so that structure, material practices, and cultural settings are considered concurrently.
keywords Situated Computations; craft; wire-bending; active bending structures; Trinidad Carnival; dancing sculptures
series CAADRIA
email
last changed 2022/06/07 07:58

_id caadria2021_053
id caadria2021_053
authors Rhee, Jinmo and Veloso, Pedro
year 2021
title Generative Design of Urban Fabrics Using Deep Learning
doi https://doi.org/10.52842/conf.caadria.2021.1.031
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 31-40
summary This paper describes the Urban Structure Synthesizer (USS), a research prototype based on deep learning that generates diagrams of morphologically consistent urban fabrics from context-rich urban datasets. This work is part of a larger research on computational analysis of the relationship between urban context and morphology. USS relies on a data collection method that extracts GIS data and converts it to diagrams with context information (Rhee et al., 2019). The resulting dataset with context-rich diagrams is used to train a Wasserstein GAN (WGAN) model, which learns how to synthesize novel urban fabric diagrams with the morphological and contextual qualities present in the dataset. The model is also trained with a random vector in the input, which is later used to enable parametric control and variation for the urban fabric diagram. Finally, the resulting diagrams are translated to 3D geometric entities using computer vision techniques and geometric modeling. The diagrams generated by USS suggest that a learning-based method can be an alternative to methods that rely on experts to build rule sets or parametric models to grasp the morphological qualities of the urban fabric.
keywords Deep Learning; Urban Fabric; Generative Design; Artificial Intelligence; Urban Morphology
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_201
id ecaadesigradi2019_201
authors Torreblanca-Díaz, David A., Pati?o, Ever, Valencia-Escobar, Andrés and Urdinola, Diana
year 2019
title Form-finding methodology as strategy for formative research in industrial design education - Experimental techniques for the early creative phases of the product design process
doi https://doi.org/10.52842/conf.ecaade.2019.1.045
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 45-54
summary The experimental work of Antoni Gaudí and Frei Otto have been the precedents of what is currently called form-finding, a methodology based on rules and physical forces of nature that promotes principles of transformation as a result of the relationship between form, material and structure. This text shows the first results of the research titled as Form-finding methodology as strategy for formative research in industrial design education, with an empirical-analytical approach through action-research based method and using collaborative-participatory tools. As a result of the analysis of different cases in the first stage of the research, a basic methodological proposal is made, this methodological proposal is aimed to find new research possibilities for the identification of morphological characteristics to be used in design projects in the early creative phases (ideation and experimentation); the methodological proposal stages are the following: selection of technique, design of the experimentation, experimentation, analysis and discussion.
keywords Form-finding; Experimental morphology; Industrial design education; Formative research; Action-research
series eCAADeSIGraDi
email
last changed 2022/06/07 07:58

_id caadria2019_180
id caadria2019_180
authors Wang, Sining and Crolla, Kristof
year 2019
title Design Practice Complexity in the Post-Digital Age - Theoretical discussion and comparative case study of non-standard building façades
doi https://doi.org/10.52842/conf.caadria.2019.2.481
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 481-490
summary This paper starts by introducing an expression proposed by William J. Mitchell measuring the "complexity" of a designed and constructed architectural project. After reviewing other interpretations of this term, as well as specific peculiarities from the building industry, the article expands this metric from an organisational and technological perspective. This is followed by the case studies of six non-standard façades whose process complexities are driven by their project-specific affordances. By comparing built projects of different architects and implementation environments, the paper suggests specific criteria for non-standard architectural designs. Application of acquired knowledge has the potential to help architects better control their project's design and construction solution space.
keywords project complexity; measurement; non-standard; China
series CAADRIA
email
last changed 2022/06/07 07:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 7HOMELOGIN (you are user _anon_462529 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002