CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 528

_id acadia20_202p
id acadia20_202p
authors Battaglia, Christopher A.; Verian, Kho; Miller, Martin F.
year 2020
title DE:Stress Pavilion
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 202-207
summary Print-Cast Concrete investigates concrete 3D printing utilizing robotically fabricated recyclable green sand molds for the fabrication of thin shell architecture. The presented process expedites the production of doubly curved concrete geometries by replacing traditional formwork casting or horizontal corbeling with spatial concrete arching by developing a three-dimensional extrusion path for deposition. Creating robust non-zero Gaussian curvature in concrete, this method increases fabrication speed for mass customized elements eliminating two-part mold casting by combining robotic 3D printing and extrusion casting. Through the casting component of this method, concrete 3D prints have greater resolution along the edge condition resulting in tighter assembly tolerances between multiple aggregated components. Print-Cast Concrete was developed to produce a full-scale architectural installation commissioned for Exhibit Columbus 2019. The concrete 3D printed compression shell spanned 12 meters in length, 5 meters in width, and 3 meters in height and consisted of 110 bespoke panels ranging in weight of 45 kg to 160 kg per panel. Geometrical constraints were determined by the bounding box of compressed sand mold blanks and tooling parameters of both CNC milling and concrete extrusion. Using this construction method, the project was able to be assembled and disassembled within the timeframe of the temporary outdoor exhibit, produce <1% of waste mortar material in fabrication, and utilize 60% less material to construct than cast-in-place construction. Using the sand mold to contain geometric edge conditions, the Print-Cast technique allows for precise aggregation tolerances. To increase the pavilions resistance to shear forces, interlocking nesting geometries are integrated into each edge condition of the panels with .785 radians of the undercut. Over extruding strategically during the printing process casts the undulating surface with accuracy. When nested together, the edge condition informs both the construction logic of the panel’s placement and orientation for the concrete panelized shell.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id acadia19_178
id acadia19_178
authors Doyle, Shelby Elizabeth; Hunt, Erin Linsey
year 2019
title Dissolvable 3D Printed Formwork
doi https://doi.org/10.52842/conf.acadia.2019.178
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 178-187
summary This research explores the potentials, limitations, and advantages of 3D printing watersoluble formwork for reinforced concrete applications. Using polyvinyl alcohol (PVA) forms and Polylactic Acid (PLA) filament with ground steel tensile reinforcement, this project explores the constraints and opportunities for architects to design and construct reinforced concrete using water soluble 3D printed formwork with embedded reinforcement. Research began with testing small PVA prints for consistency, heat of water-temperature for dissolving, and wall thickness of the printed formwork. Then, dual-extrusion desktop additive manufacturing was used as a method for creating a larger form to test the viability of translating this research into architectural scale applications. This paper describes the background research, materials, methods, fabrication process, and conclusions of this work in progress.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id acadia20_192p
id acadia20_192p
authors Doyle, Shelby; Hunt, Erin
year 2020
title Melting 2.0
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 192-197
summary This project presents computational design and fabrication methods for locating standard steel reinforcement within 3D printed water-soluble PVA (polyvinyl alcohol) molds to create non-standard concrete columns. Previous methods from “Melting: Augmenting Concrete Columns with Water Soluble 3D Printed Formwork” and “Dissolvable 3D Printed Formwork: Exploring Additive Manufacturing for Reinforced Concrete” (Doyle & Hunt 2019) were adapted for larger-scale construction, including the introduction of new hardware, development of custom programming strategies, and updated digital fabrication techniques. Initial research plans included 3D printing continuous PVA formwork with a KUKA Agilus Kr10 R1100 industrial robotic arm. However, COVID-19 university campus closures led to fabrication shifting to the author’s home, and this phase instead relied upon a LulzBot TAZ 6 (build volume of 280 mm x 280 mm x 250 mm) with an HS+ (Hardened Steel) tool head (1.2 mm nozzle diameter). Two methods were developed for this project phase: new 3D printing hardware and custom GCode production. The methods were then evaluated in the fabrication of three non-standard columns designed around five standard reinforcement bars (3/8-inch diameter): Woven, Twisted, Aperture. Each test column was eight inches in diameter (the same size as a standard Sonotube concrete form) and 4 feet tall, approximately half the height of an architecturally scaled 8-foot-tall column. Each column’s form was generated from combining these diameter and height restrictions with the constraints of standard reinforcement placement and minimum concrete coverage. The formwork was then printed, assembled, cast, and then submerged in water to dissolve the molds to reveal the cast concrete. This mold dissolving process limits the applicable scale for the work as it transitions from the research lab to the construction site. Therefore, the final column was placed outside with its mold intact to explore if humidity and water alone can dissolve the PVA formwork in lieu of submersion.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id caadria2019_399
id caadria2019_399
authors Houda, Maryam and Dias-da-Costa, Daniel
year 2019
title Data Informed Branch Typologies for Structurally Optimised Curvilinear Surfaces - 3D Printed Mesh Density System (MDS) as Formwork for Concrete Shell Structures.
doi https://doi.org/10.52842/conf.caadria.2019.2.401
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 401-410
summary This research sheds light on the advancement of additive fabrication and its relevance to the construction of curvilinear surfaces. The Mesh Density System (MDS) explored in this paper, is a novel 3D printed dual formwork and reinforcement system for free-form complex concrete geometries. It offers an alternate method to current formwork systems, essentially for thin shell structures. By using multi-cellular distribution and optimised branch structural arrangements, the system optimises form and concrete flow.
keywords Additive Fabrication; Concrete Shells; Evolutionary Algorithms; Permanent Formwork; Structural Optimisation
series CAADRIA
email
last changed 2022/06/07 07:50

_id acadia19_188
id acadia19_188
authors Leschok, Matthias; Dillenburger, Benjamin
year 2019
title Dissolvable 3DP Formwork
doi https://doi.org/10.52842/conf.acadia.2019.188
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 188-197
summary Additive manufacturing technology frees the designer and manufacturer from the constraints for creating formwork for castable materials. However, the removal of formwork remains a challenging task for specific geometric features such as undercuts and hollow parts. The entire formwork needs to be reachable by humans or machines to be broken, which poses a great risk of damaging the final concrete surface or destroying intricate details. This paper focuses on the development of a sustainable FDM 3D printed formwork system, enabling the casting of components at an architectural scale, without creating material waste. It does so by combining a minimal 3D printed shell with additional geometrical formwork features. Furthermore it proposes the usage of an alternative formwork material, Poly Vinyl Alcohol (PVA). PVA is water dissolvable, non-toxic, and biodegradable. Introducing water dissolvable 3D printed formwork allows designers to exploit in full the advantages of additive manufacturing technologies and the formability of castable materials. Concrete can be cast to fabricate one of a kind, full-scale, structural components without compromising the complexity of form, while at the same time, reducing the amount of material waste drastically.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id acadia20_176p
id acadia20_176p
authors Lok, Leslie; Zivkovic, Sasa
year 2020
title Ashen Cabin
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 176-181
summary Ashen Cabin, designed by HANNAH, is a small building 3D-printed from concrete and clothed in a robotically fabricated envelope made of irregular ash wood logs. From the ground up, digital design and fabrication technologies are intrinsic to the making of this architectural prototype, facilitating fundamentally new material methods, tectonic articulations, forms of construction, and architectural design languages. Ashen Cabin challenges preconceived notions about material standards in wood. The cabin utilizes wood infested by the Emerald Ash Borer (EAB) for its envelope, which, unfortunately, is widely considered as ‘waste’. At present, the invasive EAB threatens to eradicate most of the 8.7 billion ash trees in North America (USDA, 2019). Due to their challenging geometries, most infested ash trees cannot be processed by regular sawmills and are therefore regarded as unsuitable for construction. Infested and dying ash trees form an enormous and untapped material resource for sustainable wood construction. By implementing high precision 3D scanning and robotic fabrication, the project upcycles Emerald-Ash-Borer-infested ‘waste wood’ into an abundantly available, affordable, and morbidly sustainable building material for the Anthropocene. Using a KUKA KR200/2 with a custom 5hp band saw end effector at the Cornell Robotic Construction Laboratory (RCL), the research team can saw irregular tree logs into naturally curved boards of various and varying thicknesses. The boards are arrayed into interlocking SIP façade panels, and by adjusting the thickness of the bandsaw cut, the robotically carved timber boards can be assembled as complex single curvature surfaces or double-curvature surfaces. The undulating wooden surfaces accentuate the building’s program and yet remain reminiscent of the natural log geometry which they are derived from. The curvature of the wood is strategically deployed to highlight moments of architectural importance such as windows, entrances, roofs, canopies, or provide additional programmatic opportunities such as integrated shelving, desk space, or storage.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id caadria2019_636
id caadria2019_636
authors Engholt, Jon and Pigram, Dave
year 2019
title Tailored Flexibility - Reinforcing concrete fabric formwork with 3D printed plastics
doi https://doi.org/10.52842/conf.caadria.2019.1.053
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 53-62
summary The tailored flexibility project seeks to develop a construction system that combines flexible formwork with robotic 3D plastic printing resulting in novel approaches that expand the ranges of both techniques. Combining 3D printing and flexible formwork does not necessarily suggest a unified design space and the development depends on thorough interrogation and critical assessment of the physical intelligence that emerges between digital design, manufacturing processes and structural integrity. This paper describes the initial prototyping of compound material behaviour in formwork and concrete, following the implicit rationales revealed through iterations and variations of physical experimentation. Such iterative feedback from physical prototyping informs and facilitates a discussion of the relationship between the manufacturing process and the design tool: How does the ultimate function as concrete shuttering transform the 3D printing process and how does this transformation conversely affect the shuttering design? How does a hierarchy of involved processes emerge and which composite opportunities do the initial results suggest as a further development into a coherent construction system?
keywords concrete; flexible formwork; 3D printing; robotic fabrication
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2019_280
id caadria2019_280
authors Hack, Norman, Lindemann, Hendrik and Kloft, Harald
year 2019
title Adaptive Modular Spatial Structures for Shotcrete 3D Printing
doi https://doi.org/10.52842/conf.caadria.2019.2.363
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 363-372
summary This paper presents a modular, digital construction system for lightweight spatial structures made from reinforced concrete. For design and fabrication, a digital workflow is presented, which includes the rationalization of a freeform geometry into adaptive spatial modules made up entirely of planar components. For fast and precise fabrication, these components are 3D printed using a novel 3D concrete printing technology called "Shotcrete 3D Printing". The ongoing research is demonstrated by an initial real-scale prototype of one exemplary spatial module. Lastly, the paper provides an outlook into future research, which is necessary to make this digital construction system applicable to the real-scale construction of large, wide-spanning structures.
keywords Robotic Fabrication; Digital Construction Systems; Shotcrete 3D Printing; Modular Structures
series CAADRIA
email
last changed 2022/06/07 07:50

_id ecaadesigradi2019_408
id ecaadesigradi2019_408
authors Lohse, Theresa and Werner, Liss C.
year 2019
title Semi-flexible Additive Manufacturing Materials for Modularization Purposes - A modular assembly proposal for a foam edge-based spatial framework
doi https://doi.org/10.52842/conf.ecaade.2019.1.463
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 463-470
summary This paper introduces a series of design and fabrication tests directed towards the use of bendable 3D printing materials in order to simplify a foam bubble-based geometry as a frame structure for modular assembly. The aspiration to reference a spittlebug's bubble cocoon in nature for a light installation in the urban context was integrated into a computational workflow conditioning light-weight, material-, and cost savings along with assembly-simplicity. Firstly, before elaborating on the project motivation and background in foam structures and applications of 3D-printed thermoplastic polyurethane (TPU) material, this paper describes the physical nature of bubble foams in its relevant aspects. Subsequently this is implemented into the parametric design process for an optimized foam structure with Grasshopper clarifying the need for flexible materials to enhance modular feasibility. Following, the additive manufacturing iterations of the digitally designed node components with TPU are presented and evaluated. Finally, after the test assembly of both components is depicted, this paper assesses the divergence between natural foams and the case study structure with respect to self-organizing behavior.
keywords digital fabrication; 3D Printing; TPU flexibility ; modularity; optimization
series eCAADeSIGraDi
email
last changed 2022/06/07 07:59

_id acadia19_266
id acadia19_266
authors MacDonald, Katie; Schumann, Kyle; Hauptman, Jonas
year 2019
title Digital Fabrication of Standardless Materials
doi https://doi.org/10.52842/conf.acadia.2019.266
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 266-275
summary Digital fabrication techniques have long been aimed at creating unique geometries and forms from standardized, often industrially produced or processed material. These materials have predictable, uniform geometries which allow the fabrication process to be aimed at producing variation through Computer Numerically Controlled (CNC) milling of topological surfaces from volumetric stock or profiles from sheet material. More recently, digital fabrication techniques have been expanded and categorized to address the inherent variation in a found material. Digital materiallurgy defines an approach where standard techniques are applied to non-standard materials; in form-searching, non-standard materials such as unmilled timber members or chunks of concrete waste are analyzed for optimization within a digital fabrication process. Processes of photogrammetry, 3D scanning, and parametric analysis have been used to advance these methods and minimize part reduction and material waste. In this paper, we explore how such methods may be applied to materials without traditional standards—allowing for materials that are inherently variable in geometry to be made usable and for such eccentricities to be leveraged within a design. This paper uses bamboo as a case study for standardless material, and proposes an integrated digital fabrication method for using such material: (1) material stock analysis using sensing technology, (2) parametric best-fit part selection that optimizes a given piece of material within an assembly, and (3) parametric feedback between available material and the design of an assembly which allows for the assembly to adjust its geometry to a set of available parts.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:59

_id ecaade2024_92
id ecaade2024_92
authors Mayor Luque, Ricardo; Beguin, Nestor; Rizvi Riaz, Sheikh; Dias, Jessica; Pandey, Sneham
year 2024
title Multi-material Gradient Additive Manufacturing: A data-driven performative design approach to multi-materiality through robotic fabrication
doi https://doi.org/10.52842/conf.ecaade.2024.1.381
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 1, pp. 381–390
summary Buildings are responsible for 39% of global energy-related carbon emissions, with operational activities contributing 28% and materials and construction accounting for 11%(World Green Building Council, 2019) It is therefore vital to reconsider our reliance on fossil fuels for building materials and to develop new advanced manufacturing techniques that enable an integrated approach to material-controlled conception and production. The emergence of Multi-material Additive Manufacturing (MM-AM) technology represents a paradigm shift in producing elements with hybrid properties derived from novel and optimized solutions. Through robotic fabrication, MM-AM offers streamlined operations, reduced material usage, and innovative fabrication methods. It encompasses a plethora of methods to address diverse construction needs and integrates material gradients through data-driven analyses, challenging traditional prefabrication practices and emphasizing the current growth of machine learning algorithms in design processes. The research outlined in this paper presents an innovative approach to MM-AM gradient 3D printing through robotic fabrication, employing data-driven performative analyses enabling control over print paths for sustainable applications in both the AM industry and our built environment. The article highlights several designed prototypes from two distinct phases, demonstrating the framework's viability, implications, and constraints: a workshop dedicated to data-driven analyses in facade systems for MM-AM 3D-printed brick components, and a 3D-printed brick facade system utilizing two renewable and bio-materials—Cork sourced from recycled stoppers and Charcoal, with the potential for carbon sequestration.
keywords Data-driven Performative design, Multi-material 3d Printing, Material Research, Fabrication-informed Material Design, Robotic Fabrication
series eCAADe
email
last changed 2024/11/17 22:05

_id caadria2019_670
id caadria2019_670
authors Zhang, Xiao, Gao, Weizhe, Xia, Ye, Wang, Xiang, Luo, Youyuan, Su, Junbang, Jin, Jinxi and Yuan, Philip F.
year 2019
title Design and Analysis of Bending-Active Formwork for Shell Structures based on 3D-Printing Technology
doi https://doi.org/10.52842/conf.caadria.2019.1.073
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 73-82
summary This paper presents the design and construction of a 3D-printed thin bending-active formwork for shell. In order to use less scaffolding and make a dome with flexible material,3-D print is applied to the formwork. First step is form-finding . Two single -curved surfaces are used to fit the form found by Kanagaroo and then unroll them .Principle stress lines are also printed on the unrolled formwork to enhance it. However, the formwork with stress lines is hard to bend. So, bending-active simulation made by ABAQUS is also applied to find the best mesh pattern to bend. Bend the basic pattern first on the framework and then print Principle stress lines onto it. Karamba is used to simulate the deformation of the shell under gravity load. It is proved that grid made up of stress lines have the best performance The full scale prototype is made up of two pieces shell bent and tied together can stand steadily. Spring-back test shows that the second layer printed on the shell can help to provide deformation.
keywords form-work; form-finding; 3-D printing; geometric analysis; principle stress lines
series CAADRIA
email
last changed 2022/06/07 07:57

_id ecaadesigradi2019_193
id ecaadesigradi2019_193
authors Scherer, Annie Locke
year 2019
title Concrete Form[ing]work:Designing and Simulating Parametrically-Patterned Fabric Formwork for Cast Concrete
doi https://doi.org/10.52842/conf.ecaade.2019.2.759
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 759-768
summary Concrete is one of the most widely used construction materials globally, yet its industrial fabrication techniques continue to default to planar formwork and uniform cross sections for the sake of simplicity and predictability. /Concrete Form[ing]work/ evaluates state-of-the-art fabric formwork research and explores the industry's reticence to integrate these novel design approaches. This research has identified two challenges that have significantly hindered the adoption of fabric formwork in architectural design: complex tailoring of parametrically designed forms and the lack of accurate simulation tools for flexible formwork. /Concrete Form[ing]work/ develops methods to address both of these issues, providing an alternative approach to more simply tailor fabric forms and accurately simulate these patterns' response to casting. In doing so, this research has the potential to fundamentally change and streamline how the field of flexible formwork is approached and integrated within architectural design. This paper will present the process of parametrically tailoring non-developable surfaces from single sheets and document the advancement of these simulation tools.
keywords flexible formwork; concrete; simulation; parametric patterning; smocking
series eCAADeSIGraDi
email
last changed 2022/06/07 07:57

_id acadia19_168
id acadia19_168
authors Adilenidou, Yota; Ahmed, Zeeshan Yunus; Freek, Bos; Colletti, Marjan
year 2019
title Unprintable Forms
doi https://doi.org/10.52842/conf.acadia.2019.168
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp.168-177
summary This paper presents a 3D Concrete Printing (3DCP) experiment at the full scale of virtualarchitectural bodies developed through a computational technique based on the use of Cellular Automata (CA). The theoretical concept behind this technique is the decoding of errors in form generation and the invention of a process that would recreate the errors as a response to optimization (Adilenidou 2015). The generative design process established a family of structural and formal elements whose proliferation is guided through sets of differential grids (multi-grids) leading to the build-up of large span structures and edifices, for example, a cathedral. This tooling system is capable of producing, with specific inputs, a large number of outcomes in different scales. However, the resulting virtual surfaces could be considered as "unprintable" either due to their need of extra support or due to the presence of many cavities in the surface topology. The above characteristics could be categorized as errors, malfunctions, or undesired details in the geometry of a form that would need to be eliminated to prepare it for printing. This research project attempts to transform these "fabrication imprecisions" through new 3DCP techniques into factors of robustness of the resulting structure. The process includes the elimination of the detail / "errors" of the surface and their later reinsertion as structural folds that would strengthen the assembly. Through this process, the tangible outputs achieved fulfill design and functional requirements without compromising their structural integrity due to the manufacturing constraints.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia19_596
id acadia19_596
authors Anton, Ana; Yoo, Angela; Bedarf, Patrick; Reiter, Lex; Wangler, Timothy; Dillenburger, Benjamin
year 2019
title Vertical Modulations
doi https://doi.org/10.52842/conf.acadia.2019.596
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 596-605
summary The context of digital fabrication allows architects to reinvestigate material, process and the design decisions they entail to explore novel expression in architecture. This demands a new approach to design thinking, as well as the relevant tools to couple the form of artefacts with the process in which they are made. This paper presents a customised computational design tool developed for exploring the novel design space of Concrete Extrusion 3D Printing (CE3DP), enabling a reinterpretation of the concrete column building typology. This tool allows the designer to access generative engines such as trigonometric functions and mesh subdivision through an intuitive graphical user interface. Balancing process efficiency as understood by our industry with a strong design focus, we aim to articulate the unique architectural qualities inherent to CE3DP, energising much needed innovation in concrete technology.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id cf2019_054
id cf2019_054
authors Bae, Jiyoon and Daekwon Park
year 2019
title Weeping Brick The Modular Living Wall System Using 3D Printed Porous Ceramic Materials
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 437
summary The goal of this research is to design and fabricate a modular living wall brick system that purifies and cools air for various indoor environments. The research utilizes ceramic 3d printing techniques for fabrication; and living plants in conjunction with evaporative cooling techniques for indoor air quality control. The brick is made of soil which become porous after firing or drying. Water from the reservoirs slowly weep through the porous brick, creating a layer of water on the surface of the brick. The air movement around the saturated brick creates evaporative cooling and the hydro-seeded plants absorb water from the surface. The shape and texture of the Weeping Brick maximizes the cooling effect via large surface area. As an aggregated wall system, the water circulates from unit to unit by gravity through interconnected reservoirs embedded within each unit. The plants and moss transform the Weeping Brick into a living wall system, purifying and conditioning the indoor air.
keywords Living Wall System, Modular Brick, Ceramic 3D Printing, Evaporative Cooling
series CAAD Futures
email
last changed 2019/07/29 14:18

_id ecaadesigradi2019_425
id ecaadesigradi2019_425
authors Betti, Giovanni, Aziz, Saqib and Ron, Gili
year 2019
title Pop Up Factory : Collaborative Design in Mixed Rality - Interactive live installation for the makeCity festival, 2018 Berlin
doi https://doi.org/10.52842/conf.ecaade.2019.3.115
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 115-124
summary This paper examines a novel, integrated and collaborative approach to design and fabrication, enabled through Mixed Reality. In a bespoke fabrication process, the design is controlled and altered by users in holographic space, through a custom, multi-modal interface. Users input is live-streamed and channeled to 3D modelling environment,on-demand robotic fabrication and AR-guided assembly. The Holographic Interface is aimed at promoting man-machine collaboration. A bespoke pipeline translates hand gestures and audio into CAD and numeric fabrication. This enables non-professional participants engage with a plethora of novel technology. The feasibility of Mixed Reality for architectural workflow was tested through an interactive installation for the makeCity Berlin 2018 festival. Participants experienced with on-demand design, fabrication an AR-guided assembly. This article will discuss the technical measures taken as well as the potential in using Holographic Interfaces for collaborative design and on-site fabrication.Please write your abstract here by clicking this paragraph.
keywords Holographic Interface; Augmented Reality; Multimodal Interface; Collaborative Design; Robotic Fabrication; On-Site Fabrication
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id caadria2019_657
id caadria2019_657
authors Chen, Zhewen, Zhang, Liming and Yuan, Philip F.
year 2019
title Innovative Design Approach to Optimized Performance on Large-Scale Robotic 3D-Printed Spatial Structure
doi https://doi.org/10.52842/conf.caadria.2019.2.451
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 451-460
summary This paper presents an innovative approach on designing large-scale spatial structure with automated robotic 3D-printing. The incipient design approach mainly focused on optimizing structural efficiency at an early design stage by transform the object into a discrete system, and the elements in this system contains unique structural parameters that corresponding to its topology results of stiffness distribution. Back in 2017, the design team already implemented this concept into an experimental project of Cloud Pavilion in Shanghai, China, and the 3D-printed spatial structure was partitioned into five zones represent different level of structure stiffness and filled with five kinds of unit toolpath accordingly. Through further research, an upgrade version, the project of Cloud Pavilion 2.0 is underway and will be completed in January 2019. A detailed description on innovative printing toolpath design in this project is conducted in this paper and explains how the toolpath shape effects its overall structural stiffness. This paper contributes knowledge on integrated design in the field of robotic 3D-printing and provides an alternative approach on robotic toolpath design combines with the optimized topological results.
keywords 3D-Printing; Robotic Fabrication; Structural Optimization; Discrete System; Toolpath Design
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_350
id ecaadesigradi2019_350
authors Cheng, Chi-Li and Hou, June-Hao
year 2019
title A highly integrated Horizontal coordinate-based tool for architecture
doi https://doi.org/10.52842/conf.ecaade.2019.3.305
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 305-312
summary In this research, we attempt to develop a tool which integrates certain common geographic information from OpenStreetMap and OpenTopography into Grasshopper. We name it as OSMKIT temporarily. Besides, in order to make the integration in the design process easier, this tool includes the bilateral conversion function of coordinate in Rhinoceros 3D and the coordinate of the World Geodetic System. These characteristics bring about several possibilities for further usage. This paper contains explanations of functions and examples. For instance, it can be employed for data visualization on a map when these data contain coordinate information. Additionally, since this tool is simple and intuitive to convert points into GPS coordinates, it can make users plan drone for photogrammetry and deal with other related tasks on the rhinoceros 3D interface, helping them to gain most current urban models. Moreover, architects or designers can be not only users but also contributors for open source map system such as OpenStreetMap; the process of sharing the mode which user measure is demonstrated in this paper. To sum up, this coordinate system based tool is designed to be multifunctional and suitable for interdisciplinary usages in grasshopper.
keywords open-source maps; data visualization; geographic information system; urban research; parametric design; interdisciplinary
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id ecaadesigradi2019_641
id ecaadesigradi2019_641
authors Dunn, Kate, Haeusler, M. Hank, Zavoleas, Yannis, Bishop, Mel, Dafforn, Katherine, Sedano, Francisco, Yu, Daniel and Schaefer, Nina
year 2019
title Recycled Sustainable 3D Printing Materials for Marine Environments
doi https://doi.org/10.52842/conf.ecaade.2019.2.583
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 583-592
summary The paper discusses the design and testing of sustainable recycled materials for large scale 3D printed construction in a marine context. This research is part of a 3-phase project involving a multidisciplinary team of designers, architects, material specialists and marine ecologists. The Bio Shelters Project uses an innovative approach to designing and fabricating marine bio-shelters that ecologically enhance seawalls, by promoting native biodiversity and providing seawater filtration, carbon sequestration and fisheries productivity. The design of the 3D print structure is a data-driven approach that incorporates ecological data to optimise the form for growth and survivorship of marine species under the environmental conditions of the installation site as well as being an integral part of the design project and the site.
keywords 3D printing; material research; sustainability; marine biology
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 26HOMELOGIN (you are user _anon_978192 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002