CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 619

_id ecaadesigradi2019_555
id ecaadesigradi2019_555
authors Bomfim, Kyane and Tavares, Felipe
year 2019
title Building facade optimization for maximizing the incident solar radiation
doi https://doi.org/10.52842/conf.ecaade.2019.2.171
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 171-180
summary The technological breakthrough on photovoltaic facades and the high potential for installing photovoltaic (PV) systems in the city of Salvador are the motivation for this article. This case study explores the feasibility of implementing solar energy technology on a building facade, proposing a design method for optimizing insolation performance by the form-finding process in a parameterized shape. The goal was to generate a parametric design workflow, in which it could be found some facade shapes, generating triangle and quadrilateral supporting grids, leading to better results in the total amount of radiation in comparison to the basic flat facade. In these supporting grids were evaluated also the fitting in the distribution of quadrilateral commercial PV cells, measuring its geometric compatibility. By the results, it could be verified the gains and losses in PV potential in several instances obtained by the form-finding process, as the potentials to consider this in the design of every building.
keywords Radiation skydome; Shape parameterization; Form-finding; Genetic Algorithm; PV facade
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id caadria2019_491
id caadria2019_491
authors Cai, Chenyi, Tang, Peng and Li, Biao
year 2019
title Intelligent Generation of Architectural layout inheriting spatial features of Chinese Garden Based on Prototype and Multi-agent System - A Case Study on Lotus Teahouse in Yixing
doi https://doi.org/10.52842/conf.caadria.2019.1.291
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 291-300
summary This study presents an approach for the intelligent generation of architectural layout, in which partial space inherits Chinese garden spatial features. The approach combines spatial prototype analysis and evolutionary optimization process. On one hand, from the perspective of shape grammar, this paper both analyzes and abstracts the spatial prototype that describes the spatial characteristics of Chinese gardens, including the organization system of architecture and landscape, with the spatial sequences along the tourism orientation. On the other hand, taking the design task of Lotus teahouse as an example, a typical spatial prototype is selected to develop the generative intelligent experiment to achieve the architectural layout, in which the spatial prototype is inherited. Through rule-making and parameter adjustment, the spatial prototype will eventually be transformed into a computational model based on the multi-agent system. Hence, the experiment of intelligent generation of architectural layout is carried out under the influence of the function, form and environmental factors; and a three-dimensional conceptual model that inherits the Chinese garden spatial prototype is obtained ultimately.
keywords Chinese garden; Architectural layout; Spatial prototype; Multi-agent system; Intelligent generation
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_408
id ecaadesigradi2019_408
authors Lohse, Theresa and Werner, Liss C.
year 2019
title Semi-flexible Additive Manufacturing Materials for Modularization Purposes - A modular assembly proposal for a foam edge-based spatial framework
doi https://doi.org/10.52842/conf.ecaade.2019.1.463
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 463-470
summary This paper introduces a series of design and fabrication tests directed towards the use of bendable 3D printing materials in order to simplify a foam bubble-based geometry as a frame structure for modular assembly. The aspiration to reference a spittlebug's bubble cocoon in nature for a light installation in the urban context was integrated into a computational workflow conditioning light-weight, material-, and cost savings along with assembly-simplicity. Firstly, before elaborating on the project motivation and background in foam structures and applications of 3D-printed thermoplastic polyurethane (TPU) material, this paper describes the physical nature of bubble foams in its relevant aspects. Subsequently this is implemented into the parametric design process for an optimized foam structure with Grasshopper clarifying the need for flexible materials to enhance modular feasibility. Following, the additive manufacturing iterations of the digitally designed node components with TPU are presented and evaluated. Finally, after the test assembly of both components is depicted, this paper assesses the divergence between natural foams and the case study structure with respect to self-organizing behavior.
keywords digital fabrication; 3D Printing; TPU flexibility ; modularity; optimization
series eCAADeSIGraDi
email
last changed 2022/06/07 07:59

_id acadia19_266
id acadia19_266
authors MacDonald, Katie; Schumann, Kyle; Hauptman, Jonas
year 2019
title Digital Fabrication of Standardless Materials
doi https://doi.org/10.52842/conf.acadia.2019.266
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 266-275
summary Digital fabrication techniques have long been aimed at creating unique geometries and forms from standardized, often industrially produced or processed material. These materials have predictable, uniform geometries which allow the fabrication process to be aimed at producing variation through Computer Numerically Controlled (CNC) milling of topological surfaces from volumetric stock or profiles from sheet material. More recently, digital fabrication techniques have been expanded and categorized to address the inherent variation in a found material. Digital materiallurgy defines an approach where standard techniques are applied to non-standard materials; in form-searching, non-standard materials such as unmilled timber members or chunks of concrete waste are analyzed for optimization within a digital fabrication process. Processes of photogrammetry, 3D scanning, and parametric analysis have been used to advance these methods and minimize part reduction and material waste. In this paper, we explore how such methods may be applied to materials without traditional standards—allowing for materials that are inherently variable in geometry to be made usable and for such eccentricities to be leveraged within a design. This paper uses bamboo as a case study for standardless material, and proposes an integrated digital fabrication method for using such material: (1) material stock analysis using sensing technology, (2) parametric best-fit part selection that optimizes a given piece of material within an assembly, and (3) parametric feedback between available material and the design of an assembly which allows for the assembly to adjust its geometry to a set of available parts.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:59

_id cf2019_023
id cf2019_023
authors Papanikolaou, Dimitris
year 2019
title Computing and Visualizing Taxi Cab Dynamics as Proxies for Autonomous Mobility on Demand Systems. The Case of the Chicago Taxi Cab System
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 171
summary Despite the expansion of shared mobility-on-demand (MoD) systems as sustainable modes of urban transport, a growing debate among planners and urban scientists regarding what constitutes cost and how to compute it, divides opinions on the benefits that autonomous MoD systems may bring. We present a comprehensive definition of cost of traveling by MoD systems as the cost of the vehicle hours (VH), the vehicle-hours-traveled (VHT), the vehicle-hours-dispatched (VHD), and the vehicle-hours-parked (VHP) required to serve a pattern of trips. Next, we discuss an approach to estimate empty (dispatch) trips and idle periods from a user trip dataset. Finally, we model, compute, and visualize the relationship between the dynamics of VHP, VHT, and VHD using Chicago’s taxi cab system as a case. Our results show that the total fleet of taxis in Chicago can decrease by 51% if all trips, currently served by conventional taxis, were served by autonomous ones.
keywords Mobility on Demand Systems, Taxi Cab Systems, Data-Driven Dynamic Modeling, Autonomous Vehicles, System Dynamics
series CAAD Futures
email
last changed 2019/07/29 14:15

_id acadia20_148p
id acadia20_148p
authors Vansice, Kyle; Attraya, Rahul; Culligan, Ryan; Johnson, Benton; Sondergaard, Asbjorn; Peters, Nate
year 2020
title Stereoform Slab
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 148-153
summary Stereoform Slab is both a pavilion and a prototype - an exhibition for the 2019 Chicago Architectural Biennial. It is an experiment in how digital form-finding and robotics can be leveraged to rethink the future of concrete construction. Stereoform Slab examines the role of one of the most ubiquitous horizontal elements in the city - the concrete slab, also the most common element in contemporary construction. Using smarter forming systems - in this case, a ruled-surface-derived, robotic hotwire process - the Stereoform Slab prototype proved that the amount of material used and waste generated could be minimized without increasing construction complexity, by about 20% over a conventional system. Stereoform also extends the conventional concrete span (column spacing), specifically in Chicago, from 30’ to 45’. In developing a concrete forming system that affords added flexibility without increasing construction costs, it is possible to reduce embodied carbon significantly. The method allows reducing carbon in buildings that aren’t typically the subject of advanced architectural design or rigorous optimization – conventional buildings that compose a majority of our built environment, and its respective contributions to global carbon emissions. Stereoform is the result of a multi-objective design optimization process. Optimal materialization, according to the compressive/tensile physics present in beam design, was balanced against the fabrication constraints of a singularly ruled-surface, which enables fast form-making using robotic hotwire cutting. SOM and Autodesk collaborated to mirror the approach developed to optimize Stereoform slab as a pavilion, to the building scale, using the multi-objective optimization platform Refinery. Project Refinery allowed the team to create a hyper-responsive system design that could adapt to any number of varying programmatic conditions and loading patterns. The development of this approach is a crucial step in making optimization techniques flexible enough to balance the number of competing parameters in the design process available and accessible to a broader design audience within architecture and engineering.
series ACADIA
type project
email
last changed 2021/10/26 08:03

_id caadria2019_131
id caadria2019_131
authors Wang, Sihan, Xuereb Conti, Zack and Raspall, Felix
year 2019
title Optimization of Clay Mould for Concrete Casting Using Design of Experiments
doi https://doi.org/10.52842/conf.caadria.2019.2.283
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 283-292
summary This paper presents a research work to optimize the Additive Manufactured (AM) clay moulds for concrete casting utilizing the Design of Experiments (DOE). The objective of this approach is to understand the impacts of clay moulds' fabrication parameters on the displacement of cast concrete artefacts. This will contribute to efficient and economical clay mould production without losing accuracy. We adopt a DOE approach to reveal insights into the influence of critical fabrication parameters on the displacement of the final concrete artefact and thus, suggest critical parameter settings to ensure that the lateral pressure exerted by concrete in the vertical build-up is sustained. We demonstrate experimental results for a case study: vertical columns of circular cross-sections.
keywords Clay Mould; Additive Manufacturing; Robotic Fabrication; Design of Experiments
series CAADRIA
email
last changed 2022/06/07 07:58

_id ecaadesigradi2019_308
id ecaadesigradi2019_308
authors Yetkin, Ozan and Gönenç Sorguç, Arzu
year 2019
title Design Space Exploration of Initial Structural Design Alternatives via Artificial Neural Networks
doi https://doi.org/10.52842/conf.ecaade.2019.1.055
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 55-60
summary Increasing implementation of digital tools within a design process generates exponentially growing data in each phase, and inevitably, decision making within a design space with increasing complexity will be a great challenge for the designers in the future. Hence, this research aimed to seek potentials of captured data within a design space and solution space of a truss design problem for proposing an initial novel approach to augment capabilities of digital tools by artificial intelligence where designers are allowed to make a wise guess within the initial design space via performance feedbacks from the objective space. Initial structural design and modelling phase of a truss section was selected as a material of this study since decisions within this stage affect the whole process and performance of the end product. As a method, a generic framework was proposed that can help designers to understand the trade-offs between initial structural design alternatives to make informed decisions and optimizations during the initial stage. Finally, the proposed framework was presented in a case study, and future potentials of the research were discussed.
keywords design space; objective space; structural design; artificial intelligence; machine learning; optimization
series eCAADeSIGraDi
email
last changed 2022/06/07 07:57

_id acadia19_490
id acadia19_490
authors Alvarez, Martín; Wagner, Hans Jakob; Groenewolt, Abel; Krieg, Oliver David; Kyjanek, Ondrej; Sonntag, Daniel; Bechert, Simon; Aldinger, Lotte; Menges, Achim; Knippers, Jan
year 2019
title The Buga Wood Pavilion
doi https://doi.org/10.52842/conf.acadia.2019.490
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 490-499
summary Platforms that integrate developments from multiple disciplines are becoming increasingly relevant as the complexity of different technologies increases day by day. In this context, this paper describes an integrative approach for the development of architectural projects. It portrays the benefits of applying such an approach by describing its implementation throughout the development and execution of a building demonstrator. Through increasing the agility and extending the scope of existing computational tools, multiple collaborators were empowered to generate innovative solutions across the different phases of the project´s cycle. For this purpose, novel solutions for planar segmented wood shells are showcased at different levels. First, it is demonstrated how the application of a sophisticated hollow-cassette building system allowed the optimization of material use, production time, and mounting logistics due to the modulation of the parameters of each construction element. Second, the paper discusses how the articulation of that complexity was crucial when negotiating between multiple professions, interacting with different contractors, and complying with corresponding norms. Finally, the innovative architectural features of the resulting building are described, and the accomplishments are benchmarked through comparison with typological predecessor.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id caadria2019_388
id caadria2019_388
authors Beattie, Hamish, Brown, Daniel and Kindon, Sara
year 2019
title Functional Fiction to Collective Action - Values-Based Participatory Urban Design Gaming
doi https://doi.org/10.52842/conf.caadria.2019.1.737
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 737-746
summary This paper discusses the methodology and results of the Maslow's Palace workshops project, which engages with current debates surrounding the democratisation of digital urban design technology and stakeholder decision making, through the implementation of a speculative oriented approach to serious gaming. The research explores how serious games might be used to help marginalised communities consider past, future and present community experiences, reconcile dissimilar assumptions, generate social capital building and design responses and prime participants for further long term design engagement processes. Empirical material for this research was gathered from a range of case study workshops prepared with three landfill-based communities and external partners throughout 2017. Results show the approach helped participants develop shared norms, values and understandings of sensitive topics and develop ideas for future action through "collective tinkering".
keywords Participatory design; urban design; social capital; serious games; slum upgrading
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2019_459
id caadria2019_459
authors Behmanesh, Hossein and Brown, André G.P.
year 2019
title Classification and Review of Software Applications in the Context of Urban Design Processes
doi https://doi.org/10.52842/conf.caadria.2019.2.211
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 211-220
summary We have seen increasing expectations from our cities: as we aim to enable them to become smarter, more efficient and more sustainable. Having these goals makes the urban designing process increasingly complex. Undertaking contemporary urban design and analysis requires a rounded and inclusive approach. In the discussion relating to the smart city there has been attention to infrastructure technology solutions. But ways of estimating the success of more comprehensive urban design interventions is also extremely important. In response to these needs, digital urban design simulation and analysis software packages have been developed to help urban designers model and evaluate their designs before they take shape in the real world. We analyse, and reflect on the current aids available, classifying the urban design software packages which were used in the body of knowledge. In addition, more influential urban design software packages have been reviewed to figure out in which stages of the urban design process, they have applied. This review also helpful for software developer to understand which software packages more useful and which ones need to be developed in future.
keywords Smart city; Urban Design Process; software application; classification
series CAADRIA
email
last changed 2022/06/07 07:54

_id ijac201917103
id ijac201917103
authors Bejarano, Andres; and Christoph Hoffmann
year 2019
title A generalized framework for designing topological interlocking configurations
source International Journal of Architectural Computing vol. 17 - no. 1, 53-73
summary A topological interlocking configuration is an arrangement of pieces shaped in such a way that the motion of any piece is blocked by its neighbors. A variety of interlocking configurations have been proposed for convex pieces that are arranged in a planar space. Published algorithms for creating a topological interlocking configuration start from a tessellation of the plane (e.g. squares colored as a checkerboard). For each square S of one color, a plane P through each edge E is considered, tilted by a given angle ? against the tessellated plane. This induces a face F supported by P and limited by other such planes nearby. Note that E is interior to the face. By adjacency, the squares of the other color have similarly delimiting faces. This algorithm generates a topological interlocking configuration of tetrahedra or antiprisms. When checked for correctness (i.e. for no overlap), it rests on the tessellation to be of squares. If the tessellation consists of rectangles, then the algorithm fails. If the tessellation is irregular, then the tilting angle is not uniform for each edge and must be determined, in the worst case, by trial and error. In this article, we propose a method for generating topological interlocking configurations in one single iteration over the tessellation or mesh using a height value and a center point type for each tile as parameters. The required angles are a function of the given height and selected center; therefore, angle choices are not required as an initial input. The configurations generated using our method are compared against the configurations generated using the angle-choice approach. The results show that the proposed method maintains the alignment of the pieces and preserves the co-planarity of the equatorial sections of the pieces. Furthermore, the proposed method opens a path of geometric analysis for topological interlocking configurations based on non-planar tessellations.
keywords Topological interlocking, surface tessellation, irregular geometry, parametric design, convex assembly
series journal
email
last changed 2019/08/07 14:04

_id cf2019_020
id cf2019_020
authors Belém, Catarina; Luís Santos and António Leitão
year 2019
title On the Impact of Machine Learning: Architecture without Architects?
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 148-167
summary Architecture has always followed and adopted technological breakthroughs of other areas. As a case in point, in the last decades, the field of computation changed the face of architectural practice. Considering the recent breakthroughs of Machine Learning (ML), it is expectable to see architecture adopting ML-based approaches. However, it is not yet clear how much this adoption will change the architectural practice and in order to forecast this change it is necessary to understand the foundations of ML and its impact in other fields of human activity. This paper discusses important ML techniques and areas where they were successfully applied. Based on those examples, this paper forecast hypothetical uses of ML in the realm of building design. In particular, we examine ML approaches in conceptualization, algorithmization, modeling, and optimization tasks. In the end, we conjecture potential applications of such approaches, suggest future lines of research, and speculate on the future face of the architectural profession.
keywords Machine Learning, Algorithmic Design, AI for Building Design
series CAAD Futures
type normal paper
email
last changed 2019/07/29 14:54

_id ijac201917106
id ijac201917106
authors Brown, Nathan C. and Caitlin T. Mueller
year 2019
title Design variable analysis and generation for performance-based parametric modeling in architecture
source International Journal of Architectural Computing vol. 17 - no. 1, 36-52
summary Many architectural designers recognize the potential of parametric models as a worthwhile approach to performance- driven design. A variety of performance simulations are now possible within computational design environments, and the framework of design space exploration allows users to generate and navigate various possibilities while considering both qualitative and quantitative feedback. At the same time, it can be difficult to formulate a parametric design space in a way that leads to compelling solutions and does not limit flexibility. This article proposes and tests the extension of machine learning and data analysis techniques to early problem setup in order to interrogate, modify, relate, transform, and automatically generate design variables for architectural investigations. Through analysis of two case studies involving structure and daylight, this article demonstrates initial workflows for determining variable importance, finding overall control sliders that relate directly to performance and automatically generating meaningful variables for specific typologies.
keywords Parametric design, design space formulation, data analysis, design variables, dimensionality reduction
series journal
email
last changed 2019/08/07 14:04

_id cf2019_053
id cf2019_053
authors Diarte, Julio ; Elena Vazquez and Marcus Shaffer
year 2019
title Tooling Cardboard for Smart Reuse: A Digital and Analog Workflow for Upcycling Waste Corrugated Cardboard as a Building Material
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 436
summary This paper is a description of a hybridized digital and analog workflow for reusing waste corrugated cardboard as a building material. The work explores a combination of digital design and analog fabrication tools to create a workflow that would help designers/builders to negotiate with the material variability of waste cardboard. The workflow discussed here was implemented for designing and fabricating a prototypical modular floor panel using different sheets of waste cardboard combined with repurposed wood. The implementation shows that combining digital and analog tools can create a novel approach to material reuse, and facilitate a design/fabrication culture of smart reuse that supports informal building and making at recycling collection centers in developing countries for housing alternatives
keywords Smart Reuse, Waste Cardboard Architecture, Digital Analog Workflow, Parametric Design
series CAAD Futures
email
last changed 2019/07/29 14:18

_id ecaadesigradi2019_648
id ecaadesigradi2019_648
authors Eisenstadt, Viktor, Langenhan, Christoph and Althoff, Klaus-Dieter
year 2019
title Generation of Floor Plan Variations with Convolutional Neural Networks and Case-based Reasoning - An approach for transformative adaptation of room configurations within a framework for support of early conceptual design phases
doi https://doi.org/10.52842/conf.ecaade.2019.2.079
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 79-84
summary We present an approach for computer-aided generation of different variations of floor plans during the early phases of conceptual design in architecture. The early design phases are mostly characterized by the processes of inspiration gaining and search for contextual help in order to improve the building design at hand. The generation method described in this work uses the novel as well as established artificial intelligence methods, namely, generative adversarial nets and case-based reasoning, for creation of possible evolutions of the current design based on the most similar previous designs. The main goal of this approach is to provide the designer with information on how the current floor plan can evolve over time in order to influence the direction of the design process. The work described in this paper is part of the methodology FLEA (Find, Learn, Explain, Adapt) whose task is to provide a holistic structure for support of the early conceptual phases in architecture. The approach is implemented as the adaptation component of the framework MetisCBR that is based on FLEA.
keywords room configuration; adaptation; case-based reasoning; convolutional neural networks; conceptual design
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id cf2019_038
id cf2019_038
authors El-Dabaa, Rana and Sherif Abdelmohsen
year 2019
title HMTM: Hygromorphic-Thermobimetal Composites as a Novel Approach to Enhance Passive Actuation of Adaptive Façades
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 290-300
summary Typical adaptive facades rely on mechanical actuators that respond to the outdoor climate and regulate its effect on indoor spaces. With the emergence of ubiquitous computing, several studies have independently utilized the latent properties of programmable materials, such as the hygroscopic properties of wood and the difference in expansion coefficient of metals, to passively program material response. Motion stimuli vary for each material however, involving changes in humidity and temperature fluctuation for wood and metals respectively. This paper introduces Hygromorphic-Thermobimetal (HMTM), as a low-tech low-cost passive programmable composite. A series of physical experiments are conducted to deduce design parameters that induce specific actuation mechanisms based on the stimulation of both hygroscopic properties in wood and metal expansion through temperature variation. This allows for an extended implementation of the hygroscopic properties of wood and its actuation configurations in hot arid climates, where variation in temperature, rather than humidity, is more dominant.
keywords Hygroscopic properties of wood, Passive actuation, Thermobimetals, Programmable materials, Adaptive façades
series CAAD Futures
email
last changed 2019/07/29 14:15

_id cf2019_056
id cf2019_056
authors Erdine, Elif ; Asli Aydin, Cemal Koray Bingol, Gamze Gunduz, Alvaro Lopez Rodriguez and Milad Showkatbakhsh
year 2019
title Robot-Aided Fabrication of Materially Efficient Complex Concrete Assemblies
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 454-472
summary This paper presents a novel approach for the materially efficient production of doubly-curved Expanded Polystyrene (EPS) form-work for insitu concrete construction and a novel application of a patented Glass Reinforced Concrete (GRC) technology. Research objectives focus on the development of complex form-work generation and concrete application via advanced computational and robotic methods. While it is viable to produce form-work with complex geometries with advanced digital and robotic fabrication tools, a key consideration area is the reduction of form-work waste material. The research agenda explores methods of associating architectural, spatial, and structural criteria with a material-informed holistic approach. The digital and physical investigations are founded on Robotic Hot-Wire Cutting (RHWC). The geometrical and physical principles of RHWC are transformed into design inputs, whereby digital and physical tests inform each other simultaneously. Correlations are set between form-work waste optimization with the geometrical freedom and constraints of hot-wire cutting via computational methods.
keywords Robotic fabrication, Robotic hot-wire cutting (RHWC), Glassreinforced concrete (GRC), Waste optimization, EPS form-work
series CAAD Futures
email
last changed 2019/07/29 14:18

_id cf2019_050
id cf2019_050
authors Erdine, Elif ; Giulio Gianni, Angel Fernando Lara Moreira, Alvaro Lopez Rodriguez, Yutao Song and Alican Sungur
year 2019
title Robot-Aided Fabrication of Light-Weight Structures with Sheet Metal Expansion
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 433
summary This paper presents a novel approach for the creation of metal lightweight self-supporting structures through the employment of metal kerfing and robotic sheet panel expansion. Research objectives focus on the synthesis of material behavior on a local scale and the structural performance on a global scale via advanced computational and robotic methods. There are inherent structural properties to expanded metal sheets which can be employed to achieve an integrated building system without the need for a secondary supporting structure. A computational workflow that integrates Finite Element Analysis, geometrical optimization, and robotic toolpath planning has been developed. This workflow is informed by the parameters of material experimentation on sheet metal kerfing and robotic sheet metal expansion on the local panel scale. The proposed methodology is applied on a range of panels with a custom-built robotic fabrication setup for the design, fabrication, and assembly of a one-to-one scale working prototype.
keywords Robotic fabrication, Robotic sheet metal expansion, Light-weight structure, Metal kerfing, Metal expansion
series CAAD Futures
email
last changed 2019/07/29 14:18

_id cf2019_014
id cf2019_014
authors Ferrando, Cecilia; Niccolo Dalmasso, Jiawei Mai, Daniel Cardoso Llach
year 2019
title Architectural Distant Reading Using Machine Learning to Identify Typological Traits Across Multiple Buildings
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 114-127
summary This paper introduces an approach to architectural “distant reading”: the use of computational methods to analyze architectural data in order to derive spatial insights from—and explore new questions concerning—large collections of architectural work. Through a case study comprising a dataset of religious buildings, we show how we may use machine learning techniques to identify typological and functional traits from building plans. We find that spatial structure, rather than local features, is particularly effective in supporting this type of analysis. Further, we speculate on the potential of this computational method to enrich architectural design, research, and criticism by, for example, enabling new ways of thinking about architectural concepts such as typology in ways that reflect gradual variations, rather than sharp distinctions.
keywords Architectural Analytics, Machine Learning, Classification, Religious buildings, Space Syntax
series CAAD Futures
email
last changed 2019/07/29 14:08

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_342772 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002