CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 624

_id ecaadesigradi2019_628
id ecaadesigradi2019_628
authors Borunda, Luis, Ladron de Guevara, Manuel and Anaya, Jesus
year 2019
title Design Method for Optimized Infills in Additive Manufacturing Thermoplastic Components
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 493-502
doi https://doi.org/10.52842/conf.ecaade.2019.1.493
summary The following article extends and tests computational methodologies of design to consider Finite Element Analysis in the creation of optimized infill structures based on regular and semi-regular patterns that comply with the geometrical constraints of deposition. The Stress-Deformation relationship manifested in Finite Element Analysis is structured in order to influence the geometrical arrangement of the complex spatial infill. The research presents and discusses a program of performance informed infill design, and validates the generalizability of a method of internalizing and automating Finite Element Method (FEM) processing in Fused Deposition Modeling (FDM) workflows, and tests manufacturability of the methods through its ability to handle the FDM process constraints of FEM influenced intricate geometries.
keywords Additive Manufacturing; Finite Element Analysis; Fused Deposition Modeling; 3D infill
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id caadria2019_632
id caadria2019_632
authors Raspall, Felix, Banon, Carlos and Tay, Jenn Chong
year 2019
title AirTable - Stainless steel printing for functional space frames
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 113-122
doi https://doi.org/10.52842/conf.caadria.2019.1.113
summary In architecture, the use of Additive Manufacturing (AM) technologies has been typically undermined by the long production time, elevated cost to manufacture parts and the low mechanical properties of 3D printed components. As AM becomes faster cheaper and stronger, opportunities for architectures that make creative use of AM to produce functional architectural pieces are emerging. In this paper, we propose and discuss the application of metal AM in complex space frames and the theoretical and practical implications. A functional lightweight metal table by the authors support our hypothesis that AM has a clear application in architecture and furniture design, and that space frames constitutes a promising structural typology. Specifically, we investigate how AM using metal as a material can be used in the application of fabrication of complex space frame structure components and connection details. The paper presents background research and our contribution to the digital design tools, the manufacturing and assembly processes, and the analysis of the performances of a parametrically designed and digitally fabricated large meeting table. Insights from this paper are deployed in an architectural scale project, AIRMesh, a metal 3D-printed pavilion set in the greenery of Gardens by the Bay, Singapore.
keywords Metal Additive Manufacturing; Space Frame; 3D Printing; Furniture Design
series CAADRIA
email
last changed 2022/06/07 08:00

_id ecaadesigradi2019_455
id ecaadesigradi2019_455
authors Moreira, Jo?o, Figueiredo, Bruno and Cruz, Paulo
year 2019
title Ceramic Additive Manufacturing in Architecture - Computational Methodology for Defining a Column System
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 471-476
doi https://doi.org/10.52842/conf.ecaade.2019.1.471
summary The present paper describes a research that explores the design and production of customised architectural ceramic components defined through parametric relations of biomorphic inspiration and to be built through additive manufacturing. In this sense, is presented a case study that develops a system of both architectural and structural components - a column system. The definition process of the system is mediated by computational design, implementing not only structural analysis and optimization strategies, but also mimetic formal characteristics of nature to an initial grid, creating a model that adapts its formal attributes, depending on its assumptions and the material constraints. This process resulted in the definition of a set of solutions that better answer to a specific design problem.
keywords Additive Manufacturing; Ceramic 3D; Computational Design; Structural Optimization; Biomorphism
series eCAADeSIGraDi
email
last changed 2022/06/07 07:58

_id ecaadesigradi2019_001
id ecaadesigradi2019_001
authors Sousa, JP, Xavier, JP and Castro Henriques, G (eds.)
year 2019
title Architecture in the Age of the 4th Industrial Revolution, Volume 2
source Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, 872 p.
doi https://doi.org/10.52842/conf.ecaade.2019.2
summary Going back in history, the 1st Industrial Revolution occurred between the 18th and 19th centuries, when water and steam power led to the mechanization period. By then, social changes radically transformed cities and, together with manufactured materials like steel and glass, promoted the emergence of new building design typologies like the railway station. In the end of the 19th century, the advent of electrical power triggered mass production systems. This 2nd Revolution affected the building construction industry in many ways, inspiring the birth to the modern movement. For some, standardization emerged as an enemy of arts and crafts, while, for others, it was an opportunity to embrace new design agendas, where construction economy and quality could be controlled in novel ways. More recently, electronics and information technology fostered the 3rd Revolution with the production automation. In architecture, the progressive use of digital design, analysis and fabrication processes started to replace the traditional means of analogical representation. This opened the door for the exploration of a higher degree of design freedom, complexity and customization. The rise of the Internet also changed the way architects communicated and promoted the emergence of global architectural practices in the planet. Today, in the beginning of the 21th century, we are in a moment of profound and accelerated changes in the way we perceive and interact with(in) the world, which many authors, like Klaus Schwab, do not hesitate to call as the Fourth Industrial Revolution. Extraordinary advancements in areas like mobile communication, artificial intelligence, big data, cloud computing, blockchain, nanotechnology, biotechnology, facial recognition, robotics or additive manufacturing are fusing the physical, biological and digital systems of production. Such technological context has triggered a series of disruptive concepts and innovations, like the smart-phone, social networks, online gaming, internet of things, smart materials, interactive environments, personal fabrication, 3D printing, virtual and augmented realities, drones, selfdriving cars or the smart cities, which, all together, are drawing a radically new world.
series eCAADeSIGraDi
last changed 2022/06/07 07:49

_id ecaadesigradi2019_002
id ecaadesigradi2019_002
authors Sousa, JP, Xavier, JP and Castro Henriques, G (eds.)
year 2019
title Architecture in the Age of the 4th Industrial Revolution, Volume 3
source Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, 374 p.
doi https://doi.org/10.52842/conf.ecaade.2019.3
summary Going back in history, the 1st Industrial Revolution occurred between the 18th and 19th centuries, when water and steam power led to the mechanization period. By then, social changes radically transformed cities and, together with manufactured materials like steel and glass, promoted the emergence of new building design typologies like the railway station. In the end of the 19th century, the advent of electrical power triggered mass production systems. This 2nd Revolution affected the building construction industry in many ways, inspiring the birth to the modern movement. For some, standardization emerged as an enemy of arts and crafts, while, for others, it was an opportunity to embrace new design agendas, where construction economy and quality could be controlled in novel ways. More recently, electronics and information technology fostered the 3rd Revolution with the production automation. In architecture, the progressive use of digital design, analysis and fabrication processes started to replace the traditional means of analogical representation. This opened the door for the exploration of a higher degree of design freedom, complexity and customization. The rise of the Internet also changed the way architects communicated and promoted the emergence of global architectural practices in the planet. Today, in the beginning of the 21th century, we are in a moment of profound and accelerated changes in the way we perceive and interact with(in) the world, which many authors, like Klaus Schwab, do not hesitate to call as the Fourth Industrial Revolution. Extraordinary advancements in areas like mobile communication, artificial intelligence, big data, cloud computing, blockchain, nanotechnology, biotechnology, facial recognition, robotics or additive manufacturing are fusing the physical, biological and digital systems of production. Such technological context has triggered a series of disruptive concepts and innovations, like the smart-phone, social networks, online gaming, internet of things, smart materials, interactive environments, personal fabrication, 3D printing, virtual and augmented realities, drones, selfdriving cars or the smart cities, which, all together, are drawing a radically new world.
series eCAADeSIGraDi
last changed 2022/06/07 07:49

_id ecaadesigradi2019_000
id ecaadesigradi2019_000
authors Sousa, JP, Xavier, JP and Castro Henriques, G (eds.)
year 2019
title Architecture in the Age of the 4th Industrial Revolution, Volume 1
source Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, 835 p.
doi https://doi.org/10.52842/conf.ecaade.2019.1
summary Going back in history, the 1st Industrial Revolution occurred between the 18th and 19th centuries, when water and steam power led to the mechanization period. By then, social changes radically transformed cities and, together with manufactured materials like steel and glass, promoted the emergence of new building design typologies like the railway station. In the end of the 19th century, the advent of electrical power triggered mass production systems. This 2nd Revolution affected the building construction industry in many ways, inspiring the birth to the modern movement. For some, standardization emerged as an enemy of arts and crafts, while, for others, it was an opportunity to embrace new design agendas, where construction economy and quality could be controlled in novel ways. More recently, electronics and information technology fostered the 3rd Revolution with the production automation. In architecture, the progressive use of digital design, analysis and fabrication processes started to replace the traditional means of analogical representation. This opened the door for the exploration of a higher degree of design freedom, complexity and customization. The rise of the Internet also changed the way architects communicated and promoted the emergence of global architectural practices in the planet. Today, in the beginning of the 21th century, we are in a moment of profound and accelerated changes in the way we perceive and interact with(in) the world, which many authors, like Klaus Schwab, do not hesitate to call as the Fourth Industrial Revolution. Extraordinary advancements in areas like mobile communication, artificial intelligence, big data, cloud computing, blockchain, nanotechnology, biotechnology, facial recognition, robotics or additive manufacturing are fusing the physical, biological and digital systems of production. Such technological context has triggered a series of disruptive concepts and innovations, like the smart-phone, social networks, online gaming, internet of things, smart materials, interactive environments, personal fabrication, 3D printing, virtual and augmented realities, drones, selfdriving cars or the smart cities, which, all together, are drawing a radically new world.
series eCAADeSIGraDi
last changed 2022/06/07 07:49

_id acadia19_168
id acadia19_168
authors Adilenidou, Yota; Ahmed, Zeeshan Yunus; Freek, Bos; Colletti, Marjan
year 2019
title Unprintable Forms
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp.168-177
doi https://doi.org/10.52842/conf.acadia.2019.168
summary This paper presents a 3D Concrete Printing (3DCP) experiment at the full scale of virtualarchitectural bodies developed through a computational technique based on the use of Cellular Automata (CA). The theoretical concept behind this technique is the decoding of errors in form generation and the invention of a process that would recreate the errors as a response to optimization (Adilenidou 2015). The generative design process established a family of structural and formal elements whose proliferation is guided through sets of differential grids (multi-grids) leading to the build-up of large span structures and edifices, for example, a cathedral. This tooling system is capable of producing, with specific inputs, a large number of outcomes in different scales. However, the resulting virtual surfaces could be considered as "unprintable" either due to their need of extra support or due to the presence of many cavities in the surface topology. The above characteristics could be categorized as errors, malfunctions, or undesired details in the geometry of a form that would need to be eliminated to prepare it for printing. This research project attempts to transform these "fabrication imprecisions" through new 3DCP techniques into factors of robustness of the resulting structure. The process includes the elimination of the detail / "errors" of the surface and their later reinsertion as structural folds that would strengthen the assembly. Through this process, the tangible outputs achieved fulfill design and functional requirements without compromising their structural integrity due to the manufacturing constraints.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id caadria2019_660
id caadria2019_660
authors Aghaei Meibodi, Mania, Giesecke, Rena and Dillenburger, Benjamin
year 2019
title 3D Printing Sand Molds for Casting Bespoke Metal Connections - Digital Metal: Additive Manufacturing for Cast Metal Joints in Architecture
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 133-142
doi https://doi.org/10.52842/conf.caadria.2019.1.133
summary Metal joints play a relevant role in space frame constructions, being responsible for large amount of the overall material and fabrication cost. Space frames which are constructed with standardized metal joints are constrained to repetitive structures and topologies. For customized space frames, the fabrication of individual metal joints still remains a challenge. Traditional fabrication methods such as sand casting are labour intensive, while direct 3D metal printing is too expensive and slow for the large volumes needed in architecture.This research investigates the use of Binder Jetting technology to 3D print sand molds for casting bespoke metal joints in architecture. Using this approach, a large number of custom metal joints can be fabricated economically in short time. By automating the generation of the joint geometry and the corresponding mold system, an efficient digital process chain from design to fabrication is established. Several design studies for cast metal joints are presented. The approach is successfully tested on the example of a full scale space frame structure incorporating almost two hundred custom aluminum joints.
keywords 3D printing; binder jetting; sand casting; metal joints; metal casting; space frame; digital fabrication; computational design; lightweight; customization
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_498
id ecaadesigradi2019_498
authors Bermek, Mehmet Sinan, Shelden, Dennis and Gentry, T. Russel
year 2019
title A Holistic Approach to Feature-based Structural Mapping in Cross Laminated Timber Buildings
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 789-796
doi https://doi.org/10.52842/conf.ecaade.2019.2.789
summary Mass Engineered Timber products provide a unique opportunity in configuring panelized building systems that are suitable for both prefabrication and onsite customization. The structural nature of these large section elements also brings about the need for a coordinated design-fabrication-assembly workflow. These products can assume different geometric configurations and their behaviour can be approximated globally by simplifying framing schemas. Current BIM Interoperability standards such as STEP or IFC already acknowledge and support the interconnected nature of component properties, yet these Data Models are component focused. Expanding on the relationships between components and using sets to define part to whole, or exteriority relationships could yield a more flexible and agile querying of building information.This would be a framework fit for automated feature derivation and rule based design applications. To this end Graph structures and Graph Databases, alongside existing ontology authoring tools are studied to probe new cognitive possibilities in collaborative AEC workflows
keywords Graph theory; BIM; CLT; IFC
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id acadia19_222
id acadia19_222
authors Birol, Eda Begum; Lu, Yao; Sekkin, Ege; Johnson, Colby; Moy, David; Islam, Yaseen; Sabin, Jenny
year 2019
title POLYBRICK 2.0
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 222-233
doi https://doi.org/10.52842/conf.acadia.2019.222
summary Natural load bearing structures are characterized by aspects of specialized morphology, lightweight, adaptability, and a regenerative life cycle. PolyBrick 2.0 aims to learn from and apply these characteristics in the pursuit of revitalizing ceramic load bearing structures. For this, algorithmic design processes are employed, whose physical manifestations are realized through available clay/porcelain additive manufacturing technologies (AMTs). By integrating specialized expertise across disciplines of architecture, engineering, and material science, our team proposes an algorithmic toolset to generate PolyBrick geometries that can be applied to various architectural typologies. Additionally, comparative frameworks for digital and physical performance analyses are outlined. Responding to increasing urgencies of material efficiency and environmental sensibility, this project strives to provide for designers a toolset for environmentally responsive, case-specific design, characterized by the embedded control qualities derived from the bone and its adaptability to specific loading conditions. Various approaches to brick tessellation and assembly are proposed and architectural possibilities are presented. As an outcome of this research, PolyBrick 2.0 is effectively established as a Grasshopper plug-in, “PolyBrick” to be further explored by designers.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id ijac202119302
id ijac202119302
authors BuHamdan, Samer; Alwisy, Aladdin; Bouferguene, Ahmed
year 2021
title Generative systems in the architecture, engineering and construction industry: A systematic review and analysis
source International Journal of Architectural Computing 2021, Vol. 19 - no. 3, 226–249
summary Researchers have been extensively exploring the employment of generative systems to support design practices in the architecture, engineering and construction industry since the 1970s. More than half a century passed since the first architecture, engineering and construction industry’s generative systems were developed; researchers have achieved remarkable leaps backed by advances in computing power and algorithms’ capacity. In this article, we present a systematic analysis of the literature published between 2009 and 2019 on the utilization of generative systems in the design practices of the architecture, engineering and construction industry. The present research studies present trends, collaborations and applications of generative systems in the architecture, engineering and construction industry in order to identify existing shortcomings and potential advancements that balance the need for theory development and practical application. It provides insightful observations that are translated into meaningful recommendations for future research necessary to progress the incorporation of generative systems into the design practices of the architecture, engineering and construction industry.
keywords Generative systems, architecture, engineering and construction industry, performative design, generative design, systematic literature review, future directions
series journal
email
last changed 2024/04/17 14:29

_id acadia19_278
id acadia19_278
authors Ca?izares, Galo
year 2019
title Digital Suprematism
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 278-287
doi https://doi.org/10.52842/conf.acadia.2019.278
summary It is widely held that sometime around 2006, the World Wide Web as we knew it mutated into Web 2.0. This colloquial label signaled a shift from an Internet designed for us to an Internet designed by us. Nowhere was this more explicitly stated than in Time Magazine’s 2006 Person of the Year selection: You. More than a decade later, Internet browsers have evolved into ubiquitous interfaces accessible from mobile devices, tablet computers, public kiosks, workstations, laptops, etc. It would, therefore, not be an overstatement to say that the browser is the most widespread content canvas in the world. Designers frequently use web browsers for their ability to exhibit and organize content. They are the sites for portfolios, announcements, magazines, and at times, discussions. But despite its flexibility and rich infrastructure, rarely is the browser used to generate design elements. Thanks to advanced web development languages like JavaScript and open-source code libraries, such as p5.JS, Matter.JS, and Three.JS, browsers now support interactive and spatial content. Typically, these tools are used to generate gimmicks or visual effects, such as the parallax illusion or the infinite scroll. But if we perceive the browser as a timebased picture plane, we can immediately recognize its architectonic potential. This paper puts forth a method for engaging the creative potential of web-based media and Internet browsers. Through example projects, I argue that the Internet browser is a highly complex spatial plane that warrants more architectural analysis and experimentation.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_592
id ecaadesigradi2019_592
authors Carvalho, Jo?o, Figueiredo, Bruno and Cruz, Paulo
year 2019
title Free-form Ceramic Vault System - Taking ceramic additive manufacturing to real scale
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 485-492
doi https://doi.org/10.52842/conf.ecaade.2019.1.485
summary The use of Additive Manufacturing (AM) for the production of architectural components has more and more examples attesting the possibilities and the advantages of its application. At the same time we seen a fast grow of the usage of ceramic materials to produce fully customised architectural components using Layer Deposition Modelling (LDM) [1] techniques. However, the use of this material, as paste, leads to a series of constraints relative to its behaviour when in the viscous state, but also in the drying and firing stages. Thus, when ceramic dries, the retraction effects may be a barrier to the regular use of this material to build future architectural systems. In this sense, it is important to study the material behaviour and know how to control and use it as a primary construction material. To do that we present the challenges and outcomes of project Hexashade, a ceramic vault shading system prototype whose geometry and internal structure is defined according to the solar incidence. This paper explain how we expect to build a real scale self-supporting prototype.
keywords Ceramic 3D printing; Additive Manufacturing; Vaulting Systems; Parametric Design; Performative Design
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id ecaadesigradi2019_369
id ecaadesigradi2019_369
authors Contreras, Camilo Hernán
year 2019
title Surfaces Plot - A data visualization system to support design space exploration
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 145-152
doi https://doi.org/10.52842/conf.ecaade.2019.2.145
summary The notion of design spaces (DS) can be understood as the potential of a parametric model, it is basically the number of possible combinations for its input parameters. When combining tools that produce these alternatives automatically with different simulation softwares, the concept of parametric analysis (PA) emerges. This implies a simultaneous evaluation of the alternatives as they are constructed by the parametric model, producing large amounts of information. This article describes a sectional approach to the management of this information and a visualization technique to represent it looking for correlations between the input parameters and their performance. Correlations that are fundamental to making decisions with confidence when design problems challenge traditional methods of decision-making based on heuristics and design expertise.
keywords Design Space ; Performance-Based Design; Parametric Analysis; Generative Design; Data Visualization
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_197
id ecaadesigradi2019_197
authors Diarte, Julio, Vazquez, Elena and Shaffer, Marcus
year 2019
title Tooling Cardboard for Smart Reuse - Testing a Parametric Tool for Adapting Waste Corrugated Cardboard to Fabricate Acoustic Panels and Concrete Formwork.
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 769-778
doi https://doi.org/10.52842/conf.ecaade.2019.2.769
summary The study presented in this paper is part of ongoing research that is exploring how digital design tools and technologies can support waste cardboard reuse for manufacturing architectural elements in a context of scarcity. For this study, we explore the use of a parametric design tool to design and fabricate three different architectural components using waste cardboard sheets: acoustic panels and two types of formwork for concrete. This design tool maximizes the smart reuse of a waste material and aids in the fabrication process by outputting instructions for cutting, scoring, and folding. This paper also demonstrates how parametric design tools can help reuse non-standard (dimensions variable) waste materials, mediating between measurable material conditions and desired material targets for designs.
keywords Cardboard Architecture; Reusing Waste Cardboard; Material Reuse Processes; Parametric Design Tools
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id cf2019_051
id cf2019_051
authors Dickey , Rachel
year 2019
title Soft Additive Fabrication Processes: Material Indeterminacy in 3D Printing
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 434
summary This description of Soft Additive Fabrication Processes, documents ways in which chance and randomness might be treated as values rather than problems. The production of a series of robotically controlled extruder experiments explore integrating material volition with the rigid order of machine control. Specifically this paper outlines the development of tooling procedures that harness emergent conditions in the automation of qualitative material effects. A key question for the research asks, how might architects imagine a design and construction scenario, which is no longer confined to prescriptive material dimensions, but is instead driven by digitally calibrated stochastic material processes? What opportunities might arise from developing an automated system, which does not rely on direct translation, but instead operates and predicts outcomes within a range of potential results?
keywords Additive manufacturing, robotics, 3D printing, indeterminacy, material volition
series CAAD Futures
email
last changed 2019/07/29 14:18

_id acadia19_178
id acadia19_178
authors Doyle, Shelby Elizabeth; Hunt, Erin Linsey
year 2019
title Dissolvable 3D Printed Formwork
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 178-187
doi https://doi.org/10.52842/conf.acadia.2019.178
summary This research explores the potentials, limitations, and advantages of 3D printing watersoluble formwork for reinforced concrete applications. Using polyvinyl alcohol (PVA) forms and Polylactic Acid (PLA) filament with ground steel tensile reinforcement, this project explores the constraints and opportunities for architects to design and construct reinforced concrete using water soluble 3D printed formwork with embedded reinforcement. Research began with testing small PVA prints for consistency, heat of water-temperature for dissolving, and wall thickness of the printed formwork. Then, dual-extrusion desktop additive manufacturing was used as a method for creating a larger form to test the viability of translating this research into architectural scale applications. This paper describes the background research, materials, methods, fabrication process, and conclusions of this work in progress.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id acadia20_192p
id acadia20_192p
authors Doyle, Shelby; Hunt, Erin
year 2020
title Melting 2.0
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 192-197
summary This project presents computational design and fabrication methods for locating standard steel reinforcement within 3D printed water-soluble PVA (polyvinyl alcohol) molds to create non-standard concrete columns. Previous methods from “Melting: Augmenting Concrete Columns with Water Soluble 3D Printed Formwork” and “Dissolvable 3D Printed Formwork: Exploring Additive Manufacturing for Reinforced Concrete” (Doyle & Hunt 2019) were adapted for larger-scale construction, including the introduction of new hardware, development of custom programming strategies, and updated digital fabrication techniques. Initial research plans included 3D printing continuous PVA formwork with a KUKA Agilus Kr10 R1100 industrial robotic arm. However, COVID-19 university campus closures led to fabrication shifting to the author’s home, and this phase instead relied upon a LulzBot TAZ 6 (build volume of 280 mm x 280 mm x 250 mm) with an HS+ (Hardened Steel) tool head (1.2 mm nozzle diameter). Two methods were developed for this project phase: new 3D printing hardware and custom GCode production. The methods were then evaluated in the fabrication of three non-standard columns designed around five standard reinforcement bars (3/8-inch diameter): Woven, Twisted, Aperture. Each test column was eight inches in diameter (the same size as a standard Sonotube concrete form) and 4 feet tall, approximately half the height of an architecturally scaled 8-foot-tall column. Each column’s form was generated from combining these diameter and height restrictions with the constraints of standard reinforcement placement and minimum concrete coverage. The formwork was then printed, assembled, cast, and then submerged in water to dissolve the molds to reveal the cast concrete. This mold dissolving process limits the applicable scale for the work as it transitions from the research lab to the construction site. Therefore, the final column was placed outside with its mold intact to explore if humidity and water alone can dissolve the PVA formwork in lieu of submersion.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id ecaadesigradi2019_475
id ecaadesigradi2019_475
authors Düring, Serjoscha, Sluka, Andrej, Vesely, Ondrej and König, Reinhard
year 2019
title Applied Spatial Accessibility Analysis for Urban Design - An integrated graph-gravity model implemented in Grasshopper
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 333-342
doi https://doi.org/10.52842/conf.ecaade.2019.3.333
summary This paper introduces a prototype for a user-friendly, responsive toolbox for spatial accessibility analysis in data-poor environments to support urban design processes. It allows for real-time computation of several evaluation indicators, mostly focused on accessibility related measures. The proposed framework is exemplified with three real-world case studies. Each of them demonstrates one part of the workflow; data gathering and preparation, sketching and developing scenarios, and impact analysis and scenario comparison.
keywords accessibility; urban design; evidence-based design; graph model; gravity model
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id cdrf2023_526
id cdrf2023_526
authors Eric Peterson, Bhavleen Kaur
year 2023
title Printing Compound-Curved Sandwich Structures with Robotic Multi-Bias Additive Manufacturing
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_44
summary A research team at Florida International University Robotics and Digital Fabrication Lab has developed a novel method for 3d-printing curved open grid core sandwich structures using a thermoplastic extruder mounted on a robotic arm. This print-on-print additive manufacturing (AM) method relies on the 3d modeling software Rhinoceros and its parametric software plugin Grasshopper with Kuka-Parametric Robotic Control (Kuka-PRC) to convert NURBS surfaces into multi-bias additive manufacturing (MBAM) toolpaths. While several high-profile projects including the University of Stuttgart ICD/ITKE Research Pavilions 2014–15 and 2016–17, ETH-Digital Building Technologies project Levis Ergon Chair 2018, and 3D printed chair using Robotic Hybrid Manufacturing at Institute of Advanced Architecture of Catalonia (IAAC) 2019, have previously demonstrated the feasibility of 3d printing with either MBAM or sandwich structures, this method for printing Compound-Curved Sandwich Structures with Robotic MBAM combines these methods offering the possibility to significantly reduce the weight of spanning or cantilevered surfaces by incorporating the structural logic of open grid-core sandwiches with MBAM toolpath printing. Often built with fiber reinforced plastics (FRP), sandwich structures are a common solution for thin wall construction of compound curved surfaces that require a high strength-to-weight ratio with applications including aerospace, wind energy, marine, automotive, transportation infrastructure, architecture, furniture, and sports equipment manufacturing. Typical practices for producing sandwich structures are labor intensive, involving a multi-stage process including (1) the design and fabrication of a mould, (2) the application of a surface substrate such as FRP, (3) the manual application of a light-weight grid-core material, and (4) application of a second surface substrate to complete the sandwich. There are several shortcomings to this moulded manufacturing method that affect both the formal outcome and the manufacturing process: moulds are often costly and labor intensive to build, formal geometric freedom is limited by the minimum draft angles required for successful removal from the mould, and customization and refinement of product lines can be limited by the need for moulds. While the most common material for this construction method is FRP, our proof-of-concept experiments relied on low-cost thermoplastic using a specially configured pellet extruder. While the method proved feasible for small representative examples there remain significant challenges to the successful deployment of this manufacturing method at larger scales that can only be addressed with additional research. The digital workflow includes the following steps: (1) Create a 3D digital model of the base surface in Rhino, (2) Generate toolpaths for laminar printing in Grasshopper by converting surfaces into lists of oriented points, (3) Generate the structural grid-core using the same process, (4) Orient the robot to align in the direction of the substructure geometric planes, (5) Print the grid core using MBAM toolpaths, (6) Repeat step 1 and 2 for printing the outer surface with appropriate adjustments to the extruder orientation. During the design and printing process, we encountered several challenges including selecting geometry suitable for testing, extruder orientation, calibration of the hot end and extrusion/movement speeds, and deviation between the computer model and the physical object on the build platen. Physical models varied from their digital counterparts by several millimeters due to material deformation in the extrusion and cooling process. Real-time deviation verification studies will likely improve the workflow in future studies.
series cdrf
email
last changed 2024/05/29 14:04

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_914270 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002