CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 610

_id ijac201917206
id ijac201917206
authors Ackerman, Aidan; Jonathan Cave, Chien-Yu Lin and Kyle Stillwell
year 2019
title Computational modeling for climate change: Simulating and visualizing a resilient landscape architecture design approach
source International Journal of Architectural Computing vol. 17 - no. 2, 125-147
summary Coastlines are changing, wildfires are raging, cities are getting hotter, and spatial designers are charged with the task of designing to mitigate these unknowns. This research examines computational digital workflows to understand and alleviate the impacts of climate change on urban landscapes. The methodology includes two separate simulation and visualization workflows. The first workflow uses an animated particle fluid simulator in combination with geographic information systems data, Photoshop software, and three-dimensional modeling and animation software to simulate erosion and sedimentation patterns, coastal inundation, and sea level rise. The second workflow integrates building information modeling data, computational fluid dynamics simulators, and parameters from EnergyPlus and Landsat to produce typologies and strategies for mitigating urban heat island effects. The effectiveness of these workflows is demonstrated by inserting design prototypes into modeled environments to visualize their success or failure. The result of these efforts is a suite of workflows which have the potential to vastly improve the efficacy with which architects and landscape architects use existing data to address the urgency of climate change.
keywords Modeling, simulation, environment, ecosystem, landscape, climate change, sea level rise, urban heat island
series journal
email
last changed 2019/08/07 14:04

_id acadia19_630
id acadia19_630
authors Ahlquist, Sean
year 2019
title Expanding the Systematic Agencyof a Material System
doi https://doi.org/10.52842/conf.acadia.2019.630
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 630-641
summary Computational design and fabrication have reached an accomplished level of ubiquity and proficiency in the field of architecture, in both academia and practice. Materiality driving structure, responsiveness, and spatial organization can be seen to evolve, in kind, with the capabilities to fabricate deeper material hierarchies. Such maturity of a procedural material-driven approach spurs a need to shift from the dictations of how to explorations of why material efficiencies, bespoke aesthetics, and performativity are critical to a particular architecture, requiring an examination of linkages between approach, techniques, and process. The material system defines a branch of architectural research utilizing bespoke computational techniques to generate performative material capacities that are inextricably linked to both internal and external forces and energies. This paper examines such a self-referential view to define an expanded ecological approach that integrates new modes of design agency and shift the material system from closed-loop relationship with site to open-ended reciprocation with human behavior. The critical need for this capacity is shown in applications of novel textile hybrid material systems—as sensorially-responsive environments for children with the neurological autism spectrum disorder—in ongoing research titled Social Sensory Architectures. Through engaging fabrication across all material scales, manners of elastic responsivity are shown, through a series of feasibility studies, to exhibit a capacity for children to become design agents in exploring the beneficial interrelationship of sensorimotor agency and social behavior. The paper intends to contribute a theoretical approach by which novel structural capacities of a material system can support a larger ecology of social and behavioral agency.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia19_490
id acadia19_490
authors Alvarez, Martín; Wagner, Hans Jakob; Groenewolt, Abel; Krieg, Oliver David; Kyjanek, Ondrej; Sonntag, Daniel; Bechert, Simon; Aldinger, Lotte; Menges, Achim; Knippers, Jan
year 2019
title The Buga Wood Pavilion
doi https://doi.org/10.52842/conf.acadia.2019.490
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 490-499
summary Platforms that integrate developments from multiple disciplines are becoming increasingly relevant as the complexity of different technologies increases day by day. In this context, this paper describes an integrative approach for the development of architectural projects. It portrays the benefits of applying such an approach by describing its implementation throughout the development and execution of a building demonstrator. Through increasing the agility and extending the scope of existing computational tools, multiple collaborators were empowered to generate innovative solutions across the different phases of the project´s cycle. For this purpose, novel solutions for planar segmented wood shells are showcased at different levels. First, it is demonstrated how the application of a sophisticated hollow-cassette building system allowed the optimization of material use, production time, and mounting logistics due to the modulation of the parameters of each construction element. Second, the paper discusses how the articulation of that complexity was crucial when negotiating between multiple professions, interacting with different contractors, and complying with corresponding norms. Finally, the innovative architectural features of the resulting building are described, and the accomplishments are benchmarked through comparison with typological predecessor.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ijac201917103
id ijac201917103
authors Bejarano, Andres; and Christoph Hoffmann
year 2019
title A generalized framework for designing topological interlocking configurations
source International Journal of Architectural Computing vol. 17 - no. 1, 53-73
summary A topological interlocking configuration is an arrangement of pieces shaped in such a way that the motion of any piece is blocked by its neighbors. A variety of interlocking configurations have been proposed for convex pieces that are arranged in a planar space. Published algorithms for creating a topological interlocking configuration start from a tessellation of the plane (e.g. squares colored as a checkerboard). For each square S of one color, a plane P through each edge E is considered, tilted by a given angle ? against the tessellated plane. This induces a face F supported by P and limited by other such planes nearby. Note that E is interior to the face. By adjacency, the squares of the other color have similarly delimiting faces. This algorithm generates a topological interlocking configuration of tetrahedra or antiprisms. When checked for correctness (i.e. for no overlap), it rests on the tessellation to be of squares. If the tessellation consists of rectangles, then the algorithm fails. If the tessellation is irregular, then the tilting angle is not uniform for each edge and must be determined, in the worst case, by trial and error. In this article, we propose a method for generating topological interlocking configurations in one single iteration over the tessellation or mesh using a height value and a center point type for each tile as parameters. The required angles are a function of the given height and selected center; therefore, angle choices are not required as an initial input. The configurations generated using our method are compared against the configurations generated using the angle-choice approach. The results show that the proposed method maintains the alignment of the pieces and preserves the co-planarity of the equatorial sections of the pieces. Furthermore, the proposed method opens a path of geometric analysis for topological interlocking configurations based on non-planar tessellations.
keywords Topological interlocking, surface tessellation, irregular geometry, parametric design, convex assembly
series journal
email
last changed 2019/08/07 14:04

_id ecaadesigradi2019_153
id ecaadesigradi2019_153
authors Gomez-Zamora, Paula, Bafna, Sonit, Zimring, Craig, Do, Ellen and Romero Vega, Mario
year 2019
title Spatiotemporal Occupancy for Building Analytics
doi https://doi.org/10.52842/conf.ecaade.2019.2.111
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 111-120
summary Numerous studies on Space Syntax and Evidence-based Design explored occupancy and movements in the built environment using traditional methods for behavior mapping, such as observation and surveys. This approach, however, has majorly focused on studying such behaviors as aggregated results -totals or averages- to corroborate the idea that people's interactions are outcomes of the influence of space. The research presented in this paper focuses on capturing human occupancy with a high spatiotemporal data resolution of 1 sq.ft per second (0.1 sq.mt./s). This research adapts computer vision to obtain large occupancy datasets in a hospitalization setting for one week, providing opportunities to explore correlations among spatial configurations, architectural programs, organizational activities planned and unplanned, and time. The vision is to develop new analytics for building occupancy dynamics, with the purpose of endorsing the integration of a temporal dimension into architectural research. This study introduces the "Isovist-minute"; a metric that captures the relationship between space and occupancy, towards a point of interest, in a dynamic sequence.
keywords Spatiotemporal Occupancy; Occupancy Analytics; Occupancy Patterns; Building-Organizational Performance; Healthcare Settings
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

_id ecaadesigradi2019_305
id ecaadesigradi2019_305
authors Kabošová, Lenka, Worre Foged, Isak, Kmeť, Stanislav and Katunský, Dušan
year 2019
title Building envelope adapting from and to the wind flow
doi https://doi.org/10.52842/conf.ecaade.2019.2.131
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 131-138
summary The paper presents research for wind-responsive architecture. The main objective is the digital design methodology incorporating the dynamic, fluctuating wind flow into the shape-generating process of architectural envelopes. These computational studies are advanced and informed through physical prototyping models, allowing a hybrid method approach. The negative impacts of the wind at the building scale (wind loads), as well as urban scale (wind discomfort), can be avoided and even transformed into an advantage by incorporating the local wind conditions to the process of creating architectural envelopes with adaptive structures. The paper proposes a tensegrity-membrane system which, when exposed to the dynamic wind flow, enables a local passive shape adaptation. Thus, the action of the wind pressure transforms the shape of the building envelope to an unsmoothed, dimpled surface. As a consequence, the aerodynamic properties of the building are modified, which contributes to reducing wind suction and drag force. Moreover, the slight shape change materializes and articulates the immaterial wind phenomena. For a better understanding of the dynamic geometric properties, one unit of the wind-responsive envelope is tested through simulations, and through physical prototypes. The idea and material-geometric studies are subsequently applied in a specific case study, including a designed building envelope in an industrial silo cluster in Stockholm.
keywords adaptive envelope; tensegrity; wind flow; digital designing; shape-change
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id ijac201917401
id ijac201917401
authors Kabošová, Lenka; Isak Foged, Stanislav Kmet’ and Dušan Katunský
year 2019
title Hybrid design method for wind-adaptive architecture
source International Journal of Architectural Computing vol. 17 - no. 4, 307-322
summary The linkage of individual design skills and computer-based capabilities in the design process offers yet unexplored environment-adaptive architectural solutions. The conventional perception of architecture is changing, creating a space for reconfigurable, “living” buildings responding, for instance, to climatic influences. Integrating the element of wind to the architectural morphogenesis process can lead toward wind-adaptive designs that in turn can enhance the wind microclimate in their vicinity. Geometric relations coupled with material properties enable to create a tensegrity- membrane structural element, bending in the wind. First, the properties of such elements are investigated by a hybrid method, that is, computer simulations are coupled with physical prototyping. Second, the system is applied to basic- geometry building envelopes and investigated using computational fluid dynamics simulations. Third, the findings are transmitted to a case study design of a streamlined building envelope. The results suggest that a wind-adaptive building envelope plays a great role in reducing the surface wind suction and enhancing the wind microclimate.
keywords Wind, computational fluid dynamics, tensegrity structure, responsive envelope, computational design
series journal
email
last changed 2020/11/02 13:34

_id acadia20_142p
id acadia20_142p
authors Kilian, Axel
year 2020
title The Flexing Room
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 142-147
summary Robotics has been largely confined to the object category with fewer examples at the scale of buildings. Robotic buildings present unique challenges in communicating intent to the enclosed user. Precedent work in architectural robotics explored the performative dimension, the playful and interactive qualities, and the cognitive challenges of AI systems interacting with people in architecture. The Flexing Room robotic skeleton was installed at MIT at its full designed height for the first time and tested for two weeks in the summer of 2019. The approximately 13-foot-tall structure is comprised of 36 pneumatic actuators and an active bend fiberglass structure. The full height allowed for a wide range of postures the structure could take. Acoustic monitoring through Piezo pickup mics was added that allowed for basic rhythmic responses of the structure to people tapping or otherwise triggering the vibration sensors. Data streams were collected synchronously from Kinect skeleton tracking, piezo pickup mics, camera streams, and posture data. The emphasis in this test period was first to establish reliable hardware operations at full scale and second to record correlated data streams of the sensors installed in the structure together with the actuation triggers and the human poses of the inhabitant. The full-scale installation of hardware was successful and proved the feasibility of the structural and actuation approach previously tested on a one-level setup. The range of postures was increased and more transparent for the occupant. The perception of the structure as space was also improved as the system reached regular ceiling height and formed a clearer architectural scale enclosure. The ambition of communicating through architectural postures has not been achieved yet, but promising directions emerged from the test and data collection
series ACADIA
type project
email
last changed 2021/10/26 08:03

_id acadia19_266
id acadia19_266
authors MacDonald, Katie; Schumann, Kyle; Hauptman, Jonas
year 2019
title Digital Fabrication of Standardless Materials
doi https://doi.org/10.52842/conf.acadia.2019.266
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 266-275
summary Digital fabrication techniques have long been aimed at creating unique geometries and forms from standardized, often industrially produced or processed material. These materials have predictable, uniform geometries which allow the fabrication process to be aimed at producing variation through Computer Numerically Controlled (CNC) milling of topological surfaces from volumetric stock or profiles from sheet material. More recently, digital fabrication techniques have been expanded and categorized to address the inherent variation in a found material. Digital materiallurgy defines an approach where standard techniques are applied to non-standard materials; in form-searching, non-standard materials such as unmilled timber members or chunks of concrete waste are analyzed for optimization within a digital fabrication process. Processes of photogrammetry, 3D scanning, and parametric analysis have been used to advance these methods and minimize part reduction and material waste. In this paper, we explore how such methods may be applied to materials without traditional standards—allowing for materials that are inherently variable in geometry to be made usable and for such eccentricities to be leveraged within a design. This paper uses bamboo as a case study for standardless material, and proposes an integrated digital fabrication method for using such material: (1) material stock analysis using sensing technology, (2) parametric best-fit part selection that optimizes a given piece of material within an assembly, and (3) parametric feedback between available material and the design of an assembly which allows for the assembly to adjust its geometry to a set of available parts.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:59

_id ecaadesigradi2019_177
id ecaadesigradi2019_177
authors Ostrowska-Wawryniuk, Karolina
year 2019
title BIM-Aided Prefabrication for Minimum Waste DIY Timber Houses
doi https://doi.org/10.52842/conf.ecaade.2019.1.251
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 251-258
summary The continuous housing shortage demands efficient ways of design and construction. In the context of rising construction standards and shrinking manpower, one of the possible answers to the problem is prefabrication oriented towards do-it-yourself (DIY) construction methods, which could contribute to the low and middle income housing supply in the market. The article covers the process of developing an experimental tool for aiding single-family housing design with the use of small-element solid timber prefabrication, suitable for DIY assembly. The presented tool uses the potential of BIM technology adapting a traditionally-designed house to the needs of prefabrication and optimizing it in terms of waste generated in the assembly process. The presented experiment was realized in the Autodesk Revit environment and incorporates custom generative scripts developed in Dynamo-for-Revit. The prototype analyzed an input model and converted it into a prefabricated alternative based on the user- and technology-specified boundary conditions. The prototype was tested on the example design of a two-story single-family house. The results compare the automated optimized model conversion with manual adaptation approach. The implemented algorithm allowed for reducing the construction waste by more than 50%.
keywords do-it-yourself construction; do-it-yourself house; generative BIM; BIM-aided prefabrication; small-panel timber prefabrication; self-help housing
series eCAADeSIGraDi
email
last changed 2022/06/07 08:00

_id cf2019_001
id cf2019_001
authors Shekhawat, Krishnendra; Pinki Pinki and Duarte Jose
year 2019
title A Graph Theoretical Approach for Creating Building Floor Plans
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 20
summary Existing floor planning algorithms are mostly limited to rectangular room geometries. This restriction is a significant reason why they are not used much in design practice. To address this issue, we propose an algorithm (based on graph theoretic tools) that generates rectangular and, if required, orthogonal floor plans while satisfying the given adjacency requirements. If a floor plan does not exist for the given adjacency requirements, we introduce circulations within a floor plan to have a required floor plan.

keywords adjacency, algorithm, graph theory, rectangular floor plan, orthogonal floor plan
series CAAD Futures
email
last changed 2019/07/29 14:08

_id ecaadesigradi2019_037
id ecaadesigradi2019_037
authors Sheth, Urvi
year 2019
title Bridging the Gaps - Computation to Construction in India
doi https://doi.org/10.52842/conf.ecaade.2019.1.295
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 295-304
summary In the era of The Second Digital Turn, designers and engineers have easy and equal access to computational tools across the globe. With the highest development of technology at a global level, design development to construction process is locally contextualised in different parts of the world based on the available technology and resources. The paper presents a craft-based approach to computation and its contribution to support artisans' development in India. It is demonstrated through ongoing research on customising bricks and utilization of computationally generated asymmetrical Catalan vault. The challenge of constructing the computationally generated form by architecture students is completed by the craftsmen and students of crafts school. The research elucidates gaps at various levels. Craft based solutions bridging these gaps establish a methodology which makes complex geometry constructible in present-day India when access to digital fabrication methods are still evolving and expensive.
keywords Digital Crafts India; Customising Bricks; Asymmetrical Catalan Vault; RhinoVAULT
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_123
id ecaadesigradi2019_123
authors Souza, Leonardo Prazeres Veloso de, Ponzio, Angélica Paiva, Bruscato, Underléa Miotto and Cattani, Airton
year 2019
title A-BIM: A New Challenge for Old Paradigms
doi https://doi.org/10.52842/conf.ecaade.2019.1.233
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 233-240
summary This paper is the result of a pedagogic proposal applied to undergraduate students of architecture in order to present new digital design tools and methods. This study aims to connect procedural contents to different design strategies enrolled by students with special focus on complex geometries. The objective was to offer the necessary assistance to an appropriated design development, by reducing the habitual mishaps related to the lack of technical skills with digital tools for both the design reasoning and the subsequent graphic representation of proposals. As an answer, a new design approach called A-BIM (Algorithmic-based Building Information Modeling) was introduced to students, which integrates BIM platforms with algorithmic modelling software allowing, in this way, some formal flexibility allied to an adequate graphic documentation.
keywords A-BIM; algorithmic design; BIM technology ; parametric software
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id caadria2019_252
id caadria2019_252
authors Tung, Hong-Cing and Hsu, Pei-Hsien
year 2019
title An Algorithm of Rigid Foldable Tessellation Origami to Adapt to Free-Form Surfaces
doi https://doi.org/10.52842/conf.caadria.2019.1.311
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 311-320
summary When creating new kinds of origami, people design origami creases pattern on 2D plane. Consequently, people unable to precisely envision the 3D folded shape. However, in architecture, civil engineering and industrial applications, an accurate layout is important. This research is to compile an algorithm for creating origami forms with developability and flat-foldability on the target surface, more specifically, by setting a target surface first, generating a Miura-ori tessellation from the geometric configuration of a target surface. We achieve creating origami forms on a target surface, so that we can generate architectural surfaces with folded structure and accurately layout for construction. Our approach facilitates designing a free-form origami structure upon parametric and 3D modelling software for artists, designers and architects.
keywords origami tessellation; free-form; grasshopper3D; rigid foldability; flat-foldability
series CAADRIA
email
last changed 2022/06/07 07:57

_id acadia19_288
id acadia19_288
authors Vivaldi, Jordi
year 2019
title Surrealist Aesthetics in Second-Order, Cybernetic Architecture
doi https://doi.org/10.52842/conf.acadia.2019.288
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 288-297
summary In experimental architecture and during the last decade, second-order cybernetic systems (SOCA) have been broadly explored. Under this umbrella, the implementation of robotics and machine learning in recent experimental projects has impacted academia through new fabrication strategies, new design methods, and new adaptive devices. This paper presents a theoretical approach to the aesthetic side of this impact. In particular, it argues that SOCA rearticulates Benjamin’s concept of “distracted perception” through three structural principles of Surrealism: the emphasis of presentation over representation; the centrality of the notion of automatism; and the simultaneous management of closeness and distance. Each alignment is doubly articulated. First it establishes a comparison between Surrealist artwork from the first half of the 20th century and three SOCA projects in which the notion of autonomy and ubiquity are crucial. Second, it evaluates the impact on Benjamin’s notion of “distracted perception.” The paper concludes that the Surrealist aesthetic structures analysed in SOCA differ from traditional Surrealism in the replacement of an inner and unconscious other by an outer and algorithmic other. Its presence simultaneously expands and contracts Benjamin’s architectural understanding of “distracted perception,” a double movement whose perception paradoxically occurs under the single framework of Benjamin’s haptic vision.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id ecaadesigradi2019_194
id ecaadesigradi2019_194
authors Wang, Yuyang, Agkathidis, Asterios and Crompton, Andrew
year 2019
title Parametric Beijing Siheyuan - An algorithmic approach for the generation of Siheyuan housing variants based on its traditional design principles
doi https://doi.org/10.52842/conf.ecaade.2019.1.519
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 519-528
summary Beijing Siheyuan is a type of Chinese vernacular housing with significant cultural value. During recent decades of economic growth, many Siheyuan houses have been destroyed; preserving the few remaining ones have become a necessity. Based on a historical analysis of their design principles, this paper develops a parametric model capable of representing its known variants. Our findings include a useful design tool able to efficiently represent existing or lost housing types and thus contribute to our understanding of the typology and their preservation.
keywords Beijing Siheyuan; parametric design; algorithmic design; digital heritage
series eCAADeSIGraDi
email
last changed 2022/06/07 07:58

_id ecaadesigradi2019_393
id ecaadesigradi2019_393
authors Wendell, Augustus, Ozludil, Burcak and López-Salas, Estefanía
year 2019
title Calculating Movement - An Agent Based Modeling System for Historical Studies
doi https://doi.org/10.52842/conf.ecaade.2019.1.541
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 541-550
summary Simulating human movement and actions in historical spaces/landscapes is a complex task. It requires not only the recreation of spaces that no longer exist, but more challenging the recovery of actions performed in the past. These actions can provide insights into important aspects such as how people inhabited, used, perceived, lived, sensed, and shaped these spaces. This research aims to show a framework to approach studying human movement, using an Agent Based Modeling (ABM) system. Our ABM tool has methods for creating, managing, and choreographing the movement of agents through 3D models. A number of iterative tests, both agent-to-agent and agent-to-model, enable the system to produce scholarly quantitative data in historical spaces. We highlight the use of this system through two case studies, one at an architectural scale and the other at landscape scale.
keywords Agent Based Modeling; Art and Architectural History; Simulation
series eCAADeSIGraDi
email
last changed 2022/06/07 07:58

_id caadria2019_660
id caadria2019_660
authors Aghaei Meibodi, Mania, Giesecke, Rena and Dillenburger, Benjamin
year 2019
title 3D Printing Sand Molds for Casting Bespoke Metal Connections - Digital Metal: Additive Manufacturing for Cast Metal Joints in Architecture
doi https://doi.org/10.52842/conf.caadria.2019.1.133
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 133-142
summary Metal joints play a relevant role in space frame constructions, being responsible for large amount of the overall material and fabrication cost. Space frames which are constructed with standardized metal joints are constrained to repetitive structures and topologies. For customized space frames, the fabrication of individual metal joints still remains a challenge. Traditional fabrication methods such as sand casting are labour intensive, while direct 3D metal printing is too expensive and slow for the large volumes needed in architecture.This research investigates the use of Binder Jetting technology to 3D print sand molds for casting bespoke metal joints in architecture. Using this approach, a large number of custom metal joints can be fabricated economically in short time. By automating the generation of the joint geometry and the corresponding mold system, an efficient digital process chain from design to fabrication is established. Several design studies for cast metal joints are presented. The approach is successfully tested on the example of a full scale space frame structure incorporating almost two hundred custom aluminum joints.
keywords 3D printing; binder jetting; sand casting; metal joints; metal casting; space frame; digital fabrication; computational design; lightweight; customization
series CAADRIA
email
last changed 2022/06/07 07:54

_id cf2019_037
id cf2019_037
authors Aljammaz, Mohammed ; Tsung-Hsien Wang and Chengzhi Peng
year 2019
title The influence of Saudi Arabian culture on energy use: Improving the time-use schedules in energy simulation for houses in Riyadh
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 273-289
summary Culture influences the way that people act and behave in all societies. In Saudi Arabia, culture and beliefs directly influence the lifestyle and behaviour of its citizens. Culture also impacts on energy usage of buildings, but this factor is often excluded from energy use simulations. A consequence of this is a mismatch between energy prediction and real energy usage. This paper demonstrates how a time-use data (TUD) model can be used to create a more realistic estimate of energy consumption in Saudi Arabia. TUD has been collected through a survey of 300 people living in Riyadh. The performance of the computational TUD model is cross-referenced with empirical data and the outcomes are used to discuss how the TUD model can be applied more effectively in energy use simulations.
keywords time-use data, energy simulation, energy use prediction, load schedules, occupant behaviours,
series CAAD Futures
email
last changed 2019/07/29 14:15

_id caadria2019_005
id caadria2019_005
authors Alva, Pradeep, Janssen, Patrick and Stouffs, Rudi
year 2019
title A Spatial Decision Support Framework For Planning - Creating Tool-Chains for Organisational Teams
doi https://doi.org/10.52842/conf.caadria.2019.2.011
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 11-20
summary In practice, most planners do not make significant use of planning support systems. Although significant research has been conducted, the focus tends to be on supporting individual tasks, and the outcomes are often the development of new stand-alone tools that are difficult to integrate into existing workflows. The knowledge contribution in this paper focuses on developing a novel spatial decision support framework focusing on the workflows and tool-chains that span across different teams within an organisation, with varying skill sets and objectives. In the proposed framework, the core decision-making process uses set decision parameters that are combined using a weighted decision tree. The framework is evaluated by developing and testing tool-chains for a real-world land suitability case study. The tool-chain was implemented on top of a GIS platform.
keywords GIS SDSS PSS; Planning Automation; Geoprocessing; Data Analytics; Geoinformatics
series CAADRIA
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_308425 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002