CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 610

_id ecaadesigradi2019_628
id ecaadesigradi2019_628
authors Borunda, Luis, Ladron de Guevara, Manuel and Anaya, Jesus
year 2019
title Design Method for Optimized Infills in Additive Manufacturing Thermoplastic Components
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 493-502
doi https://doi.org/10.52842/conf.ecaade.2019.1.493
summary The following article extends and tests computational methodologies of design to consider Finite Element Analysis in the creation of optimized infill structures based on regular and semi-regular patterns that comply with the geometrical constraints of deposition. The Stress-Deformation relationship manifested in Finite Element Analysis is structured in order to influence the geometrical arrangement of the complex spatial infill. The research presents and discusses a program of performance informed infill design, and validates the generalizability of a method of internalizing and automating Finite Element Method (FEM) processing in Fused Deposition Modeling (FDM) workflows, and tests manufacturability of the methods through its ability to handle the FDM process constraints of FEM influenced intricate geometries.
keywords Additive Manufacturing; Finite Element Analysis; Fused Deposition Modeling; 3D infill
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id caadria2019_221
id caadria2019_221
authors Ladron de Guevara, Manuel, Borunda, Luis, Ficca, Jeremy, Byrne, Daragh and Krishnamurti, Ramesh
year 2019
title Robotic Free-Oriented Additive Manufacturing Technique for Thermoplastic Lattice and Cellular Structures
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 333-342
doi https://doi.org/10.52842/conf.caadria.2019.2.333
summary This paper presents a novel Additive Manufacturing application of situated Robotic Fused Deposition Modeling (RFDM) for thermoplastic cellular and lattice structures, called Free-Oriented Additive Manufacturing (FOAM), to accommodate variations in spatial conditions, deposition direction, and geometry in order to adapt to complex infrastructure settings, thus, breaking the conventional layer-by-layer stacking principle and the constant constraint of locking the tip of the nozzle to the negative Z direction when fabricating at an architectural scale.
keywords Robotic 3D Printing; Situated Fused Deposition; Thermoplastic Lattice Structures
series CAADRIA
email
last changed 2022/06/07 07:52

_id sigradi2023_416
id sigradi2023_416
authors Machado Fagundes, Cristian Vinicius, Miotto Bruscato, Léia, Paiva Ponzio, Angelica and Chornobai, Sara Regiane
year 2023
title Parametric environment for internalization and classification of models generated by the Shap-E tool
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 1689–1698
summary Computing has been increasingly employed in design environments, primarily to perform calculations and logical decisions faster than humans could, enabling tasks that would be impossible or too time-consuming to execute manually. Various studies highlight the use of digital tools and technologies in diverse methods, such as parametric modeling and evolutionary algorithms, for exploring and optimizing alternatives in architecture, design, and engineering (Martino, 2015; Fagundes, 2019). Currently, there is a growing emergence of intelligent models that increasingly integrate computers into the design process. Demonstrating great potential for initial ideation, artificial intelligence (AI) models like Shap-E (Nichol et al., 2023) by OpenAI stand out. Although this model falls short of state-of-the-art sample quality, it is among the most efficient orders of magnitude for generating three-dimensional models through AI interfaces, offering practical balance for certain use cases. Thus, aiming to explore this gap, the presented study proposes an innovative design agency framework by employing Shap-E connected with parametric modeling in the design process. The generation tool has shown promising results; through generations of synthetic views conditioned by text captions, its final output is a mesh. However, due to the lack of topological information in models generated by Shap-E, we propose to fill this gap by transferring data to a parametric three-dimensional surface modeling environment. Consequently, this interaction's use aims to enable the transformation of the mesh into quantifiable surfaces, subject to collection and optimization of dimensional data of objects. Moreover, this work seeks to enable the creation of artificial databases through formal categorization of parameterized outputs using the K-means algorithm. For this purpose, the study methodologically orients itself in a four-step exploratory experimental process: (1) creation of models generated by Shap-E in a pressing manner; (2) use of parametric modeling to internalize models into the Grasshopper environment; (3) generation of optimized alternatives using the evolutionary algorithm (Biomorpher); (4) and classification of models using the K-means algorithm. Thus, the presented study proposes, through an environment of internalization and classification of models generated by the Shap-E tool, to contribute to the construction of a new design agency methodology in the decision-making process of design. So far, this research has resulted in the generation and classification of a diverse set of three-dimensional shapes. These shapes are grouped for potential applications in machine learning, in addition to providing insights for the refinement and detailed exploration of forms.
keywords Shap-E, Parametric Design, Evolutionary Algorithm, Synthetic Database, Artificial Intelligence
series SIGraDi
email
last changed 2024/03/08 14:09

_id caadria2019_045
id caadria2019_045
authors Zheng, Hao, Darweesh, Barrak, Lee, Heewon and Yang, Li
year 2019
title Caterpillar - A Gcode translator in Grasshopper
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 253-262
doi https://doi.org/10.52842/conf.caadria.2019.2.253
summary Additive manufacturing has widely been spread in the digital fabrication and design fields, allowing designers to rapidly manufacture complex geometry. In the additive process of Fused Deposition Modelling (FDM), machine movements are provided in the form of Gcode - A language of spatial coordinates controlling the position of the 3D printing extruder. Slicing software use closed mesh models to create Gcode from planar contours of the imported mesh, which raises limitations in the geometry types accepted by slicing software as well as machine control freedom. This paper presents a framework that makes full use of three degrees of freedom of Computer Numerically Controlled (CNC) machines through the generation of Gcode in the Rhino and Grasshopper environment. Eliminating the need for slicing software, Gcode files are generated through user-defined toolpaths that allow for higher levels of control over the CNC machine and a wider range of possibilities for non-conventional 3D printing applications. Here, we present Caterpillar, a Grasshopper plug-in providing architects and designers with high degrees of customizability for additive manufacturing. Core codes are revealed, application examples of printing with user-defined toolpaths are shown.
keywords 3D Printing; Gcode; Grasshopper; Modelling; Simulation
series CAADRIA
email
last changed 2022/06/07 07:57

_id ecaade2021_203
id ecaade2021_203
authors Arora, Hardik, Bielski, Jessica, Eisenstadt, Viktor, Langenhan, Christoph, Ziegler, Christoph, Althoff, Klaus-Dieter and Dengel, Andreas
year 2021
title Consistency Checker - An automatic constraint-based evaluator for housing spatial configurations
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 351-358
doi https://doi.org/10.52842/conf.ecaade.2021.2.351
summary The gradual rise of artificial intelligence (AI) and its increasing visibility among many research disciplines affected Computer-Aided Architectural Design (CAAD). Architectural deep learning (DL) approaches are being developed and published on a regular basis, such as retrieval (Sharma et al. 2017) or design style manipulation (Newton 2019; Silvestre et al. 2016). However, there seems to be no method to evaluate highly constrained spatial configurations for specific architectural domains (such as housing or office buildings) based on basic architectural principles and everyday practices. This paper introduces an automatic constraint-based consistency checker to evaluate the coherency of semantic spatial configurations of housing construction using a small set of design principles to evaluate our DL approaches. The consistency checker informs about the overall performance of a spatial configuration followed by whether it is open/closed and the constraints it didn't satisfy. This paper deals with the relation of spaces processed as mathematically formalized graphs contrary to existing model checking software like Solibri.
keywords model checking, building information modeling, deep learning, data quality
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia20_202p
id acadia20_202p
authors Battaglia, Christopher A.; Verian, Kho; Miller, Martin F.
year 2020
title DE:Stress Pavilion
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 202-207
summary Print-Cast Concrete investigates concrete 3D printing utilizing robotically fabricated recyclable green sand molds for the fabrication of thin shell architecture. The presented process expedites the production of doubly curved concrete geometries by replacing traditional formwork casting or horizontal corbeling with spatial concrete arching by developing a three-dimensional extrusion path for deposition. Creating robust non-zero Gaussian curvature in concrete, this method increases fabrication speed for mass customized elements eliminating two-part mold casting by combining robotic 3D printing and extrusion casting. Through the casting component of this method, concrete 3D prints have greater resolution along the edge condition resulting in tighter assembly tolerances between multiple aggregated components. Print-Cast Concrete was developed to produce a full-scale architectural installation commissioned for Exhibit Columbus 2019. The concrete 3D printed compression shell spanned 12 meters in length, 5 meters in width, and 3 meters in height and consisted of 110 bespoke panels ranging in weight of 45 kg to 160 kg per panel. Geometrical constraints were determined by the bounding box of compressed sand mold blanks and tooling parameters of both CNC milling and concrete extrusion. Using this construction method, the project was able to be assembled and disassembled within the timeframe of the temporary outdoor exhibit, produce <1% of waste mortar material in fabrication, and utilize 60% less material to construct than cast-in-place construction. Using the sand mold to contain geometric edge conditions, the Print-Cast technique allows for precise aggregation tolerances. To increase the pavilions resistance to shear forces, interlocking nesting geometries are integrated into each edge condition of the panels with .785 radians of the undercut. Over extruding strategically during the printing process casts the undulating surface with accuracy. When nested together, the edge condition informs both the construction logic of the panel’s placement and orientation for the concrete panelized shell.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id ijac201917106
id ijac201917106
authors Brown, Nathan C. and Caitlin T. Mueller
year 2019
title Design variable analysis and generation for performance-based parametric modeling in architecture
source International Journal of Architectural Computing vol. 17 - no. 1, 36-52
summary Many architectural designers recognize the potential of parametric models as a worthwhile approach to performance- driven design. A variety of performance simulations are now possible within computational design environments, and the framework of design space exploration allows users to generate and navigate various possibilities while considering both qualitative and quantitative feedback. At the same time, it can be difficult to formulate a parametric design space in a way that leads to compelling solutions and does not limit flexibility. This article proposes and tests the extension of machine learning and data analysis techniques to early problem setup in order to interrogate, modify, relate, transform, and automatically generate design variables for architectural investigations. Through analysis of two case studies involving structure and daylight, this article demonstrates initial workflows for determining variable importance, finding overall control sliders that relate directly to performance and automatically generating meaningful variables for specific typologies.
keywords Parametric design, design space formulation, data analysis, design variables, dimensionality reduction
series journal
email
last changed 2019/08/07 14:04

_id acadia19_564
id acadia19_564
authors Chai, Hua; Marino, Dario; So, ChunPong; Yuan, Philip F.
year 2019
title Design for Mass-Customization
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 564-572
doi https://doi.org/10.52842/conf.acadia.2019.564
summary Tradition wood tectonics, like interlocking joints, have regained focus against the background of digital design and fabrication technologies. While research on interlocking joints is quite focused on joint geometries, especially for timber plates, there has been less attention on the design and mass customization of interlocking joints for linear timber elements. In this context, this research addresses the challenges of mass customization of interlocking joints for linear elements through the design and realization of a 9-meterhigh timber structure with fully interlocking joints, without the use of any nails or glue. A customized code generation program was developed for the fabrication process, allowing the rapid programming and fabrication for all the 840 elements and 2592 notches. The project demonstrates how innovative structures are allowed through the synthesis of joint geometry, assembly process, and cutting-edge fabrication technology.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id cf2019_021
id cf2019_021
authors Cheng, Chi-Li and June-Hao Hou
year 2019
title A Method of Mesh Simplification for Drone 3D Modeling with Architectural Feature Extraction
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 169
summary This paper proposes a method of mesh simplification for 3D terrain or city models generated photogrammetrically from drone captured images, enabled by the ability of extracting the architectural features. Compare to traditional geometric computational method, the proposed method recognizes and processes the features from the architectural perspectives. In addition, the workflow also allows exporting the simplified models and geometric features to open platforms, e.g. OpenStreetMap, for practical usages in site analysis, city generation, and contributing to the open data communities.
keywords Mesh Reconstruction, photogrammetry, mesh simplification, procedural mode, machine learning
series CAAD Futures
email
last changed 2019/07/29 14:08

_id caadria2019_332
id caadria2019_332
authors Dwivedi, Urvashi, Porcellini, Valentin, Hong, Sukjoo, Chang, Zhuming and Lee, Ji-Hyun
year 2019
title Computing Spatial Features to Allocate Collision-free Motion-paths for Tele-presence Avatars
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 245-254
doi https://doi.org/10.52842/conf.caadria.2019.1.245
summary Recently, indoor-intelligent services like "Tele-presence" have made quite an advancement. Therefore, to completely 1) understand the diverse indoor environment, 2) efficiently calculate similarity for semantic spaces and 3) for defining an efficient path movement for an augmented reality-based Avatar; we propose spatial features computation, graphical representation and Topology-based graph-similarity measure for complex domains to overcome the limited visibility of an Avatar. Thus, collision with the surrounding objects in a given indoor-space can be avoided. This study begins by securing spatial features of objects, e.g., furniture, doorways, etc., of an indoor environment from an FBSMAP (Function-Behaviour-Structure Map). Then, we establish a method for defining similarity for locations and paths.
keywords Tele-presence Avatar; Activity space; Topology; Spatial similarity; Similarity measure; Cell; Field of view.
series CAADRIA
email
last changed 2022/06/07 07:55

_id acadia19_576
id acadia19_576
authors García del Castillo y López, Jose Luis; Bechthold, Martin; Seibold, Zach; Mhatre, Saurabh; Alhadidi, Suleiman
year 2019
title Janus Printing
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 576-585
doi https://doi.org/10.52842/conf.acadia.2019.576
summary The benefits of additive manufacturing technologies for the production of customized construction elements has been well documented for several decades. Multi-material additive manufacturing (MM-AM) enhances these capacities by introducing region-specific characteristics to printed objects. Several examples of the production of multi-material assemblies, including functionally-graded materials (FGMs) exist at the architectural scale, but none are known for ceramics. Factors limiting the development and application of this production method include the cost and complexity of existing MM-AM machinery, and the lack of a suitable computational workflow for the production of MM-AM ceramics, which often relies on a continuous linear toolpath. We present a method for the MM-AM of paste-based ceramics that allows for unique material expressions with relatively simple end-effector design. By borrowing methods of co-extrusion found in other industries and incorporating a 4th axis of motion into the printing process, we demonstrate a precisely controlled MM-AM deposition strategy for paste-based ceramics. We present a computational workflow for the generation of toolpaths, and describe full-body tiles and 3D artifacts that can be produced using this method. Future process refinements include the introduction of more precise control of material gradation and refinements to material composition for increased element functionality.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id caadria2019_298
id caadria2019_298
authors Karoji, Gen, Hotta, Kensuke, Hotta, Akito and Ikeda, Yasushi
year 2019
title Pedestrian Dynamic Behaviour Modeling - An application to commercial environment using RNN framework
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 281-290
doi https://doi.org/10.52842/conf.caadria.2019.1.281
summary The research of developing and improving pedestrian simulation model is essential in the process of analysing, evaluating and generating the architectural spaces that can not only satisfy circulation design condition but also promote sales by attracting customers. In terms of programming the simulation for commercial environment, current study attempts to use shortest-path algorithm generally and these results suggested that the model can reproduce approximate real trajectory within given environment. However, these studies also mentioned about necessity of considering shopper internal state and visual field. In this paper, in order to further incorporate the dynamic internal state (memory) into simulation model, we propose using iterative algorithm based on recurrent neural network (RNN) framework which allow it to exhibit temporal dynamic behaviour for a time sequence. Finally, we demonstrate the effectiveness of these algorithms we introduce and assess the combination of multiple algorithms and calibration of probability by comparing with trajectories of the experiment.
keywords Pedestrian simulation; Algorithm; RNN; Commercial environment
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2019_134
id caadria2019_134
authors Li, Yunqin, Zhang, Jiaxin and Yu, Chuanfei
year 2019
title Intelligent Multi-Objective Optimization Method for Complex Building Layout based on Pedestrian Flow Organization - A case study of People's Court building in Anhui, China
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 271-280
doi https://doi.org/10.52842/conf.caadria.2019.1.271
summary The pedestrian flow of the building influences and determines the layout of the building's plan. For buildings with complex flow such as courts, airports, and stations, mixed flow line and low traffic efficiency are prone to be problems. However, the optimization of the layout of complex flow buildings usually relies on the architect's experience to judge and trials to improve. To overcome these problems, we attempt to establish a parametric model of buildings' plan (taking a typical court building as an example) with information about the different pedestrian flow and functional groups. Based on the Rhino and Grasshopper platform, we take the minimum of different pedestrian flow path length and the maximum of total spatial integration value and the minimum of total spatial entropy value as the starting point, combines pathfinding algorithm, Space Syntax and multi-objective genetic algorithm to optimize space allocation. The result shows that, compared with the original scheme, the intelligent optimised scheme can reduce the spatial waste caused by improper flow organisation, effectively improve space transportation capacity and spatial organization efficiency.
keywords Intelligent optimisation; space allocation; multi-objective optimization algorithm; Space Syntax; pathfinding algorithm
series CAADRIA
email
last changed 2022/06/07 07:51

_id caadria2019_671
id caadria2019_671
authors Mun, Kristine, Clemenson, Dane and Bogosian, Biayna
year 2019
title The Well Tempered Environment of Experience - (Neuro)Scientific Methods for Data Collection, Analysis & Visualization
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 573-582
doi https://doi.org/10.52842/conf.caadria.2019.1.573
summary In our ever increasing media(ted) world, the robustness of digital communication networked environment is transforming how we relate to our environment. With the rise of the Internet of Things (IOTs) and other ubiquitous mobile communication devices connecting our bodies to our environments, our spaces are requiring a recalibration of the 'well tempered environment'. As technological devices are becoming seamlessly fused with our everyday lifestyles, habits and spaces, articulating experience is one of the most important topics to discuss in human-centered approach to design. This paper presents the initial methods for a data-driven process to enhance human experience as the central motivation. Combining knowledge from neuroscience and experimenting with embodied medias such as Virtual and Augmented Reality (+ MR) , the inquiries into the human dimension is explored in novel ways. The aim is to show how data-driven experiments could be used to assist designers find better performative solutions and that new collaborations between scientist and designers are on the rise as data moves fluidly between bodies and spaces like air in our 21st century.
keywords Experience Design; Human-Computer-Interface; Emotion; Neuroscience; VR, AR & Mixed Reality, Human Centered Design, Data-Driven Design; Interactivity
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaadesigradi2019_233
id ecaadesigradi2019_233
authors Noronha Pinto de Oliveira e Sousa, Marcela, Duarte, Jose and Celani, Gabriela
year 2019
title Urban Street Retrofitting - An Application Study on Bottom-Up Design
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 287-296
doi https://doi.org/10.52842/conf.ecaade.2019.3.287
summary Urban streets will have to be retrofitted to improve walkability and to provide space for a diversity of transport modes. This paper introduces a framework which combines space syntax and shape grammars in a design support method for generating scenarios for urban street retrofitting. A procedure to hierarchize streets and select priority locations for urban street retrofitting is presented. Four different angular choice analyses with decreasing radii are used to derive the hierarchical structure of target urban areas with the aim of triggering shape grammar rules and generating bottom-up intervention designs. The same measure using a local radius to represent walking modal is then used to determine which streets should be retrofitted to improve pedestrian safety and walkability for the largest number of people. An application study using this procedure is presented and results are compared to street hierarchies from two different sources. This study is the first step towards automating the generation of design scenarios for urban street retrofitting.
keywords Space Syntax; Street Hierarchy; Parametric Urbanism; Scenario Modeling; Travel Behavior
series eCAADeSIGraDi
email
last changed 2022/06/07 08:00

_id ecaadesigradi2019_355
id ecaadesigradi2019_355
authors Poustinchi, Ebrahim
year 2019
title Oriole Beta - A Parametric Solution for Robotic Motion Design Using Animation
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 227-234
doi https://doi.org/10.52842/conf.ecaade.2019.2.227
summary This paper presents a project-based research study using the beta version of Oriole-a custom-made animation-based plug-in for grasshopper 3D visual programming environment, to develop robotic motion/controlling solutions. Oriole, as a parametric tool, makes it possible for designers/users to "design"-instead of generating, the motions of the robot based on the notion of keyframing and time-based animation. Through the use of Oriole, users can simulate-and ultimately develop robotic motions/performances in more intuitive ways. This unique feature enables users with minor or no programming background to create robotic solutions using Oriole as a software/plugin Bridge.Using Rhinoceros 3D as a digital modeling platform in conjunction with Grasshopper 3D and its robotic simulation platforms, Oriole can develop controlling strategies for different industrial robots such as KUKA, ABB, and Universal Robots. Oriole enables designers to create a precise interaction between the robot, its spatial "performance" and the physical environment, through animation and keyframing to "design" robotic interactions and movements as frames of animation instead of segments of a curve "path."
keywords Robotics; Software Development; Animation; Parametric Design; Design
series eCAADeSIGraDi
email
last changed 2022/06/07 08:00

_id ecaadesigradi2019_530
id ecaadesigradi2019_530
authors Salsi, Matteo and Erioli, Alessio
year 2019
title Foam Making Sense - behavioral additive deposition and stigmergic agency for integrated surface tectonics
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 531-540
doi https://doi.org/10.52842/conf.ecaade.2019.2.531
summary This thesis research deals with the architectural project from an interdisciplinary point of view, integrating biomimetics, additive fabrication, computer vision, and robotics. The work focuses on the feedback interaction loop among robotic additive fabrication, a stigmergic agent-based system and the self-organizing properties of the material. The aim is to explore the morphological, constructive and expressive potentials generated by the mutual influence of computational design, construction behavioral rules, and physical material behavior (whose complexity exceeds current simulation capacity).The proposed approach leads to the creation of surface-based tectonics, enhanced with a fiberglass-coated dendritic ridge formation that integrates functional, ornamental and structural performances. The process can be extended to larger architectural scales with the creation of bespoke EPS molds via robotic hot wire cutting; the presented case study leverages the aforementioned process on ruled surfaces for the generation of translucent delimiters, used to create heterogeneous spatial organization.
keywords behavioral fabrication; stigmergy; agent-based system; robotic hot-wire-cutting; additive fabrication; sensors
series eCAADeSIGraDi
email
last changed 2022/06/07 08:00

_id caadria2019_103
id caadria2019_103
authors Silva, Lilian, Silva, Neander and Lacroix, Igor
year 2019
title Integrating Parametric Modeling with BIM through Generative Programming for the production of NURBS Surfaces and Structures
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 635-644
doi https://doi.org/10.52842/conf.caadria.2019.1.635
summary A workflow for integration of parametric modeling with BIM, using generative-programming, is described and tested in this research. The objective is to take advantage of these two distinctive design paradigms. This paper describes a design experiment that required a NURBS roof generated by sweeping profiles along a curved path. We assumed the use of multiple applications, using various file formats, are facts and are unlikely to disappear. Given that interoperability issues will certainly arise, we propose and test a design workflow using parametric modeling, generative programming, and building information modeling. Our major contribution was defining a workflow for designing NURBS surfaces and corresponding supporting structures enhancing interoperability among different applications through generative-programming.
keywords NURBS; Parametric; Programming; Interoperability; BIM
series CAADRIA
email
last changed 2022/06/07 07:56

_id cf2019_011
id cf2019_011
authors Silva, Lilian; Neander Silva and Igor Lacroix
year 2019
title Interoperability Workflow Method for Designing NURBS Surfaces and Structures with Generative Programming
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 88-100
summary The workflow for integration of parametric modeling with BIM is using generative-programming described and tested in this research. The workflow aims to take advantage of these two distinctive design paradigms. This paper describes a design experiment that called for a NURBS roof generated by sweeping profiles along a curved path. Computer applications in the field of architecture are often based on a diverse range of design paradigms. We assumed the use of multiple applications, using various file formats, are facts and are unlikely to disappear. Given that interoperability issues will certainly arise, in this article, we propose and test a design workflow using parametric modeling, generative programming, and building information modeling. Our objective is to test the efficiency and improve upon the compatibility between Parametric-Algorithmic-Design and BIM applications. Our major contribution was defining a workflow for designing NURBS surfaces and corresponding supporting structures enhancing interoperability among different applications through generative-programming.
keywords NURBS, Parametrics, Programming, Interoperability, BIM
series CAAD Futures
email
last changed 2019/07/29 14:08

_id cf2019_009
id cf2019_009
authors Veloso, Pedro; Jinmo Rhee and Ramesh Krishnamurti
year 2019
title Multi-agent space planning: a literature review (2008-2017)
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 52-74
summary In this paper we review the research on multi-agent space planning (MASP) during the period of 2008-2017. By MASP, we refer to space planning (SP) methods based on online mobile agents that map local perceptions to actions in the environment, generating spatial representation. We group two precedents and sixteen recent MASP prototypes into three categories: (1) agents as moving spatial units, (2) agents that occupy a space, and (3) agents that partition a space. In order to compare the prototypes, we identify the occurrence of features in terms of representation, objectives, and control procedures. Upon analysis of occurrences and correlations of features in the types, we present gaps and challenges for future MASP research. We point to the limits of current systems to solve spatial conflicts and to incorporate architectural knowledge. Finally, we suggest that behavioral learning offers a promising path for robust and autonomous MASP systems in the architectural domain.
keywords Space planning; Agent-based modeling; Multi-agent systems; Generative systems
series CAAD Futures
email
last changed 2019/07/29 14:08

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_604456 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002