CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 624

_id ecaade2024_222
id ecaade2024_222
authors Bindreiter, Stefan; Sisman, Yosun; Forster, Julia
year 2024
title Visualise Energy Saving Potentials in Settlement Development: By linking transport and energy simulation models for municipal planning
doi https://doi.org/10.52842/conf.ecaade.2024.2.079
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 2, pp. 79–88
summary To achieve Sustainable Development Goals, in addition to the switch to sustainable energy sources and energy-efficient buildings, transport offers a major lever for reducing energy consumption and greenhouse gases. The increasing demand for emission-free mobility (e.g. through electromobility) but also heat pumps has a direct impact on the electricity consumption of buildings and settlements. It is still difficult to simulate the effects and interactions of different measures as sector coupling concepts require comprehensible tools for ex ante evaluation of planning measures at the community level and the linking of domain-specific models (energy, transport). Using the municipality of Bruck an der Leitha (Austria) as an example, a digital twin based on an open data model (Bednar et al., 2020) is created for the development of methods, which can be used to simulate measures to improve the settlement structure within the municipality. Forecast models for mobility (Schmaus, 2019; Ritz, 2019) and the building stock are developed or applied and linked via the open data model to be able to run through development scenarios and variants. The forecasting and visualisation options created in the project form the basis for the ex-ante evaluation of measures and policies on the way to a Positive-Energy-District. By identifying and collecting missing data, data gaps are filled for the simulation of precise models in the specific study area. A digital, interactive 3D model is created to examine the forecast results and the different scenarios.
keywords visualisation, decision support, sector coupling, holistic spatial energy models for municipal planning, (energy) saving potentials in settlement development
series eCAADe
email
last changed 2024/11/17 22:05

_id cdrf2023_526
id cdrf2023_526
authors Eric Peterson, Bhavleen Kaur
year 2023
title Printing Compound-Curved Sandwich Structures with Robotic Multi-Bias Additive Manufacturing
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_44
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
summary A research team at Florida International University Robotics and Digital Fabrication Lab has developed a novel method for 3d-printing curved open grid core sandwich structures using a thermoplastic extruder mounted on a robotic arm. This print-on-print additive manufacturing (AM) method relies on the 3d modeling software Rhinoceros and its parametric software plugin Grasshopper with Kuka-Parametric Robotic Control (Kuka-PRC) to convert NURBS surfaces into multi-bias additive manufacturing (MBAM) toolpaths. While several high-profile projects including the University of Stuttgart ICD/ITKE Research Pavilions 2014–15 and 2016–17, ETH-Digital Building Technologies project Levis Ergon Chair 2018, and 3D printed chair using Robotic Hybrid Manufacturing at Institute of Advanced Architecture of Catalonia (IAAC) 2019, have previously demonstrated the feasibility of 3d printing with either MBAM or sandwich structures, this method for printing Compound-Curved Sandwich Structures with Robotic MBAM combines these methods offering the possibility to significantly reduce the weight of spanning or cantilevered surfaces by incorporating the structural logic of open grid-core sandwiches with MBAM toolpath printing. Often built with fiber reinforced plastics (FRP), sandwich structures are a common solution for thin wall construction of compound curved surfaces that require a high strength-to-weight ratio with applications including aerospace, wind energy, marine, automotive, transportation infrastructure, architecture, furniture, and sports equipment manufacturing. Typical practices for producing sandwich structures are labor intensive, involving a multi-stage process including (1) the design and fabrication of a mould, (2) the application of a surface substrate such as FRP, (3) the manual application of a light-weight grid-core material, and (4) application of a second surface substrate to complete the sandwich. There are several shortcomings to this moulded manufacturing method that affect both the formal outcome and the manufacturing process: moulds are often costly and labor intensive to build, formal geometric freedom is limited by the minimum draft angles required for successful removal from the mould, and customization and refinement of product lines can be limited by the need for moulds. While the most common material for this construction method is FRP, our proof-of-concept experiments relied on low-cost thermoplastic using a specially configured pellet extruder. While the method proved feasible for small representative examples there remain significant challenges to the successful deployment of this manufacturing method at larger scales that can only be addressed with additional research. The digital workflow includes the following steps: (1) Create a 3D digital model of the base surface in Rhino, (2) Generate toolpaths for laminar printing in Grasshopper by converting surfaces into lists of oriented points, (3) Generate the structural grid-core using the same process, (4) Orient the robot to align in the direction of the substructure geometric planes, (5) Print the grid core using MBAM toolpaths, (6) Repeat step 1 and 2 for printing the outer surface with appropriate adjustments to the extruder orientation. During the design and printing process, we encountered several challenges including selecting geometry suitable for testing, extruder orientation, calibration of the hot end and extrusion/movement speeds, and deviation between the computer model and the physical object on the build platen. Physical models varied from their digital counterparts by several millimeters due to material deformation in the extrusion and cooling process. Real-time deviation verification studies will likely improve the workflow in future studies.
series cdrf
email
last changed 2024/05/29 14:04

_id cf2019_039
id cf2019_039
authors Guo, Fei ; Eduardo Castro e Costa, Jose Duarte and Shadi Nazarian
year 2019
title Computational Implementation of a Tool for Generative Design of High-rise Residential Building Facades
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 301-316
summary We propose a computational design tool that aims to provide more variety to the design of high-rise residential building facades. In contemporary cities, the pressure to build many high-rise residential buildings leaves little time to focus on facade design, resulting in repetitive facades that impart a monotonous appearance to cities. We propose a computational tool that can help to improve facade variety, based on shape grammars and parametric modeling. Shape grammars are used to analyze facade composition and to structure design knowledge. Subsequently, the grammars are converted into parametric models, which are implemented using the Python programming language that can be used to generate designs in CAD software. The resulting tool encodes a general parametric model that manipulates the rules of formal composition of building facades. Without limitations from software, the program takes advantage of the high-processing power of the computer to provide many design solutions from which architects can choose.
keywords Variety, Facades, Computational Design, Parametric Modeling, Shape Grammar
series CAAD Futures
email
last changed 2019/07/29 14:15

_id caadria2019_651
id caadria2019_651
authors Imani, Marzieh, Sayah, Iman, Vale, Brenda and Donn, Michael
year 2019
title An Innovative, Hierarchical Energy Performance Data Visualization for Facilitating Recognition of Thermal Issues
doi https://doi.org/10.52842/conf.caadria.2019.1.815
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 815-824
summary This paper discusses the characteristics of and relationships between the most common building energy performance tools for simulating and visualising the thermal behaviour of buildings at the early stage of building design. The necessity for the latter and the importance of using relevant tools in practice are discussed. By highlighting existing gaps in these tools, a complementary component has been suggested that could assist building scientists in evaluating energy simulation results. The proposed energy performance data visualisation (EPDV) component is an under-development plugin (SlowLoris) that is intended to be added to the existing Grasshopper add-ons. This EPDV component provides users with simultaneous but different visualisation styles of monthly energy reports for individual floors and thermal zones. As an example, this paper uses a 2-storey building model to show the applicability of the plugin to analysis of energy simulation results.
keywords Building energy simulation; Data visualization; Energy performance analysis
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2019_245
id caadria2019_245
authors Jiaxin, Zhang, Yunqin, Li, Haiqing, Li and Xueqiang, Wang
year 2019
title Sensitivity Analysis of Thermal Performance of Granary Building based on Machine Learning
doi https://doi.org/10.52842/conf.caadria.2019.1.665
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 665-674
summary The granary building form has significant effects on thermal performance, especially in hot climate regions. This research is focused on exploring the influences of parameters relevant to building form design on thermal performance for granary buildings in Jiangsu and Anhui, China(both provinces belong to the hot summer region). The usual method is to use simulation software to perform a sensitivity analysis of thermal performance to assess the impacts of granary design parameters and identify the essential characteristics. However, many factors are affecting the thermal performance of granary buildings. The use of traditional energy simulation software requires calculation and analysis of a large number of models. In this study, we build a machine learning model to predict the thermal performance of granary buildings and identify the most influential design parameters of thermal performance in granary building. The input parameters include outdoor temperature, building height, aspect ratio, orientation, heat transmission coefficient of the wall and roof, and overall scale. The results show that the overall building scale is the most influential variable to the annual electricity consumption for cooling, whereas the heat transmission coefficient of the roof is the most influential to the change of the indoor temperature.
keywords Sensitivity analysis; Artificial Neural Networks (ANNs); Thermal performance; Granary building
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaadesigradi2019_138
id ecaadesigradi2019_138
authors Kim, Yujin
year 2019
title Bioinspired Modularity in Evolutionary Computation and a Rule-Based Logic - Design Solutions for Shared Office Space
doi https://doi.org/10.52842/conf.ecaade.2019.2.341
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 341-348
summary Evolutionary computation is a population-based problem solver that is characterized by a stochastic optimization in order to solve both a single objective and multiple objectives. Previous evolutionary computational researches provided various design options and improved optimization through being evolved with fitness criteria, especially when multiple design objectives conflict with one another. In this paper, a rule-based algorithm was combined with the evolutionary computational process to propose an assembly logic of the modules and to improve an architectural building design in order to adapt to environmental changes. Two algorithms - a rule based and generative algorithm- proceeded simultaneously and provided various options as well as optimization in real time. For the experiment set-up, existing buildings were divided into each module; the modules were reinterpreted and reassembled with the logic driven by Evolutionary Developmental Biology. The conclusion is that when a rule based logic is combined with a developmental algorithm with a modular system, it is more efficient for the design process to be analyzed, evaluated, and optimized. The ultimate outcome provides various options in a short amount of time.
keywords Evolutionary computation; rule-based algorithm; modularity; reassembly
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id caadria2019_256
id caadria2019_256
authors Lertsithichai, Surapong
year 2019
title Augemented Architecture - Interplay between Digital and Physical Environments
doi https://doi.org/10.52842/conf.caadria.2019.2.353
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 353-362
summary In an increasingly connected world where computers are everywhere, surrounding us in embedded small portable devices, appliances and inside buildings, implementing these interconnected and embedded computers have now become common practice in the design of smart spaces and intelligent environments of today. Digital information is constantly being collected and distributed by a network of digital devices communicating with users and vice versa. New behaviors and activities that may have not been considered before in the design of architectural building types are now commonly found in public and private spaces throughout the world. In an attempt to explore and experiment with the concept of interplay between digital and physical environments, an option studio was proposed to 4th year architecture students to develop a new type of augmented architecture that corresponds to changes in human social behavior due to digital technologies. Five pilot projects are presented with experiments conducted to question three social activities commonly found in everyday lives using Arduino prototypes installed in real physical locations. The prototypes were then used as a basis for the development of large-scale projects proposed as augmented architecture.
keywords Human-Computer Interaction; Ubiquitous Computing; Virtual / Augmented Reality; Computational Design Research; IoT for Built Environments
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2019_449
id caadria2019_449
authors Lin, Yuqiong, Yao, Jiawei, Huang, Chenyu and Yuan, Philip F.
year 2019
title The Future of Environmental Performance Architectural Design Based on Human-Computer Interaction - Prediction Generation Based on Physical Wind Tunnel and Neural Network Algorithms
doi https://doi.org/10.52842/conf.caadria.2019.2.633
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 633-642
summary As the medium of the environment, a building's environment performance-based generative design cannot be separated from intelligent data processing. Sustainable building design should seek an optimized form of environmental performance through a complete set of intelligent induction, autonomous analysis and feedback systems. This paper analyzed the trends in architectural design development in the era of algorithms and data and the status quo of building generative design based on environmental performance, as well as highlighting the importance of physical experiments. Furthermore, a design method for self-generating environmental performance of urban high-rise buildings by applying artificial intelligence neural network algorithms to a customized physical wind tunnel is proposed, which mainly includes a morphology parameter control and environmental data acquisition system, code translation of environmental evaluation rules and architecture of a neural network algorithm model. The design-oriented intelligent prediction can be generated directly from the target environmental requirements to the architectural forms.
keywords Physical wind tunnel; neural network algorithms; dynamic model; environmental performance; building morphology self-generation
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2019_318
id caadria2019_318
authors Martinho, Helena, Belém, Catarina, Leitão, António, Loonen, Roel and Gomes, M. Glória
year 2019
title Algorithmic Design and Performance Analysis of Adaptive Façades
doi https://doi.org/10.52842/conf.caadria.2019.1.685
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 685-694
summary Building performance simulation tools have the potential for aiding the decision-making process in early design stages of an architectural project. As traditional simulation tools are based on a static design and adaptive façades encompass an envisioned movement of construction elements, there is a lack of supporting tools and workflows that can correctly evaluate the performance of such building envelopes at an early stage. The presented ongoing research focuses on developing efficient parametric performance-based approaches for assessing the energy consumption in buildings with adaptive façades, combining generative architectural design and performance analysis in a seamless workflow. To this end, we combine a new algorithmic design research tool with the well-established whole-building simulation engine EnergyPlus. The purpose of linking both tools lies in the possibility of generating and simulating models with adaptive façade mechanisms through a single script, evaluating and using the simulation results to adjust the model's parameters and develop optimized control strategies.
keywords Building performance simulation; Adaptive façades; Algorithmic design; Energy analysis
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaadesigradi2019_455
id ecaadesigradi2019_455
authors Moreira, Jo?o, Figueiredo, Bruno and Cruz, Paulo
year 2019
title Ceramic Additive Manufacturing in Architecture - Computational Methodology for Defining a Column System
doi https://doi.org/10.52842/conf.ecaade.2019.1.471
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 471-476
summary The present paper describes a research that explores the design and production of customised architectural ceramic components defined through parametric relations of biomorphic inspiration and to be built through additive manufacturing. In this sense, is presented a case study that develops a system of both architectural and structural components - a column system. The definition process of the system is mediated by computational design, implementing not only structural analysis and optimization strategies, but also mimetic formal characteristics of nature to an initial grid, creating a model that adapts its formal attributes, depending on its assumptions and the material constraints. This process resulted in the definition of a set of solutions that better answer to a specific design problem.
keywords Additive Manufacturing; Ceramic 3D; Computational Design; Structural Optimization; Biomorphism
series eCAADeSIGraDi
email
last changed 2022/06/07 07:58

_id caadria2019_127
id caadria2019_127
authors Nam, Hyunjae
year 2019
title Programming Intelligent Architecture to be Responsive to Real-Time Data
doi https://doi.org/10.52842/conf.caadria.2019.2.273
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 273-282
summary This study examines the development of intelligent architecture capable of reading real-time data and controlling spatial configurations accordingly. In terms of responsiveness at an architectural scale, it is questionable whether an architectural system can adapt or adjust its spatial configurations to the time-based changes of social activities. The urban open data movement allows individuals to navigate or measure real-time occurrences in cities, and such data can be used to accommodate users' demands for social space. Exploiting urban open data, the design experiment focused on extracting data pertaining to real occurrences of social activities and weather conditions in a city, setting an algorithm mapping the sequence from the data to architectural behaviours, and simulating the architectural model in real time. By means of proposing a design strategy, this research contributes to cross-disciplinary approaches to developing smart buildings and cities.
keywords real-time data; urban open data; weather API; architectural responsiveness
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaade2020_138
id ecaade2020_138
authors Patel, Sayjel Vijay, Tchakerian, Raffi, Lemos Morais, Renata, Zhang, Jie and Cropper, Simon
year 2020
title The Emoting City - Designing feeling and artificial empathy in mediated environments
doi https://doi.org/10.52842/conf.ecaade.2020.2.261
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 261-270
summary This paper presents a theoretical blueprint for implementing artificial empathy into the built environment. Transdisciplinary design principles have oriented the creation of a new model for autonomous environments integrating psychology, architecture, digital media, affective computing and interactive UX design. 'The Emoting City', an interactive installation presented at the 2019 Shenzhen Bi-City Biennale of Urbanism/Architecture, is presented as a first step to explore how to engage AI-driven sensing by integrating human perception, cognition and behaviour in a real-world scenario. The approach described encompasses two main elements: embedded cyberception and responsive surfaces. Its human-AI interface enables new modes of blended interaction that are conducive to self-empathy and insight. It brings forth a new proposition for the development of sensing systems that go beyond social robotics into the field of artificial empathy. The installation innovates in the design of seamless affective computing that combines 'alloplastic' and 'autoplastic' architectures. We believe that our research signals the emergence of a potential revolution in responsive environments, offering a glimpse into the possibility of designing intelligent spaces with the ability to sense, inform and respond to human emotional states in ways that promote personal, cultural and social evolution.
keywords Artificial Intelligence; Responsive Architecture; Affective Computation; Human-AI Interfaces; Artificial Empathy
series eCAADe
email
last changed 2022/06/07 07:59

_id caadria2019_283
id caadria2019_283
authors Rosenberg, Daniel and Tsamis, Alexandros
year 2019
title Human-Building Collaboration - A Pedagogical Framework for Smart Building Design
doi https://doi.org/10.52842/conf.caadria.2019.2.171
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 171-180
summary We introduce Human-Building Collaboration (HBC), a pedagogical framework for the design of next-generation smart buildings in architecture. Using the framework's philosophy, model, and tools we show designers how to enhance smart building performance by increasing and diversifying the ways humans have to share their intelligence with that of the building. We apply this framework through design exercises and present the result of two projects: (1) a tangible wall interface for lighting co-optimization and (2) a shape display facade interface for rainwater purification and reuse. Preliminary findings demonstrate that the framework helped designers proposing new means for humans to collaborate with smart buildings.
keywords Smart Buildings; Artificial Intelligence ; Tangible Interfaces; Human-Building Interaction ; User Experience Design
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2023_259
id ecaade2023_259
authors Sonne-Frederiksen, Povl Filip, Larsen, Niels Martin and Buthke, Jan
year 2023
title Point Cloud Segmentation for Building Reuse - Construction of digital twins in early phase building reuse projects
doi https://doi.org/10.52842/conf.ecaade.2023.2.327
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 327–336
summary Point cloud processing has come a long way in the past years. Advances in computer vision (CV) and machine learning (ML) have enabled its automated recognition and processing. However, few of those developments have made it through to the Architecture, Engineering and Construction (AEC) industry. Here, optimizing those workflows can reduce time spent on early-phase projects, which otherwise could be spent on developing innovative design solutions. Simplifying the processing of building point cloud scans makes it more accessible and therefore, usable for design, planning and decision-making. Furthermore, automated processing can also ensure that point clouds are processed consistently and accurately, reducing the potential for human error. This work is part of a larger effort to optimize early-phase design processes to promote the reuse of vacant buildings. It focuses on technical solutions to automate the reconstruction of point clouds into a digital twin as a simplified solid 3D element model. In this paper, various ML approaches, among others KPConv Thomas et al. (2019), ShapeConv Cao et al. (2021) and Mask-RCNN He et al. (2017), are compared in their ability to apply semantic as well as instance segmentation to point clouds. Further it relies on the S3DIS Armeni et al. (2017), NYU v2 Silberman et al. (2012) and Matterport Ramakrishnan et al. (2021) data sets for training. Here, the authors aim to establish a workflow that reduces the effort for users to process their point clouds and obtain object-based models. The findings of this research show that although pure point cloud-based ML models enable a greater degree of flexibility, they incur a high computational cost. We found, that using RGB-D images for classifications and segmentation simplifies the complexity of the ML model but leads to additional requirements for the data set. These can be mitigated in the initial process of capturing the building or by extracting the depth data from the point cloud.
keywords Point Clouds, Machine Learning, Segmentation, Reuse, Digital Twins
series eCAADe
email
last changed 2023/12/10 10:49

_id ecaadesigradi2019_417
id ecaadesigradi2019_417
authors Weissenböck, Renate and Symeonidou, Ioanna
year 2019
title Anatomy of a Building - Introducing interactive RGB lenses for architectural data visualization
doi https://doi.org/10.52842/conf.ecaade.2019.1.739
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 739-748
summary The paper proposes an alternative way to present architectural information, using color filters - specifically RGB lenses - as an interface to emphasize or reveal the internal structure or hidden logic of an architectural artifact. In an interplay of analogue and digital techniques, it employs rules of color blocking in order to highlight certain aspects of complex buildings, urban plans, or interiors, which cannot be discovered using conventional visualization methods. In this research, the authors developed an interactive RGB lens-interface and techniques for superimposed color visualizations that can be used for an enhanced visualization of the internal structure of a building. By applying physical or digital color lenses, viewers can perceive individual layers of project visualizations, in order to understand certain tectonic or construction logics, such as skin, structure or infrastructure. Based on existing bibliography, the paper presents the workflow from drawing, 3D model or photograph to RGB visualization, through a series of test case scenarios applicable to the field of architecture and design.
keywords architectural visualization; color & light; subtractive color mixing; RGB lenses; post-digital; building anatomy
series eCAADeSIGraDi
email
last changed 2022/06/07 07:58

_id cf2019_055
id cf2019_055
authors Agirbas, Asli
year 2019
title A proposal for the use of fractal geometry algorithmically in tiling design
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 438-453
summary The design inspired by nature is an ongoing issue from the past to the present. There are many design examples inspired from nature. Fractal geometry formation, which is focused on this study, is a system seen in nature. A model based on fractal growth principle was proposed for tile design. In this proposal made with using Visual Programming Language, a tiling design experiment placed in a hexagonal grid system was carried out. Thus, a base was created for tile designs to be made using the fractal principle. The results of the case study were evaluated and potential future studies were discussed.
keywords Fractals, Tile design, Biomimetic design, Algorithmic design
series CAAD Futures
email
last changed 2019/07/29 14:18

_id cf2019_037
id cf2019_037
authors Aljammaz, Mohammed ; Tsung-Hsien Wang and Chengzhi Peng
year 2019
title The influence of Saudi Arabian culture on energy use: Improving the time-use schedules in energy simulation for houses in Riyadh
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 273-289
summary Culture influences the way that people act and behave in all societies. In Saudi Arabia, culture and beliefs directly influence the lifestyle and behaviour of its citizens. Culture also impacts on energy usage of buildings, but this factor is often excluded from energy use simulations. A consequence of this is a mismatch between energy prediction and real energy usage. This paper demonstrates how a time-use data (TUD) model can be used to create a more realistic estimate of energy consumption in Saudi Arabia. TUD has been collected through a survey of 300 people living in Riyadh. The performance of the computational TUD model is cross-referenced with empirical data and the outcomes are used to discuss how the TUD model can be applied more effectively in energy use simulations.
keywords time-use data, energy simulation, energy use prediction, load schedules, occupant behaviours,
series CAAD Futures
email
last changed 2019/07/29 14:15

_id ecaade2021_203
id ecaade2021_203
authors Arora, Hardik, Bielski, Jessica, Eisenstadt, Viktor, Langenhan, Christoph, Ziegler, Christoph, Althoff, Klaus-Dieter and Dengel, Andreas
year 2021
title Consistency Checker - An automatic constraint-based evaluator for housing spatial configurations
doi https://doi.org/10.52842/conf.ecaade.2021.2.351
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 351-358
summary The gradual rise of artificial intelligence (AI) and its increasing visibility among many research disciplines affected Computer-Aided Architectural Design (CAAD). Architectural deep learning (DL) approaches are being developed and published on a regular basis, such as retrieval (Sharma et al. 2017) or design style manipulation (Newton 2019; Silvestre et al. 2016). However, there seems to be no method to evaluate highly constrained spatial configurations for specific architectural domains (such as housing or office buildings) based on basic architectural principles and everyday practices. This paper introduces an automatic constraint-based consistency checker to evaluate the coherency of semantic spatial configurations of housing construction using a small set of design principles to evaluate our DL approaches. The consistency checker informs about the overall performance of a spatial configuration followed by whether it is open/closed and the constraints it didn't satisfy. This paper deals with the relation of spaces processed as mathematically formalized graphs contrary to existing model checking software like Solibri.
keywords model checking, building information modeling, deep learning, data quality
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia19_338
id acadia19_338
authors Aviv, Dorit; Houchois, Nicholas; Meggers, Forrest
year 2019
title Thermal Reality Capture
doi https://doi.org/10.52842/conf.acadia.2019.338
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 338-345
summary Architectural surfaces constantly emit radiant heat fluxes to their surroundings, a phenomenon that is wholly dependent on their geometry and material properties. Therefore, the capacity of 3D scanning techniques to capture the geometry of building surfaces should be extended to sense and capture the surfaces’ thermal behavior in real time. We present an innovative sensor, SMART (Spherical-Motion Average Radiant Temperature Sensor), which captures the thermal characteristics of the built environment by coupling laser geometry scanning with infrared surface temperature detection. Its novelty lies in the combination of the two sensor technologies into an analytical device for radiant temperature mapping. With a sensor-based dynamic thermal-surface model, it is possible to achieve representation and control over one of the major factors affecting human comfort. The results for a case-study of a 3D thermal scan conducted in the recently completed Lewis Center for the Arts at Princeton University are compared with simulation results based on a detailed BIM model of the same space.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia19_258
id acadia19_258
authors Bar-Sinai, Karen Lee; Shaked, Tom; Sprecher, Aaron
year 2019
title Informing Grounds
doi https://doi.org/10.52842/conf.acadia.2019.258
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 258-265
summary Advancements in robotic fabrication are enabling on-site construction in increasingly larger scales. In this paper, we argue that as autonomous tools encounter the territorial scale, they open new ways to embed information into it. To define the new practice, this paper introduces a protocol combining a theoretical framework and an iterative process titled Informing Grounds. This protocol mediates and supports the exchange of knowledge between a digital and a physical environment and is applicable to a variety of materials with uncertain characteristics in a robotic manufacturing scenario. The process is applied on soil and demonstrated through a recent design-to-fabrication workshop that focused on simulating digital groundscaping of distant lunar grounds employing robotic sand-forming. The first stage is ‘sampling’—observing the physical domain both as an initial step as well as a step between the forming cycles to update the virtual model. The second stage is ‘streaming’—the generation of information derived from the digital model and its projection onto the physical realm. The third stage is ‘transforming’—the shaping of the sand medium through a physical gesture. The workshop outcomes serve as the basis for discussion regarding the challenges posed by applying autonomous robotic tools on materials with uncertain behavior at a large-scale.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_774182 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002