CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 516

_id caadria2019_399
id caadria2019_399
authors Houda, Maryam and Dias-da-Costa, Daniel
year 2019
title Data Informed Branch Typologies for Structurally Optimised Curvilinear Surfaces - 3D Printed Mesh Density System (MDS) as Formwork for Concrete Shell Structures.
doi https://doi.org/10.52842/conf.caadria.2019.2.401
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 401-410
summary This research sheds light on the advancement of additive fabrication and its relevance to the construction of curvilinear surfaces. The Mesh Density System (MDS) explored in this paper, is a novel 3D printed dual formwork and reinforcement system for free-form complex concrete geometries. It offers an alternate method to current formwork systems, essentially for thin shell structures. By using multi-cellular distribution and optimised branch structural arrangements, the system optimises form and concrete flow.
keywords Additive Fabrication; Concrete Shells; Evolutionary Algorithms; Permanent Formwork; Structural Optimisation
series CAADRIA
email
last changed 2022/06/07 07:50

_id acadia19_188
id acadia19_188
authors Leschok, Matthias; Dillenburger, Benjamin
year 2019
title Dissolvable 3DP Formwork
doi https://doi.org/10.52842/conf.acadia.2019.188
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 188-197
summary Additive manufacturing technology frees the designer and manufacturer from the constraints for creating formwork for castable materials. However, the removal of formwork remains a challenging task for specific geometric features such as undercuts and hollow parts. The entire formwork needs to be reachable by humans or machines to be broken, which poses a great risk of damaging the final concrete surface or destroying intricate details. This paper focuses on the development of a sustainable FDM 3D printed formwork system, enabling the casting of components at an architectural scale, without creating material waste. It does so by combining a minimal 3D printed shell with additional geometrical formwork features. Furthermore it proposes the usage of an alternative formwork material, Poly Vinyl Alcohol (PVA). PVA is water dissolvable, non-toxic, and biodegradable. Introducing water dissolvable 3D printed formwork allows designers to exploit in full the advantages of additive manufacturing technologies and the formability of castable materials. Concrete can be cast to fabricate one of a kind, full-scale, structural components without compromising the complexity of form, while at the same time, reducing the amount of material waste drastically.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id acadia19_178
id acadia19_178
authors Doyle, Shelby Elizabeth; Hunt, Erin Linsey
year 2019
title Dissolvable 3D Printed Formwork
doi https://doi.org/10.52842/conf.acadia.2019.178
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 178-187
summary This research explores the potentials, limitations, and advantages of 3D printing watersoluble formwork for reinforced concrete applications. Using polyvinyl alcohol (PVA) forms and Polylactic Acid (PLA) filament with ground steel tensile reinforcement, this project explores the constraints and opportunities for architects to design and construct reinforced concrete using water soluble 3D printed formwork with embedded reinforcement. Research began with testing small PVA prints for consistency, heat of water-temperature for dissolving, and wall thickness of the printed formwork. Then, dual-extrusion desktop additive manufacturing was used as a method for creating a larger form to test the viability of translating this research into architectural scale applications. This paper describes the background research, materials, methods, fabrication process, and conclusions of this work in progress.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id acadia20_192p
id acadia20_192p
authors Doyle, Shelby; Hunt, Erin
year 2020
title Melting 2.0
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 192-197
summary This project presents computational design and fabrication methods for locating standard steel reinforcement within 3D printed water-soluble PVA (polyvinyl alcohol) molds to create non-standard concrete columns. Previous methods from “Melting: Augmenting Concrete Columns with Water Soluble 3D Printed Formwork” and “Dissolvable 3D Printed Formwork: Exploring Additive Manufacturing for Reinforced Concrete” (Doyle & Hunt 2019) were adapted for larger-scale construction, including the introduction of new hardware, development of custom programming strategies, and updated digital fabrication techniques. Initial research plans included 3D printing continuous PVA formwork with a KUKA Agilus Kr10 R1100 industrial robotic arm. However, COVID-19 university campus closures led to fabrication shifting to the author’s home, and this phase instead relied upon a LulzBot TAZ 6 (build volume of 280 mm x 280 mm x 250 mm) with an HS+ (Hardened Steel) tool head (1.2 mm nozzle diameter). Two methods were developed for this project phase: new 3D printing hardware and custom GCode production. The methods were then evaluated in the fabrication of three non-standard columns designed around five standard reinforcement bars (3/8-inch diameter): Woven, Twisted, Aperture. Each test column was eight inches in diameter (the same size as a standard Sonotube concrete form) and 4 feet tall, approximately half the height of an architecturally scaled 8-foot-tall column. Each column’s form was generated from combining these diameter and height restrictions with the constraints of standard reinforcement placement and minimum concrete coverage. The formwork was then printed, assembled, cast, and then submerged in water to dissolve the molds to reveal the cast concrete. This mold dissolving process limits the applicable scale for the work as it transitions from the research lab to the construction site. Therefore, the final column was placed outside with its mold intact to explore if humidity and water alone can dissolve the PVA formwork in lieu of submersion.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id acadia20_202p
id acadia20_202p
authors Battaglia, Christopher A.; Verian, Kho; Miller, Martin F.
year 2020
title DE:Stress Pavilion
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 202-207
summary Print-Cast Concrete investigates concrete 3D printing utilizing robotically fabricated recyclable green sand molds for the fabrication of thin shell architecture. The presented process expedites the production of doubly curved concrete geometries by replacing traditional formwork casting or horizontal corbeling with spatial concrete arching by developing a three-dimensional extrusion path for deposition. Creating robust non-zero Gaussian curvature in concrete, this method increases fabrication speed for mass customized elements eliminating two-part mold casting by combining robotic 3D printing and extrusion casting. Through the casting component of this method, concrete 3D prints have greater resolution along the edge condition resulting in tighter assembly tolerances between multiple aggregated components. Print-Cast Concrete was developed to produce a full-scale architectural installation commissioned for Exhibit Columbus 2019. The concrete 3D printed compression shell spanned 12 meters in length, 5 meters in width, and 3 meters in height and consisted of 110 bespoke panels ranging in weight of 45 kg to 160 kg per panel. Geometrical constraints were determined by the bounding box of compressed sand mold blanks and tooling parameters of both CNC milling and concrete extrusion. Using this construction method, the project was able to be assembled and disassembled within the timeframe of the temporary outdoor exhibit, produce <1% of waste mortar material in fabrication, and utilize 60% less material to construct than cast-in-place construction. Using the sand mold to contain geometric edge conditions, the Print-Cast technique allows for precise aggregation tolerances. To increase the pavilions resistance to shear forces, interlocking nesting geometries are integrated into each edge condition of the panels with .785 radians of the undercut. Over extruding strategically during the printing process casts the undulating surface with accuracy. When nested together, the edge condition informs both the construction logic of the panel’s placement and orientation for the concrete panelized shell.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id caadria2019_660
id caadria2019_660
authors Aghaei Meibodi, Mania, Giesecke, Rena and Dillenburger, Benjamin
year 2019
title 3D Printing Sand Molds for Casting Bespoke Metal Connections - Digital Metal: Additive Manufacturing for Cast Metal Joints in Architecture
doi https://doi.org/10.52842/conf.caadria.2019.1.133
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 133-142
summary Metal joints play a relevant role in space frame constructions, being responsible for large amount of the overall material and fabrication cost. Space frames which are constructed with standardized metal joints are constrained to repetitive structures and topologies. For customized space frames, the fabrication of individual metal joints still remains a challenge. Traditional fabrication methods such as sand casting are labour intensive, while direct 3D metal printing is too expensive and slow for the large volumes needed in architecture.This research investigates the use of Binder Jetting technology to 3D print sand molds for casting bespoke metal joints in architecture. Using this approach, a large number of custom metal joints can be fabricated economically in short time. By automating the generation of the joint geometry and the corresponding mold system, an efficient digital process chain from design to fabrication is established. Several design studies for cast metal joints are presented. The approach is successfully tested on the example of a full scale space frame structure incorporating almost two hundred custom aluminum joints.
keywords 3D printing; binder jetting; sand casting; metal joints; metal casting; space frame; digital fabrication; computational design; lightweight; customization
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia19_198
id acadia19_198
authors Tessmer, Lavender; Huang, Yijiang; Mueller, Caitlin
year 2019
title Additive Casting of Mass-Customizable Bricks
doi https://doi.org/10.52842/conf.acadia.2019.198
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 198-207
summary The strength of general-purpose fabrication tools is in the ease of repeatability and reconfiguration of geometry. However, there are some material processes that are difficult to directly integrate into fabrication processes with these machines. In particular, the common methods of material configuration through horizontal deposition in 3D printing exclude other types of material processes such as casting. This project demonstrates an additive manufacturing technique paired with a design input process for generating a wall of customized cast bricks. Taking advantage of the precision and adaptability of a robotic arm, the fabrication process pairs this general-purpose tool with a specialized auxiliary device to create variation in concrete casts.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id caadria2019_131
id caadria2019_131
authors Wang, Sihan, Xuereb Conti, Zack and Raspall, Felix
year 2019
title Optimization of Clay Mould for Concrete Casting Using Design of Experiments
doi https://doi.org/10.52842/conf.caadria.2019.2.283
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 283-292
summary This paper presents a research work to optimize the Additive Manufactured (AM) clay moulds for concrete casting utilizing the Design of Experiments (DOE). The objective of this approach is to understand the impacts of clay moulds' fabrication parameters on the displacement of cast concrete artefacts. This will contribute to efficient and economical clay mould production without losing accuracy. We adopt a DOE approach to reveal insights into the influence of critical fabrication parameters on the displacement of the final concrete artefact and thus, suggest critical parameter settings to ensure that the lateral pressure exerted by concrete in the vertical build-up is sustained. We demonstrate experimental results for a case study: vertical columns of circular cross-sections.
keywords Clay Mould; Additive Manufacturing; Robotic Fabrication; Design of Experiments
series CAADRIA
email
last changed 2022/06/07 07:58

_id caadria2019_190
id caadria2019_190
authors Chan, Zion and Crolla, Kristof
year 2019
title Simplifying Doubly Curved Concrete - Post-Digital Expansion of Concrete's Construction Solution Space
doi https://doi.org/10.52842/conf.caadria.2019.1.023
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 23-32
summary This action research project develops a novel conceptual method for non-standardised concrete construction component fabrication and tests its validity through a speculative design project. The paper questions the practical, procedural and economic drivers behind the design and construction of geometrically complex concrete architecture. It proposes an alternative, simple and economical fabrication method for doubly curved concrete centred on the robotic manufacturing of casting moulds through 5-axis hotwire foam cutting for the making of doubly-curved fiber-reinforced concrete (FRC) panels. These panels are used as light-weight sacrificial formwork for in-situ concrete casting. The methodology's opportunity space is tested, evaluated and discussed through a conceptual architectural design project proposal that operates as demonstrator. The paper concludes by addressing the advantages of a design-and-build architecture delivery setup, the potential from using computational technology to adapt conventional design and construction procedures and the expanded role within the design and construction process this gives to architects.
keywords Doubly Curved Concrete; Robotic Manufacture; Post-Digital Architecture; Design and Build; Casting Mould Making
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_197
id ecaadesigradi2019_197
authors Diarte, Julio, Vazquez, Elena and Shaffer, Marcus
year 2019
title Tooling Cardboard for Smart Reuse - Testing a Parametric Tool for Adapting Waste Corrugated Cardboard to Fabricate Acoustic Panels and Concrete Formwork.
doi https://doi.org/10.52842/conf.ecaade.2019.2.769
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 769-778
summary The study presented in this paper is part of ongoing research that is exploring how digital design tools and technologies can support waste cardboard reuse for manufacturing architectural elements in a context of scarcity. For this study, we explore the use of a parametric design tool to design and fabricate three different architectural components using waste cardboard sheets: acoustic panels and two types of formwork for concrete. This design tool maximizes the smart reuse of a waste material and aids in the fabrication process by outputting instructions for cutting, scoring, and folding. This paper also demonstrates how parametric design tools can help reuse non-standard (dimensions variable) waste materials, mediating between measurable material conditions and desired material targets for designs.
keywords Cardboard Architecture; Reusing Waste Cardboard; Material Reuse Processes; Parametric Design Tools
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id ecaadesigradi2019_300
id ecaadesigradi2019_300
authors Kieffer, Lynn Hyun and Nicholas, Paul
year 2019
title Adaptable and Programmable Formwork for Doubly Curved Concrete Surfaces
doi https://doi.org/10.52842/conf.ecaade.2019.2.217
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 217-226
summary This paper lays out a fabrication and simulation method for an adaptable and reusable moulding system for the production of fibre reinforced concrete elements. This research leverages soft robots and their computational controllability as means of a composite material and as such the base of a controlled and adaptable moulding system. This paper describes the development of this programmable material towards a functioning system for casting processes with fibre glass reinforced concrete. The controllable material allows to deploy target shapes and to eliminate supplementary falsework and the customized production of moulds for doubly-curved concrete elements. It also lays out a feedback method, which serves as adjustment tool of the simulation to the physical behaviour of the material as well as simulation method for target based geometries.
keywords adaptable moulding system; soft robotics; deployable material; programmable material
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id ecaadesigradi2019_193
id ecaadesigradi2019_193
authors Scherer, Annie Locke
year 2019
title Concrete Form[ing]work:Designing and Simulating Parametrically-Patterned Fabric Formwork for Cast Concrete
doi https://doi.org/10.52842/conf.ecaade.2019.2.759
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 759-768
summary Concrete is one of the most widely used construction materials globally, yet its industrial fabrication techniques continue to default to planar formwork and uniform cross sections for the sake of simplicity and predictability. /Concrete Form[ing]work/ evaluates state-of-the-art fabric formwork research and explores the industry's reticence to integrate these novel design approaches. This research has identified two challenges that have significantly hindered the adoption of fabric formwork in architectural design: complex tailoring of parametrically designed forms and the lack of accurate simulation tools for flexible formwork. /Concrete Form[ing]work/ develops methods to address both of these issues, providing an alternative approach to more simply tailor fabric forms and accurately simulate these patterns' response to casting. In doing so, this research has the potential to fundamentally change and streamline how the field of flexible formwork is approached and integrated within architectural design. This paper will present the process of parametrically tailoring non-developable surfaces from single sheets and document the advancement of these simulation tools.
keywords flexible formwork; concrete; simulation; parametric patterning; smocking
series eCAADeSIGraDi
email
last changed 2022/06/07 07:57

_id acadia19_616
id acadia19_616
authors Sitnikov, Vasily; Eigenraam, Peter; Papanastasis, Panagiotis; Wassermann-Fry, Stephan
year 2019
title IceFormwork for Cast HPFRC Elements
doi https://doi.org/10.52842/conf.acadia.2019.616
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 616-627
summary The following paper introduces a design implementation of an innovative fabrication method that aims at enabling an environmental and automated production of geometrically challenging cast concrete elements. The fabrication method is based on the use of ice as the molding material for cast concrete. Empirical testing of ice CNC-processing, and a concrete mix capable of hardening at subzero temperatures was undertaken during previous research stages. The current paper illustrates a practical application of ice formwork. A façade rain screen has been developed using algorithmic modeling to illustrate a common case in which a non-repetitive geometrical pattern requires individual formwork to be produced for each element. Existing industrial methods capable of delivering such a project for formidable costs are based on CNC-processed expanded polystyrene (EPS), wood-based materials, or industrial wax formwork. These materials have been found to be either difficult to recycle, expensive, insufficiently strong, energy- or labor-intensive to produce. Preliminary evaluation has shown that ice, used in their place, facilitates a much cleaner, economic, and an even more energy-efficient process. Moreover, a very gentle demolding process through ice-thawing eliminates any shock stresses exposed on newly cast concrete and provides optimal curing conditions. As a result, the thickness of façade elements can be reduced while still fulfilling all structural requirements.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_126
id ecaadesigradi2019_126
authors Szabo, Anna, Lloret-Fritschi, Ena, Reiter, Lex, Gramazio, Fabio, Kohler, Matthias and J. Flatt, Robert
year 2019
title Revisiting Folded Forms with Digital Fabrication
doi https://doi.org/10.52842/conf.ecaade.2019.2.191
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 191-200
summary This paper discusses the potential of emerging digital fabrication techniques to produce material-efficient thin folded concrete structures. Although in the 50s and 60s folded structures provided a common optimal solution for spanning large distances without additional vertical supports, today, the number of these projects decreased significantly due to their complicated formworks and labour-intensive realization. Digital fabrication methods for concrete hold the promise to efficiently produce intricate folded mass-customized shapes with enhanced load-bearing capacity. This paper focuses on a robotic slip-forming process, Smart Dynamic Casting (SDC), to produce various thin-walled folded concrete elements with the same formwork providing smooth surface finish and gradual variations along the height. An empirical research methodology was applied to evaluate the fabrication feasibility of digitally designed thin folded geometries with one-to-one scale prototypes. Despite the discovered design limitations due to fabrication and material constraints, the exploration led to a new promising research direction, termed 'Digital Casting'.
keywords folded structures; digital concrete; Smart Dynamic Casting; set on demand; Digital Casting
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_675
id ecaadesigradi2019_675
authors Taha, Nizar, Walzer, Alexander Nikolas, Ruangjun, Jetana, Bürgin, Theophil, Dörfler, Kathrin, Lloret-Fritschi, Ena, Gramazio, Fabio and Kohler, Matthias
year 2019
title Robotic AeroCrete - A novel robotic spraying and surface treatment technology for the production of slender reinforced concrete elements
doi https://doi.org/10.52842/conf.ecaade.2019.3.245
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 245-254
summary This research paper presents a novel method for robotic spraying of glass-fibre reinforced concrete (GFRC) on a permeable reinforcement mesh. In this process, the mesh acts as a functional formwork during the concrete spraying process and as reinforcement once the concrete is cured, with the goal of producing slender reinforced concrete elements efficiently. The proof of concept presented in this paper takes inspiration from "Ferrocement" technique, developed in the 1940s by Pier Luigi Nervi (Greco, 1994) and shows how robotic spraying has the potential of producing such slender and bespoke reinforced concrete elements while also having the potential of reducing manual labour, waste and excess material. The system is coined with the name "Robotic AeroCrete" (or RAC) in reference to the use of an industrial robotic setup and the pneumatic projection of concrete.
keywords Shotcrete; Digital Fabrication; Robotic Fabrication; Ferrocement
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id caadria2019_670
id caadria2019_670
authors Zhang, Xiao, Gao, Weizhe, Xia, Ye, Wang, Xiang, Luo, Youyuan, Su, Junbang, Jin, Jinxi and Yuan, Philip F.
year 2019
title Design and Analysis of Bending-Active Formwork for Shell Structures based on 3D-Printing Technology
doi https://doi.org/10.52842/conf.caadria.2019.1.073
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 73-82
summary This paper presents the design and construction of a 3D-printed thin bending-active formwork for shell. In order to use less scaffolding and make a dome with flexible material,3-D print is applied to the formwork. First step is form-finding . Two single -curved surfaces are used to fit the form found by Kanagaroo and then unroll them .Principle stress lines are also printed on the unrolled formwork to enhance it. However, the formwork with stress lines is hard to bend. So, bending-active simulation made by ABAQUS is also applied to find the best mesh pattern to bend. Bend the basic pattern first on the framework and then print Principle stress lines onto it. Karamba is used to simulate the deformation of the shell under gravity load. It is proved that grid made up of stress lines have the best performance The full scale prototype is made up of two pieces shell bent and tied together can stand steadily. Spring-back test shows that the second layer printed on the shell can help to provide deformation.
keywords form-work; form-finding; 3-D printing; geometric analysis; principle stress lines
series CAADRIA
email
last changed 2022/06/07 07:57

_id ecaadesigradi2019_660
id ecaadesigradi2019_660
authors Martins, Pedro Filipe, Nunes, Sandra, Fonseca de Campos, Paulo and Sousa, José Pedro
year 2019
title RETHINKING THE PHILIPS PAVILION THROUGH ROBOTIC HOT WIRE CUTTING. - An experimental prototype
doi https://doi.org/10.52842/conf.ecaade.2019.3.235
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 235-244
summary The Philips Pavilion by Le Corbusier and Jannis Xenaquis was a landmark project in thin shell concrete construction, only made possible by an experimental precasting strategy that deeply defined the architectural character of the hyperbolic paraboloid surfaces of the pavilion. Using this historic precedent this research presents a reinterpretation of the design of the Philips Pavilion, specifically tailored for Robotic Hot Wire Cutting technologies and a layered mold system, combining speed and material optimization towards more sustainable concrete construction processes. By documenting the realization of an experimental prototype at a 1:2 scale, this paper demonstrates the feasibility of the proposed strategy and its value in comparison with existing construction scale digital fabrication technologies for concrete.
keywords Digital Fabrication; Concrete; Robotic Hot Wire Cutting; Philips Pavilion
series eCAADeSIGraDi
email
last changed 2022/06/07 07:59

_id caadria2019_173
id caadria2019_173
authors Ng, Jonathan Ming-En, Ho, Samuel Yu De, Ng, Truman Wei Cheng, Soh, Jia Ying and Dritsas, Stylianos
year 2019
title Fabrication of Ultra-Lightweight Parametric Glass Fiber Reinforced Shell Assemblies
doi https://doi.org/10.52842/conf.caadria.2019.1.013
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 13-22
summary We present an experimental form-finding technique for ultra-thin glass fiber reinforced concrete components and assemblies. The objective is to challenge conventional concrete use in construction, often perceived as a massive and compressive structural material. Instead, we targeted production of fine shell assemblies principally operating in tension. To achieve thin profile components, we use a compliant molding technique where premixed GFRC is cast in polyethylene bags. Subsequently, a robotic arm system pins the bags on a substrate plate and the setup is inverted whereby gravity induces a curvature to components while concrete cures. Use of parametric modeling, computer simulation and statistical experimental methods allowed us to understand the behavior of the material process and translate computationally modeled designs into physical artifacts. We discuss the opportunity for digital fabrication methods to fuse with traditional form-finding techniques, contrast the use of computational modeling techniques and present a series of prototypes created through our process.
keywords Digital Fabrication; Glass Fibre Reinforced Concrete; Form-Finding
series CAADRIA
email
last changed 2022/06/07 07:58

_id acadia19_222
id acadia19_222
authors Birol, Eda Begum; Lu, Yao; Sekkin, Ege; Johnson, Colby; Moy, David; Islam, Yaseen; Sabin, Jenny
year 2019
title POLYBRICK 2.0
doi https://doi.org/10.52842/conf.acadia.2019.222
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 222-233
summary Natural load bearing structures are characterized by aspects of specialized morphology, lightweight, adaptability, and a regenerative life cycle. PolyBrick 2.0 aims to learn from and apply these characteristics in the pursuit of revitalizing ceramic load bearing structures. For this, algorithmic design processes are employed, whose physical manifestations are realized through available clay/porcelain additive manufacturing technologies (AMTs). By integrating specialized expertise across disciplines of architecture, engineering, and material science, our team proposes an algorithmic toolset to generate PolyBrick geometries that can be applied to various architectural typologies. Additionally, comparative frameworks for digital and physical performance analyses are outlined. Responding to increasing urgencies of material efficiency and environmental sensibility, this project strives to provide for designers a toolset for environmentally responsive, case-specific design, characterized by the embedded control qualities derived from the bone and its adaptability to specific loading conditions. Various approaches to brick tessellation and assembly are proposed and architectural possibilities are presented. As an outcome of this research, PolyBrick 2.0 is effectively established as a Grasshopper plug-in, “PolyBrick” to be further explored by designers.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id ecaadesigradi2019_628
id ecaadesigradi2019_628
authors Borunda, Luis, Ladron de Guevara, Manuel and Anaya, Jesus
year 2019
title Design Method for Optimized Infills in Additive Manufacturing Thermoplastic Components
doi https://doi.org/10.52842/conf.ecaade.2019.1.493
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 493-502
summary The following article extends and tests computational methodologies of design to consider Finite Element Analysis in the creation of optimized infill structures based on regular and semi-regular patterns that comply with the geometrical constraints of deposition. The Stress-Deformation relationship manifested in Finite Element Analysis is structured in order to influence the geometrical arrangement of the complex spatial infill. The research presents and discusses a program of performance informed infill design, and validates the generalizability of a method of internalizing and automating Finite Element Method (FEM) processing in Fused Deposition Modeling (FDM) workflows, and tests manufacturability of the methods through its ability to handle the FDM process constraints of FEM influenced intricate geometries.
keywords Additive Manufacturing; Finite Element Analysis; Fused Deposition Modeling; 3D infill
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 25HOMELOGIN (you are user _anon_851794 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002