CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 624

_id caadria2019_290
id caadria2019_290
authors Ma, Chenlong, Zhu, Shuyan and Xiang, Ke
year 2019
title Digital Aided Façade Design Introduced in a Traditional Design Workflow - An experience from one large-scale museum design and construction practice
doi https://doi.org/10.52842/conf.caadria.2019.1.675
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 675-684
summary This paper discusses the opportunities and barriers of adopting parametric tools in discrete elements of the design development documentation processes in parallel with more traditional 2D computer aided architectural design (CAAD). We believe it is a more reasonable way for small to middle sized design companies in China, to introduce parametric design method into the design and construction process, especially when there being a long way from traditional CAAD approach to an all-BIM future in China.
keywords parametric tools; collaborative design; façade design
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2019_647
id caadria2019_647
authors Camacho, Daniel, Dobbs, Tiara, Fabbri, Alessandra, Gardner, Nicole, Haeusler, M. Hank and Zavoleas, Yannis
year 2019
title Hands On Design - Integrating haptic interaction and feedback in virtual environments for enhanced immersive experiences in design practice.
doi https://doi.org/10.52842/conf.caadria.2019.1.563
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 563-572
summary The usability of virtual reality (VR) controller interfaces are often complex and difficult for first time users. Most controllers provide minimal feedback which relegates the potential for heightened interaction and feedback within virtual experiences. This research explores how haptic technology systems partnered with VR can deliver immersive interactions between user and virtual environment (VE). This research involves the development of a haptic glove interface prototype that incorporates a force feedback and vibrotactile feedback system. It focuses on determining a workflow that communicates in real-time user interaction and environmental feedback using Unreal Engine and the produced haptic glove system. Testing and calibrating the prototype feedback system provided a baseline for developers to rationalise and improve accuracy of current real-time virtual feedback systems. The evaluation of this research in industry unfolds new technical knowledge for implementing a wider range of haptic technologies within VR. This further development would involve reviewing the usability and interaction standards for VR users in the design process.
keywords Virtual Environments; Haptic Technologies; Feedback; Interaction; Usability
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia19_478
id acadia19_478
authors Vercruysse, Emmanuel
year 2019
title Autonomous Architectural Operations
doi https://doi.org/10.52842/conf.acadia.2019.478
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 478-489
summary The research set out in this paper investigates the conception, testing, and implementation of an advanced and bespoke workflow. By hybridizing a diverse set of technologies and processes, an innovative fabrication strategy was developed that combines large scale glue-laminated timber frames with a robotic band-saw application. The design strategy was influenced by a number of key preoccupations: exploring the relationship between drawing and making, evenly distributing analogue and digital technologies, and advancing alternatives modes of architectural practice. The project regards intuitive design processes as an important driver and looked to apply digital tools lightly, aiming to precisely embed them within established timber fabrication processes. This workflow was tested through the design and fabrication of a timber skeleton that provides the structural system for a library building at Hooke Park and acts as an articulated armature supporting the library’s envelope and accommodates its internal workings. Through the production of the sculptural skeleton, the project challenges conventions of existing methodologies and ultimately brings about a morphologic innovation in timber construction through the closed geometry glulam component.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id acadia19_630
id acadia19_630
authors Ahlquist, Sean
year 2019
title Expanding the Systematic Agencyof a Material System
doi https://doi.org/10.52842/conf.acadia.2019.630
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 630-641
summary Computational design and fabrication have reached an accomplished level of ubiquity and proficiency in the field of architecture, in both academia and practice. Materiality driving structure, responsiveness, and spatial organization can be seen to evolve, in kind, with the capabilities to fabricate deeper material hierarchies. Such maturity of a procedural material-driven approach spurs a need to shift from the dictations of how to explorations of why material efficiencies, bespoke aesthetics, and performativity are critical to a particular architecture, requiring an examination of linkages between approach, techniques, and process. The material system defines a branch of architectural research utilizing bespoke computational techniques to generate performative material capacities that are inextricably linked to both internal and external forces and energies. This paper examines such a self-referential view to define an expanded ecological approach that integrates new modes of design agency and shift the material system from closed-loop relationship with site to open-ended reciprocation with human behavior. The critical need for this capacity is shown in applications of novel textile hybrid material systems—as sensorially-responsive environments for children with the neurological autism spectrum disorder—in ongoing research titled Social Sensory Architectures. Through engaging fabrication across all material scales, manners of elastic responsivity are shown, through a series of feasibility studies, to exhibit a capacity for children to become design agents in exploring the beneficial interrelationship of sensorimotor agency and social behavior. The paper intends to contribute a theoretical approach by which novel structural capacities of a material system can support a larger ecology of social and behavioral agency.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id cf2019_020
id cf2019_020
authors Belém, Catarina; Luís Santos and António Leitão
year 2019
title On the Impact of Machine Learning: Architecture without Architects?
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 148-167
summary Architecture has always followed and adopted technological breakthroughs of other areas. As a case in point, in the last decades, the field of computation changed the face of architectural practice. Considering the recent breakthroughs of Machine Learning (ML), it is expectable to see architecture adopting ML-based approaches. However, it is not yet clear how much this adoption will change the architectural practice and in order to forecast this change it is necessary to understand the foundations of ML and its impact in other fields of human activity. This paper discusses important ML techniques and areas where they were successfully applied. Based on those examples, this paper forecast hypothetical uses of ML in the realm of building design. In particular, we examine ML approaches in conceptualization, algorithmization, modeling, and optimization tasks. In the end, we conjecture potential applications of such approaches, suggest future lines of research, and speculate on the future face of the architectural profession.
keywords Machine Learning, Algorithmic Design, AI for Building Design
series CAAD Futures
type normal paper
email
last changed 2019/07/29 14:54

_id ecaadesigradi2019_645
id ecaadesigradi2019_645
authors Diniz, Nancy, Melendez, Frank, Boonyapanachoti, Woraya and Morales, Sebastian
year 2019
title Body Architectures - Real time data visualization and responsive immersive environments
doi https://doi.org/10.52842/conf.ecaade.2019.2.739
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 739-746
summary This project sets up a design framework that promotes augmenting the human body's interactions exploring methods for merging and blending the users of physical and virtual environments, through the design of wearable devices that are embedded with sensors and actuators. This allows for haptic and visual feedback through the use of data that reflects changes in the surrounding physical environment, and visualized in the immersive Virtual Reality (VR) environment. We consider the Body Architectures project to serve as mechanisms for augmenting the body in relation to the virtual architecture. These wearable devices serve to bring a hyper-awareness to our senses, as closed-loop cybernetic systems that utilize 'digitized' biometric and environmental data through the use of 3D scanning technologies and cloud point models, virtual reality visualization, sensing technologies, and actuation. The design of Body Architectures relies on hybrid design, transdisciplinary collaborations, to explore new possibilities for wearable body architectures that evolve human-machine-environment interactions, and create hyper awareness of the temporal, atmospheric qualities that make up our experience of space, as 'sensorial envelopes' (Lally 2014).
keywords Virtual Reality; Wearable Design; Physical Computing; Data Visualization; Immersive Environments; Responsive Architecture
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id caadria2019_439
id caadria2019_439
authors Lo, Tian Tian, Xiao, ZuoPeng and Yu, Henry
year 2019
title Designing 'Action Trigger' for Architecture Modelling Design within Immersive Virtual Reality
doi https://doi.org/10.52842/conf.caadria.2019.1.545
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 545-552
summary Architectural modelling is radically evolving with time. The introduction of VR into gaming and education has also encouraged architecture to integrate VR into its course of the design process. However, the current integration of Augmented Reality (AR) and Virtual Reality (VR) components is mostly limited to enhancing visualisation, especially towards the corresponding design tasks. This opportunity lead to an increase in attempts to bring the modelling process into the immersive environment. This paper aims to challenge the current design capabilities within the immersive environment and introduce a new interaction method between the human and the virtual reality. The research in human-computer interaction (HCI) has been ongoing for years till present day to observe how humans interact with computers and design technologies. The appearance of the smartphone has extended this HCI research towards hand-carried devices. With VR, although the hardware is still considered 'computer', the interaction is very much different. Since the human is immersed in the virtual environment, the interaction is already beyond the traditional keyboard and mouse. This paper responds to the conference theme by capitalising the power of VR technology to bring new methods of HVRI to the architecture design process.
keywords VR; HVRI; Interaction; Action Trigger; Immersive
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2019_428
id caadria2019_428
authors Wang, Brandon, Moleta, Tane Jacob and Schnabel, Marc Aurel
year 2019
title The New Mirror - Reflecting on inhabitant behaviour in VR and VR visualisations
doi https://doi.org/10.52842/conf.caadria.2019.1.535
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 535-544
summary Technology inevitably evolves and develops rapidly in the modern era, industries and professions continue to strive in integrating, adapting and utilising these advancements to improve, optimise and improve the process of design to manufacture to the user experience. One such system that fits into this category is the advent of Virtual Reality and Augmented Reality. The numerous possibilities to which these visually and spatially immersive systems opportunities for immense innovation often lacks direction or an ultimate goal thus rendering this piece of software to often be little more than a visualisation tool.This paper recognises the unique position that VR allows and seeks to interrogate and deconstruct current, traditional design processes to better utilise VR in aiding and reinforcing the idea of partial testing of ideas and concepts throughout the design cycle. Different sciences such as psychology, processes and automation from computational design and considerations within software development will be employed and injected into the broader architectural context in which this research presides. In addition to the VR headset, eye tracking external hardware are integrated to develop a seamless tool and workflow that allows us, as designers to better interrogate clients behaviour within our designed digital representations which leads to validations, evaluations and criticisms of our actions within the architectural realm.
series CAADRIA
email
last changed 2022/06/07 07:58

_id acadia19_458
id acadia19_458
authors Bartosh, Amber; Anzalone, Phillip
year 2019
title Experimental Applications of Virtual Reality in Design Education
doi https://doi.org/10.52842/conf.acadia.2019.458
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 458-467
summary By introducing rapid reproduction, algorithms, and complex formal configurations, the digital era of architecture began a revolution. Architects incorporated the computational capacity of the computer into the design process both as a tool and as a critical component of the theories and practice of architecture as a whole. As we move into what has been coined “the second digital turn,” a period in which digital integration is considered ubiquitous, how can we consider, prepare, and propel towards the next technological innovation to significantly inform design thinking, representation, and manifestation? What tools are available to investigate this speculative design future and how can they be implemented? If the integration of technology in architecture is now a given, perhaps the next digital design era is not just digital but virtual. As new technologies emerge the potential for integrating the virtual design world with our physical senses affords novel possibilities for interactive design, simulation, analysis and construction. Hybrid reality technologies including virtual reality (VR) and augmented reality (AR), embody the potential to supersede conventional representation methodologies such as drawing, rendering, physical modeling, and animation. As they become increasingly pervasive, they will transform how we communicate ideas and data as spatial concepts. Further, they will reform the construct of the built environment when applied to both materiality and fabrication. This paper will describe the incorporation of VR as a tool in various classroom and laboratory settings, recognize the educational outcomes of this incorporation, and identify the potential relationship of these technologies to future academic exploration and application to practice.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_116
id ecaadesigradi2019_116
authors Fernando, Shayani
year 2019
title Collaborative Crafting of Interlocking Structures in Stereotomic Practice
doi https://doi.org/10.52842/conf.ecaade.2019.2.183
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 183-190
summary Situated within the art of cutting solids (stereotomy) and the evolution of machine tools; this research will investigate subtractive fabrication in relation to robotic carving of stone structures. The advancement of the industrial revolutions in the mid to late 19th century saw the rise of new building techniques and materials which were primarily based on structural steel construction. The modern aesthetic of the time further diminished the place of traditional stonework and ornamentation in modern structures within the building arts. This paper will focus on the design and fabrication of three sculptural dry-stone modular prototypes investigating interlocking self-supporting structures in stone. Examining the value of robotic technologies in the design and construction process in relation to collaborative crafting of the hand and machine. Accommodating for material tolerances which are a major factor in this research. Interrogating the value of robotic crafting with material implications and exploring the role of the artisan in machine crafted architectural components.
keywords Collaborative; Crafting; Interlocking; Structures; Robotic Fabrication; Digital Stone
series eCAADeSIGraDi
email
last changed 2022/06/07 07:50

_id ecaadesigradi2019_357
id ecaadesigradi2019_357
authors Gönenç Sorguç, Arzu, Özgenel, Ça?lar F?rat, Kruºa Yemiºcio?lu, Müge, Küçüksubaº?, Fatih, Y?ld?r?m, Soner, Antonini, Ernesto, Bartolomei, Luigi, Ovesen, Nis and Stein?, Nicolai
year 2019
title STEAM Approach for Architecture Education
doi https://doi.org/10.52842/conf.ecaade.2019.1.137
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 137-146
summary Starting with the first founded university, higher education has been evolving continuously, yet the pace of this evolution is not as fast as the changes that we observe in practice. Today, this discrepancy is not only limited to the content of the curricula but also the expected skills and competencies. It is evident that 21st-century skills and competencies should be much different than the ones delivered in the 20th-century due to rapidly developing and spreading new design and information technologies. Each and every discipline has been in continuous search of the "right" way of formalization of education both content and skill wise. This paper focuses on architectural design education incorporating discussions on the role of STEAM (Science Technology, Engineering, Art and Mathematics). The study presents the outcomes of the ArchiSTEAM project, which is funded by EU Erasmus+ Programme, with the aim of re-positioning STEAM in architectural design education by contemplating 21st-century skills (a.k.a. survival skills) of architects. Three educational modules together with the andragogic approaches, learning objectives, contents, learning/teaching activities and assessment methods determined with respect to the skill sets defined for 21st-century architects.
keywords STEAM; Architectural Education; Survival Skills
series eCAADeSIGraDi
email
last changed 2022/06/07 07:50

_id caadria2019_256
id caadria2019_256
authors Lertsithichai, Surapong
year 2019
title Augemented Architecture - Interplay between Digital and Physical Environments
doi https://doi.org/10.52842/conf.caadria.2019.2.353
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 353-362
summary In an increasingly connected world where computers are everywhere, surrounding us in embedded small portable devices, appliances and inside buildings, implementing these interconnected and embedded computers have now become common practice in the design of smart spaces and intelligent environments of today. Digital information is constantly being collected and distributed by a network of digital devices communicating with users and vice versa. New behaviors and activities that may have not been considered before in the design of architectural building types are now commonly found in public and private spaces throughout the world. In an attempt to explore and experiment with the concept of interplay between digital and physical environments, an option studio was proposed to 4th year architecture students to develop a new type of augmented architecture that corresponds to changes in human social behavior due to digital technologies. Five pilot projects are presented with experiments conducted to question three social activities commonly found in everyday lives using Arduino prototypes installed in real physical locations. The prototypes were then used as a basis for the development of large-scale projects proposed as augmented architecture.
keywords Human-Computer Interaction; Ubiquitous Computing; Virtual / Augmented Reality; Computational Design Research; IoT for Built Environments
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaadesigradi2019_327
id ecaadesigradi2019_327
authors Silva, Daniela, Paio, Alexandra and Sousa, José Pedro
year 2019
title Reprogramming Practice - Revising design thinking through digital fabrication
doi https://doi.org/10.52842/conf.ecaade.2019.1.379
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 379-386
summary Questioning the importance and impact of design thinking methodologies in the architectural design studios is a backbone of architectural education in twenty first century. 3D printing and digital manufacturing are disruptive technologies that are changing architects and designers daily lives. These trends require new skills, based on a deep understanding of digital continuum from design to production, from generation to fabrication. This continuity transcends the merely instrumental contributions of a person-machine relationship to praxis, has begun to evolve as a medium that supports a continuous logic of design thinking and making. Design thinking methodologies associated with digital fabrication emerged as a leading technological and design issue of digital research and design. As designers, we are witnessing a no frontier between computational design and digital fabrication. For this paper is taken into consideration the work of two architecture studios that share a unique background on new methodologies by embracing the digital technology in their own practice. Their work reflects on new design methodologies facing the expansion of digital technology in architectural practice. This paper discusses the possibility of new design thinking methods driven by digital fabrication.
keywords Design thinking; Digital Fabrication; AEC; Collaborative Design; Architectural Practice
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id ijac201917201
id ijac201917201
authors Trilsbeck, Matthew; Nicole Gardner, Alessandra Fabbri, Matthias Hank Haeusler, Yannis Zavoleas and Mitchell Page
year 2019
title Meeting in the middle: Hybrid clay three-dimensional fabrication processes for bio-reef structures
source International Journal of Architectural Computing vol. 17 - no. 2, 148-165
summary Despite the relative accessibility of clay, its low cost and reputation as a robust and sustainable building material, clay three-dimensional printing remains an under-utilized digital fabrication technique in the production of architectural artefacts. Given this, numerous research projects have sought to extend the viability of clay three-dimensional digital fabrication by streamlining and automating workflows through computational methods and robotic technologies in ways that afford agency to the digital and machinic processes over human bodily skill. Three-dimensional printed clay has also gained prominence as a resilient material well suited to the design and fabrication of artificial reef and habitat- enhancing seawall structures for coastal marine environments depleted and disrupted by human activity, climate change and pollution. Still, these projects face similar challenges when three-dimensional printing complex forms from the highly plastic and somewhat unpredictable feed material of clay. In response, this article outlines a research project that seeks to improve the translation of complex geometries into physical clay artefacts through additive three- dimensional printing processes by drawing on the notion of digital craft and giving focus to human–machine interaction as a collaborative practice. Through the case study of the 1:1 scale fabrication of a computationally generated bio-reef structure using clay as a feed material and a readily available Delta Potterbot XLS-2 ceramic printer, the research project documents how, by exploiting the human ability to intuitively handle clay and adapt, and the machine’s ability to work efficiently and with precision, humans and machines can fabricate together . With the urgent need to develop more sustainable building practices and materials, this research contributes valuable knowledge of hybrid fabrication processes towards extending the accessibility and viability of clay three-dimensional printing as a resilient material and fabrication system.
keywords Clay three-dimensional printing, digital fabrication, hybrid fabrication, digital craft, human–machine interaction
series journal
email
last changed 2019/08/07 14:04

_id acadia19_320
id acadia19_320
authors Vaillo, Gonzalo
year 2019
title The Oxymoron of 'Jectivity'
doi https://doi.org/10.52842/conf.acadia.2019.320
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 320-239
summary This paper discusses a design methodology that seeks to unveil the nature of architectural projects (here abbreviated AP) as the basis for spatial production. This method is embedded within a broader theory of designing that suggests an autonomy of the project as an independent entity detached from the architect. Therefore, the architect's role is to discover the AP. This approach appears as a counteraction to the relational models in designing where the architect constructs the project in limited and subjective ways usually driven by the alienation of external. The methodology presented here also rejects any possibility to reveal the AP in its fullness as a unique and absolute truth. The inherent reality of any project is specific and unique in itself. This means each AP is ontologically complete and different from any other. Because designing is the encounter between the AP and the architect, jectivity is a form of cognition that is neither objective nor subjective. It finds the potential of novel spatial configurations in what we call the "space of abundance," which appears beyond the architect’s limited perceptions of the determinate AP. This design method aims to unfold some of the initially ungraspable multiple manifestations. Two particular projects explore jectivity as a methodology that seeks the AP’s unknown and turns the procedures that lead to it into new knowledge gained for the architect. The two projects illustrate some of the possible uses of computational and digital technologies for both asking and materializing (cognize and notate) its inward architectural realities.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:57

_id caadria2019_199
id caadria2019_199
authors Wang, Will and Steenblik, Ralph Spencer
year 2019
title Bespoke Tools Providing Solutions for Contemporary Problems - Novel BIM practice for architects
doi https://doi.org/10.52842/conf.caadria.2019.2.111
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 111-120
summary This paper examines the process and the importance of designing and implementing intelligent, informed and bespoke information modeling solutions within the architectural design discipline. Along with the need for such tools comes the need for fluency in architectural principles, digital tool facility, and computational development skill sets (the combination are, still uncommon). This skill set combination are becoming more and more necessary for design teams to incorporate. This paper argues (through a series of case study projects produced by an internal platform) a way forward for the architectural design discipline through intelligent, informed and bespoke tool sets tailored to the needs of architectural designers.
keywords BIM; Data in design; Custom workflow; Facade paneling; Design computation
series CAADRIA
email
last changed 2022/06/07 07:58

_id cf2019_049
id cf2019_049
authors Lu, Heng; Chen Liu, Daekwon Park, Guohua Ji and Ziyu Tong
year 2019
title Pneumatic Origami Joints A 3D Printed Flexible Joint
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 432
summary This paper describes the design and fabrication process of an adaptive joint using foldable 3D printed structures encased in heat-sealed synthetic polymer films (e.g. airtight plastic casing). The proposed joint can be pneumatically actuated using the airtight casing, and the shape of the deformation can be controlled using origami-inspired 3D printed structures. A zigzag-gap microstructure is designed for the connection portion of the origami structure inside the joint, in order that the rigid 3D printed material (PLA) acquires properties of mollusk material, such as flexibility and softness. Finally, the paper presents some applications adopting pneumatic origami joints which can interact with people or adapting indoor environment, and compares the advantages of this pneumatic technology with mechanical technology.
keywords 3D printing · Adaptive joint · Pneumatic architecture · Origami structure
series CAAD Futures
email
last changed 2019/07/29 14:18

_id ecaadesigradi2019_318
id ecaadesigradi2019_318
authors Al Bondakji, Louna, Lammich, Anne-Liese and Werner, Liss C.
year 2019
title ViBe (Virtual Berlin) - Immersive Interactive 3D Urban Data Visualization - Immersive interactive 3D urban data visualization
doi https://doi.org/10.52842/conf.ecaade.2019.3.083
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 83-90
summary The project investigates the possibility of visualizing open source data in a 3D interactive virtual environment. We propose a new tool, 'ViBe'. We programmed 'ViBe' using Unity for its compatibility with HTC VIVE glasses for virtual reality (VR). ViBe offers an abstract visualization of open source data in a 3D interactive environment. The ViBe environment entails three main topics a) inhabitants, b) environmental factors, and c) land-use; acting as representatives of parameters for cities and urban design. Berlin serves as a case study. The data sets used are divided according to Berlin's twelve administrative districts. The user immerses into the virtual environment where they can choose, using the HTC Vive controllers, which district (or Berlin as a whole) they want information for and which topics they want to be visualized, and they can also teleport back and forth between the different districts. The goal of this project is to represent different urban parameters an abstract simulation where we correlate the corresponding data sets. By experiencing the city through visualized data, ViBe aims to provide the user with a clearer perspective onto the city and the relationship between its urban parameters. ViBe is designed for adults and kids, urban planners, politicians and real estate developers alike.
keywords 3D-Visualization; open source data; immersive virtual reality; interactive ; Unity
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id caadria2019_211
id caadria2019_211
authors Globa, Anastasia, Wang, Rui and Beza, Beau B.
year 2019
title Sensory Urbanism and Placemaking - Exploring Virtual Reality and the Creation of Place
doi https://doi.org/10.52842/conf.caadria.2019.2.737
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 737-746
summary Sensory Urbanism is an experimental prototyping project exploring the potential of immersive Virtual Reality (VR) environments to support the incorporation of sensory and intangible aspects of place. The study investigates how sensory exploration of urban places can be integrated into decision making regarding the future of cities. In the past, numerous studies reported various sophisticated 'livability' measures, deeming to determine what makes a city a great place to live in. While a part of these measures can be quantified and be represented as text, graphs or images, most of the qualitative aspects of place are inherently abstract and sensory. These aspects have to be experienced to be understood and therefore they are extremely difficult to communicate using conventional representation means. The proposition explored in this study is that the increasing ubiquity of VR and Augmented Reality (AR) technologies can provide new opportunities to engage with the multi-sensory and temporal aspects of urban place. A mixed media approach was adopted, tapping into a temporal dimension as well as visual, aural and kinesthetic range of human senses. The paper reports on the development of the VR sensory urbanism prototype and the initial pilot study that demonstrated the proof-of-concept.
keywords Sensory Urbanism; Immersive Environments; Virtual Reality; Design Evaluation; Placemaking
series CAADRIA
email
last changed 2022/06/07 07:51

_id ecaadesigradi2019_399
id ecaadesigradi2019_399
authors Kieferle, Joachim and Woessner, Uwe
year 2019
title Virtual Reality in Early Phases of Architectural Studies - Experiments with first year students in immersive rear projection based virtual environments
doi https://doi.org/10.52842/conf.ecaade.2019.3.099
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 99-106
summary Virtual Reality is quite commonly used in architectural education, however mostly in higher semesters and within elective courses. This paper reports about various teaching scenarios using Virtual Reality in projection based immersive environments at very early phases of architectural studies, within the first two semesters. Various student questionnaires were carried out and clearly show benefits for students to gain spatial awareness in their design projects, and for discussing their design intentions. Experiences with cyber sickness and issues like accessibility to the immersive environments are discussed as well within the given context.
keywords Virtual Reality; Education; Curriculum
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_61168 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002