CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 617

_id ecaade2023_138
id ecaade2023_138
authors Crolla, Kristof and Wong, Nichol
year 2023
title Catenary Wooden Roof Structures: Precedent knowledge for future algorithmic design and construction optimisation
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 611–620
doi https://doi.org/10.52842/conf.ecaade.2023.1.611
summary The timber industry is expanding, including construction wood product applications such as glue-laminated wood products (R. Sikkema et al., 2023). To boost further utilisation of engineered wood products in architecture, further development and optimisation of related tectonic systems is required. Integration of digital design technologies in this endeavour presents opportunities for a more performative and spatially diverse architecture production, even in construction contexts typified by limited means and/or resources. This paper reports on historic precedent case study research that informs an ongoing larger study focussing on novel algorithmic methods for the design and production of lightweight, large-span, catenary glulam roof structures. Given their structural operation in full tension, catenary-based roof structures substantially reduce material needs when compared with those relying on straight beams (Wong and Crolla, 2019). Yet, the manufacture of their non-standard geometries typically requires costly bespoke hardware setups, having resulted in recent projects trending away from the more spatially engaging geometric experiments of the second half of the 20th century. The study hypothesis that the evolutionary design optimisation of this tectonic system has the potential to re-open and expand its practically available design solution space. This paper covers the review of a range of built projects employing catenary glulam roof system, starting from seminal historic precedents like the Festival Hall for the Swiss National Exhibition EXPO 1964 (A. Lozeron, Swiss, 1964) and the Wilkhahn Pavilions (Frei Otto, Germany, 1987), to contemporary examples, including the Grandview Heights Aquatic Centre (HCMA Architecture + Design, Canada, 2016). It analysis their structural concept, geometric and spatial complexity, fabrication and assembly protocols, applied construction detailing solutions, and more, with as aim to identify methods, tools, techniques, and construction details that can be taken forward in future research aimed at minimising construction complexity. Findings from this precedent study form the basis for the evolutionary-algorithmic design and construction method development that is part of the larger study. By expanding the tectonic system’s practically applicable architecture design solution space and facilitating architects’ access to a low-tech producible, spatially versatile, lightweight, eco-friendly, wooden roof structure typology, this study contributes to environmentally sustainable building.
keywords Precedent Studies, Light-weight architecture, Timber shell, Catenary, Algorithmic Optimisation, Glue-laminated timber
series eCAADe
email
last changed 2023/12/10 10:49

_id acadia19_510
id acadia19_510
authors Leder, Samuel; Weber, Ramon; Wood, Dylan; Bucklin, Oliver; Menges, Achim
year 2019
title Distributed Robotic Timber Construction
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 510-519
doi https://doi.org/10.52842/conf.acadia.2019.510
summary Advances in computational design and robotic building methods have the potential to enable architects to author more sustainable, efficient, and geometrically varied systems that shape our built environment. To fully harness this potential, the inherent relationship of design and building processes requires a fundamental shift in the way we design and how we build. High degree of customization in architectural projects and constantly changing conditions of construction environments pose significant challenges for the implementation of automated construction machines. Beyond traditional, human-inspired, industrial robotic building methods, we present a distributed robotic system where the robotic builders are designed in direct relationship with the material and architecture they assemble. Modular, collaborative, single axis robots are designed to utilize standardized timber struts as a basic building material, and as a part of their locomotion system, to create large-scale timber structures with high degrees of differentiation. The decentralized, multi-robot system uses a larger number of simple machines that collaborate in teams to work in parallel on varying tasks such as material transport, placement, and fixing. The research explores related architectural and robotic typologies to create timber structures with novel aesthetics and performances.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id acadia19_564
id acadia19_564
authors Chai, Hua; Marino, Dario; So, ChunPong; Yuan, Philip F.
year 2019
title Design for Mass-Customization
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 564-572
doi https://doi.org/10.52842/conf.acadia.2019.564
summary Tradition wood tectonics, like interlocking joints, have regained focus against the background of digital design and fabrication technologies. While research on interlocking joints is quite focused on joint geometries, especially for timber plates, there has been less attention on the design and mass customization of interlocking joints for linear timber elements. In this context, this research addresses the challenges of mass customization of interlocking joints for linear elements through the design and realization of a 9-meterhigh timber structure with fully interlocking joints, without the use of any nails or glue. A customized code generation program was developed for the fabrication process, allowing the rapid programming and fabrication for all the 840 elements and 2592 notches. The project demonstrates how innovative structures are allowed through the synthesis of joint geometry, assembly process, and cutting-edge fabrication technology.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id acadia19_110
id acadia19_110
authors Tracy, Kenneth; Gupta, Sachin Sean; Stella, Loo Yi Ning; Wen, So Jing; Pal, Abhipsa
year 2019
title Tensile Configurations
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 110-119
doi https://doi.org/10.52842/conf.acadia.2019.110
summary Structural membranes exhibit advantages over slab and frame structures, accommodating large deformations while still elegantly combining spatial enclosure with material efficiency. One of the most promising types of membrane structures are membrane tensegrity structures, which are composed of discontinuous struts embedded in a tensile membrane. To date, membrane tensegrity structures are limited to completely closed formations or require extensive tethering, hindering their applicability for diverse architectural contexts. Here, a design framework is presented for creating self-supporting membrane tensegrity shell structures with spatial openings, enabled by novel reciprocally tessellated strut configurations. Through a combination of heuristic physical prototyping and digital formfinding tools, a library of membrane tensegrity forms has been developed that serves as tangible data for an expanded morphospace. To test the effectiveness of the established methods, a 10 m2 membrane tensegrity shell pavilion was built as a first large-scale demonstrator. Feedback from this demonstrator led to the development of computational strut tessellation tools that enable the search for informed, performance-driven design space.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:57

_id cf2019_050
id cf2019_050
authors Erdine, Elif ; Giulio Gianni, Angel Fernando Lara Moreira, Alvaro Lopez Rodriguez, Yutao Song and Alican Sungur
year 2019
title Robot-Aided Fabrication of Light-Weight Structures with Sheet Metal Expansion
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 433
summary This paper presents a novel approach for the creation of metal lightweight self-supporting structures through the employment of metal kerfing and robotic sheet panel expansion. Research objectives focus on the synthesis of material behavior on a local scale and the structural performance on a global scale via advanced computational and robotic methods. There are inherent structural properties to expanded metal sheets which can be employed to achieve an integrated building system without the need for a secondary supporting structure. A computational workflow that integrates Finite Element Analysis, geometrical optimization, and robotic toolpath planning has been developed. This workflow is informed by the parameters of material experimentation on sheet metal kerfing and robotic sheet metal expansion on the local panel scale. The proposed methodology is applied on a range of panels with a custom-built robotic fabrication setup for the design, fabrication, and assembly of a one-to-one scale working prototype.
keywords Robotic fabrication, Robotic sheet metal expansion, Light-weight structure, Metal kerfing, Metal expansion
series CAAD Futures
email
last changed 2019/07/29 14:18

_id acadia19_500
id acadia19_500
authors Larsen, Niels Martin; Anders Kruse Aagaard
year 2019
title Exploring Natural Wood
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 500-509
doi https://doi.org/10.52842/conf.acadia.2019.500
summary By investigating methods for using computation and digital manufacturing technologies to integrate material properties with architectural design tools, the research in this paper aims at revealing new potentials for the use of wood in architecture. Through an explorative approach, material particularities and fabrication methods are explored and combined into new workflows and architectural expressions. The research looks into different properties and capacities of wood, but the main part of the experimentation revolves around crooked oak logs. Due to their irregularities, these logs are normally discarded. However, through the methods suggested in this research, they are instead matched with unique processing informed by their divergence. The research presents a workflow for handling the discrete shapes of sawlogs in a system that both involve the collecting of material, scanning/digitization, handling of a stockpile, computer analysis, design, and robotic manufacturing. The workflow includes multiple custom-made solutions for handling the complex and different shapes and data of wood logs in a highly digitized machining and fabrication environment. The suggested method is established through investigations of wood as a natural material, studies of the production lines in the current wood industry, and experimentation in our in-house laboratory facilities. This up-cycling of discarded wood supply establishes a non-standard workflow that utilizes non-standard material stock and leads to a critical articulation of today’s linear material economy. The research thereby gives an example of how the natural forms and properties of sawlogs can be directly used to generate new structures and spatial conditions.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id caadria2019_670
id caadria2019_670
authors Zhang, Xiao, Gao, Weizhe, Xia, Ye, Wang, Xiang, Luo, Youyuan, Su, Junbang, Jin, Jinxi and Yuan, Philip F.
year 2019
title Design and Analysis of Bending-Active Formwork for Shell Structures based on 3D-Printing Technology
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 73-82
doi https://doi.org/10.52842/conf.caadria.2019.1.073
summary This paper presents the design and construction of a 3D-printed thin bending-active formwork for shell. In order to use less scaffolding and make a dome with flexible material,3-D print is applied to the formwork. First step is form-finding . Two single -curved surfaces are used to fit the form found by Kanagaroo and then unroll them .Principle stress lines are also printed on the unrolled formwork to enhance it. However, the formwork with stress lines is hard to bend. So, bending-active simulation made by ABAQUS is also applied to find the best mesh pattern to bend. Bend the basic pattern first on the framework and then print Principle stress lines onto it. Karamba is used to simulate the deformation of the shell under gravity load. It is proved that grid made up of stress lines have the best performance The full scale prototype is made up of two pieces shell bent and tied together can stand steadily. Spring-back test shows that the second layer printed on the shell can help to provide deformation.
keywords form-work; form-finding; 3-D printing; geometric analysis; principle stress lines
series CAADRIA
email
last changed 2022/06/07 07:57

_id acadia19_168
id acadia19_168
authors Adilenidou, Yota; Ahmed, Zeeshan Yunus; Freek, Bos; Colletti, Marjan
year 2019
title Unprintable Forms
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp.168-177
doi https://doi.org/10.52842/conf.acadia.2019.168
summary This paper presents a 3D Concrete Printing (3DCP) experiment at the full scale of virtualarchitectural bodies developed through a computational technique based on the use of Cellular Automata (CA). The theoretical concept behind this technique is the decoding of errors in form generation and the invention of a process that would recreate the errors as a response to optimization (Adilenidou 2015). The generative design process established a family of structural and formal elements whose proliferation is guided through sets of differential grids (multi-grids) leading to the build-up of large span structures and edifices, for example, a cathedral. This tooling system is capable of producing, with specific inputs, a large number of outcomes in different scales. However, the resulting virtual surfaces could be considered as "unprintable" either due to their need of extra support or due to the presence of many cavities in the surface topology. The above characteristics could be categorized as errors, malfunctions, or undesired details in the geometry of a form that would need to be eliminated to prepare it for printing. This research project attempts to transform these "fabrication imprecisions" through new 3DCP techniques into factors of robustness of the resulting structure. The process includes the elimination of the detail / "errors" of the surface and their later reinsertion as structural folds that would strengthen the assembly. Through this process, the tangible outputs achieved fulfill design and functional requirements without compromising their structural integrity due to the manufacturing constraints.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia19_258
id acadia19_258
authors Bar-Sinai, Karen Lee; Shaked, Tom; Sprecher, Aaron
year 2019
title Informing Grounds
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 258-265
doi https://doi.org/10.52842/conf.acadia.2019.258
summary Advancements in robotic fabrication are enabling on-site construction in increasingly larger scales. In this paper, we argue that as autonomous tools encounter the territorial scale, they open new ways to embed information into it. To define the new practice, this paper introduces a protocol combining a theoretical framework and an iterative process titled Informing Grounds. This protocol mediates and supports the exchange of knowledge between a digital and a physical environment and is applicable to a variety of materials with uncertain characteristics in a robotic manufacturing scenario. The process is applied on soil and demonstrated through a recent design-to-fabrication workshop that focused on simulating digital groundscaping of distant lunar grounds employing robotic sand-forming. The first stage is ‘sampling’—observing the physical domain both as an initial step as well as a step between the forming cycles to update the virtual model. The second stage is ‘streaming’—the generation of information derived from the digital model and its projection onto the physical realm. The third stage is ‘transforming’—the shaping of the sand medium through a physical gesture. The workshop outcomes serve as the basis for discussion regarding the challenges posed by applying autonomous robotic tools on materials with uncertain behavior at a large-scale.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_498
id ecaadesigradi2019_498
authors Bermek, Mehmet Sinan, Shelden, Dennis and Gentry, T. Russel
year 2019
title A Holistic Approach to Feature-based Structural Mapping in Cross Laminated Timber Buildings
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 789-796
doi https://doi.org/10.52842/conf.ecaade.2019.2.789
summary Mass Engineered Timber products provide a unique opportunity in configuring panelized building systems that are suitable for both prefabrication and onsite customization. The structural nature of these large section elements also brings about the need for a coordinated design-fabrication-assembly workflow. These products can assume different geometric configurations and their behaviour can be approximated globally by simplifying framing schemas. Current BIM Interoperability standards such as STEP or IFC already acknowledge and support the interconnected nature of component properties, yet these Data Models are component focused. Expanding on the relationships between components and using sets to define part to whole, or exteriority relationships could yield a more flexible and agile querying of building information.This would be a framework fit for automated feature derivation and rule based design applications. To this end Graph structures and Graph Databases, alongside existing ontology authoring tools are studied to probe new cognitive possibilities in collaborative AEC workflows
keywords Graph theory; BIM; CLT; IFC
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id caadria2019_624
id caadria2019_624
authors Gupta, Sachin Sean, Jayashankar, Dhileep Kumar, Sanandiya, Naresh D, Fernandez, Javier G. and Tracy, Kenneth
year 2019
title Prototyping of Chitosan-Based Shape-Changing Structures
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 441-450
doi https://doi.org/10.52842/conf.caadria.2019.2.441
summary In the built environment, the typical means of achieving responsive changes in the physical features of a structure is through energy-intensive actuation mechanisms that contradict the intended goal of energy-efficient performance. Nature offers several alternative energy-free examples of achieving large-scale shape change through passive actuation mechanisms, such as the intrinsic response of water-absorbing (hygroscopic) materials to humidity fluctuations. We utilize this principle of passive actuation in the context of chitosan biopolymer, a material demonstrating a combination of mechanical strength and hygroscopic potential that enables it to serve for both load-bearing and actuation purposes. By inserting biocomposite films of chitosan as dynamic tensile members into a space truss, a structural system is constructed whose variable structural performance is manipulated and expressed as a large-scale, programmable, and fast-acting shape change. We present a method for rationalizing this responsive structural system as an assembly using a combination of materials engineering and digital design and fabrication. As a proof-of-concept, a two-meter-long fiber-reinforced cantilevering truss prototype was designed and fabricated. The truss transforms in minutes from one shape that shelters the interior from rain to another shape that acts as an air foil to increase ventilation.
keywords Passive Actuation; Chitosan; Structural Assembly; Digital Fabrication
series CAADRIA
email
last changed 2022/06/07 07:50

_id acadia20_176p
id acadia20_176p
authors Lok, Leslie; Zivkovic, Sasa
year 2020
title Ashen Cabin
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 176-181
summary Ashen Cabin, designed by HANNAH, is a small building 3D-printed from concrete and clothed in a robotically fabricated envelope made of irregular ash wood logs. From the ground up, digital design and fabrication technologies are intrinsic to the making of this architectural prototype, facilitating fundamentally new material methods, tectonic articulations, forms of construction, and architectural design languages. Ashen Cabin challenges preconceived notions about material standards in wood. The cabin utilizes wood infested by the Emerald Ash Borer (EAB) for its envelope, which, unfortunately, is widely considered as ‘waste’. At present, the invasive EAB threatens to eradicate most of the 8.7 billion ash trees in North America (USDA, 2019). Due to their challenging geometries, most infested ash trees cannot be processed by regular sawmills and are therefore regarded as unsuitable for construction. Infested and dying ash trees form an enormous and untapped material resource for sustainable wood construction. By implementing high precision 3D scanning and robotic fabrication, the project upcycles Emerald-Ash-Borer-infested ‘waste wood’ into an abundantly available, affordable, and morbidly sustainable building material for the Anthropocene. Using a KUKA KR200/2 with a custom 5hp band saw end effector at the Cornell Robotic Construction Laboratory (RCL), the research team can saw irregular tree logs into naturally curved boards of various and varying thicknesses. The boards are arrayed into interlocking SIP façade panels, and by adjusting the thickness of the bandsaw cut, the robotically carved timber boards can be assembled as complex single curvature surfaces or double-curvature surfaces. The undulating wooden surfaces accentuate the building’s program and yet remain reminiscent of the natural log geometry which they are derived from. The curvature of the wood is strategically deployed to highlight moments of architectural importance such as windows, entrances, roofs, canopies, or provide additional programmatic opportunities such as integrated shelving, desk space, or storage.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id acadia19_470
id acadia19_470
authors Meyboom, AnnaLisa; Correa, David; Krieg, Oliver David
year 2019
title Stressed Skin Wood Surface Structure
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 470-477
doi https://doi.org/10.52842/conf.acadia.2019.470
summary Innovation in parametric design and robotic fabrication is in reciprocal relationship with the investigation of new structural types that facilitated by this technology. The stressed skin structure has historically been used to create lightweight curved structures, mainly in engineering applications such as naval vessels, aircraft, and space shuttles. Stressed skin structures were first referred to by Fairbairn in 1849. In England, the first use of the structure was in the Mosquito night bomber of World War II. In the United States, stressed skin structures were used at the same time, when the Wright Patterson Air Force Base designed and fabricated the Vultee BT-15 fuselage using fiberglass-reinforced polyester as the face material and both glass-fabric honeycomb and balsa wood core. With the renewed interest in wood as a structural building material, due to its sustainable characteristics, new potentials for the use of stressed skin structures made from wood on building scales are emerging. The authors present a material informed system that is characterized by its adaptability to freeform curvature on exterior surfaces. A stressed skin system can employ thinner materials that can be bent in their elastic bending range and then fixed into place, leading to the ability to be architecturally malleable, structurally highly efficient, as well as easily buildable. The interstitial space can also be used for services. Advanced digital fabrication and robotic manufacturing methods further enhance this capability by enabling precisely fabricated tolerances and embedded assembly instructions; these are essential to fabricate complex, multi-component forms. Through a prototypical installation, the authors demonstrate and discuss the technology of the stressed skin structure in wood considering current digital design and fabrication technologies.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id acadia19_586
id acadia19_586
authors Mitterberger, Daniela; Derme, Tiziano
year 2019
title Soil 3D Printing
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 586-595
doi https://doi.org/10.52842/conf.acadia.2019.586
summary Despite, the innovation of additive manufacturing (AM) technology, and in spite of the existence of natural bio-materials offering notable mechanical properties, materials used for AM are not necessarily more sustainable than materials used in traditional manufacturing. Furthermore, potential material savings may be partially overshadowed by the relative toxicity of the material and binders used for AM during fabrication and post-fabrication processes, as well as the energy usage necessary for the production and processing workflow. Soil as a building material offers a cheap, sustainable alternative to non-biodegradable material systems, and new developments in earth construction show how earthen buildings can create light, progressive, and sustainable structures. Nevertheless, existing large-scale earthen construction methods can only produce highly simplified shapes with rough detailing. This research proposes to use robotic additive manufacturing processes to overcome current limitations of constructing with earth, supporting complex three-dimensional geometries, and the creation of novel organic composites. More specifically the research focuses on robotic binder-jetting with granular bio-composites and non-toxic binding agents such as hydrogels. This paper is divided into two main sections: (1) biodegradable material system, and (2) multi-move robotic process, and describes the most crucial fabrication parameters such as compaction pressure, density of binders, deposition strategies and toolpath planning as well as identifying the architectural implications of using this novel biodegradable fabrication process. The combination of soil and hydrogel as building material shows the potential of a fully reversible construction process for architectural components and foresees its potential full-scale architectural implementations.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id ecaadesigradi2019_126
id ecaadesigradi2019_126
authors Szabo, Anna, Lloret-Fritschi, Ena, Reiter, Lex, Gramazio, Fabio, Kohler, Matthias and J. Flatt, Robert
year 2019
title Revisiting Folded Forms with Digital Fabrication
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 191-200
doi https://doi.org/10.52842/conf.ecaade.2019.2.191
summary This paper discusses the potential of emerging digital fabrication techniques to produce material-efficient thin folded concrete structures. Although in the 50s and 60s folded structures provided a common optimal solution for spanning large distances without additional vertical supports, today, the number of these projects decreased significantly due to their complicated formworks and labour-intensive realization. Digital fabrication methods for concrete hold the promise to efficiently produce intricate folded mass-customized shapes with enhanced load-bearing capacity. This paper focuses on a robotic slip-forming process, Smart Dynamic Casting (SDC), to produce various thin-walled folded concrete elements with the same formwork providing smooth surface finish and gradual variations along the height. An empirical research methodology was applied to evaluate the fabrication feasibility of digitally designed thin folded geometries with one-to-one scale prototypes. Despite the discovered design limitations due to fabrication and material constraints, the exploration led to a new promising research direction, termed 'Digital Casting'.
keywords folded structures; digital concrete; Smart Dynamic Casting; set on demand; Digital Casting
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id acadia19_478
id acadia19_478
authors Vercruysse, Emmanuel
year 2019
title Autonomous Architectural Operations
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 478-489
doi https://doi.org/10.52842/conf.acadia.2019.478
summary The research set out in this paper investigates the conception, testing, and implementation of an advanced and bespoke workflow. By hybridizing a diverse set of technologies and processes, an innovative fabrication strategy was developed that combines large scale glue-laminated timber frames with a robotic band-saw application. The design strategy was influenced by a number of key preoccupations: exploring the relationship between drawing and making, evenly distributing analogue and digital technologies, and advancing alternatives modes of architectural practice. The project regards intuitive design processes as an important driver and looked to apply digital tools lightly, aiming to precisely embed them within established timber fabrication processes. This workflow was tested through the design and fabrication of a timber skeleton that provides the structural system for a library building at Hooke Park and acts as an articulated armature supporting the library’s envelope and accommodates its internal workings. Through the production of the sculptural skeleton, the project challenges conventions of existing methodologies and ultimately brings about a morphologic innovation in timber construction through the closed geometry glulam component.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id acadia19_150
id acadia19_150
authors Wong, Nichol Long Hin; Crolla, Kristo
year 2019
title Simplifying Catenary Wood Structures
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 150-155
doi https://doi.org/10.52842/conf.acadia.2019.150
summary This work-in-progress action research paper describes the development of a novel computation-driven design method for low-tech producible, structurally optimized, suspended wooden roofs based on near catenary-shaped glue-laminated beams. The paper positions itself in a post-digital architectural context with as goal to introduce recent technological advances into developing construction contexts characterized by limited production means. The paper starts by evaluating the pre-existing practical, procedural, and economic drivers behind the design and fabrication of curved glue-laminated beams—one of the most ecologically sustainable structural elements commonly available. A method is proposed that employs genetic algorithms to simplify the fabrication of a suspended roof structure’s range of weight-saving, catenary shaped beams. To minimize the number of costly high-strength steel pressure vise setups required for their individual production, idealized curve geometries are minimally tweaked until a single, reusable jig setup becomes possible. When combined with a wooden roof underfloor, tectonic systems that employ such beams have the potential to dramatically reduce structure material requirements while producing architecturally engaging and spatially complex nonstandard space. The method’s validity, applicability, and architectural design opportunity space is tested, evaluated, and discussed through a conceptual architectural design project proposal that operates as demonstrator. The paper concludes by addressing future research directions and architectural advantages that the proposed design and fabrication methodology brings, especially for developing construction contexts with limited access to digital fabrication technology.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:57

_id acadia19_122
id acadia19_122
authors Yavaribajestani, Yasaman; Schleicher, Simon
year 2019
title Bio-Inspired Lamellar Structures
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 122-129
doi https://doi.org/10.52842/conf.acadia.2019.122
summary Gaining rigidity and strength from malleable and flexible parts is the key challenge in the emerging field of bending-active structures. The goal of this construction approach is to use the large elastic deformations of planar elements for the building of complex curved structures. Aiming to contribute to this research and to make new discoveries, the authors of this paper will look at nature for inspiration and explore how structures in the plant kingdom successfully combine high flexibility with high resilience. The focus of this study are the structural principles found in fibrous cactus skeletons. Not only do the cactus skeletons show impressive structural behavior, but also their optimized form, fiber orientation, and material distribution can inspire the further development of bending-active structures. Learning from these models, the authors will present key cactus-inspired design principles and test their practical feasibility in a prototypical installation made from millimeter-thin strips of carbon fiber reinforced polymers (CFRP). Similar to the biological role model, this 6-meter-tall lamellar structure takes advantage of clever cross-bracing strategies that significantly increase stability and improve resilience. The authors explain in more detail the underlying design and construction methods and discuss the possible impact this research may have on the further development of bending-active structures.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:57

_id acadia19_246
id acadia19_246
authors Zhang, Viola; Qian, William; Sabin, Jenny
year 2019
title PolyBrickH2.0
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 246-257
doi https://doi.org/10.52842/conf.acadia.2019.246
summary This project emerged from collaborative trans-disciplinary research between architecture, engineering, biology, and materials science to generate novel applications in micro-scale 3D printed ceramics. Specifically, PolyBrick H2.0 adapts internal bone-based hydraulic networks through controlled water flow from 3D printed micro-textures and surface chemistry. Engagement across disciplines produced the PolyBrick series at the Sabin Lab (Sabin, Miller, and Cassab 2014) . The series is a manifestation of novel digital fabrication techniques, bioinspired design, materials inquiry, and contemporary evolutions of building materials. A new purpose for the brick is explored that is not solely focused on the mechanical constraints necessary for built masonry structures. PolyBrick H2.0 interweaves the intricacies of living systems (beings and environments combined) to create a more responsive and interactive material system. The PolyBrick 2.0 series looks at human bone as a design model for foundational research. PolyBrick H2.0 merges the cortical bone hydraulic network with new functionalities as a water filtration and collection system for self-preservation and conservation as well as passive cooling solutions. It also pushes the ability of 3D printing techniques to the microscale. These functionalities are investigated under context for a better construction material, but its use may extend further.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:57

_id cf2019_052
id cf2019_052
authors Abdelmohsen, Sherif ;Passaint Massoud, Rana El-Dabaa, Aly Ibrahim and Tasbeh Mokbel
year 2019
title The Effect of Hygroscopic Design Parameters on the Programmability of Laminated Wood Composites for Adaptive Façades
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 435
summary Typical adaptive façades respond to external conditions to enhance indoor spaces based on complex mechanical actuators and programmable functions. Hygroscopic embedded properties of wood, as low-cost low-tech programmable material, have been utilized to induce passive motion mechanisms. Wood as anisotropic material allows for different passive programmable motion configurations that relies on several hygroscopic design parameters. This paper explores the effect of these parameters on programmability of laminated wood composites through physical experiments in controlled humidity environment. The paper studies variety of laminated configurations involving different grain orientations, and their effect on maximum angle of deflection and its durability. Angle of deflection is measured using image analysis software that is used for continuous tracking of deflection in relation to time. Durability is studied as the number of complete programmable cycles that wood could withstand before reaching point of failure. Results revealed that samples with highest deflection angle have least programmability durability.
keywords Wood, hygroscopic design, lamination, deflection, durability, adaptive façades
series CAAD Futures
email
last changed 2019/07/29 14:18

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_620107 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002