CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 628

_id cdrf2023_526
id cdrf2023_526
authors Eric Peterson, Bhavleen Kaur
year 2023
title Printing Compound-Curved Sandwich Structures with Robotic Multi-Bias Additive Manufacturing
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_44
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
summary A research team at Florida International University Robotics and Digital Fabrication Lab has developed a novel method for 3d-printing curved open grid core sandwich structures using a thermoplastic extruder mounted on a robotic arm. This print-on-print additive manufacturing (AM) method relies on the 3d modeling software Rhinoceros and its parametric software plugin Grasshopper with Kuka-Parametric Robotic Control (Kuka-PRC) to convert NURBS surfaces into multi-bias additive manufacturing (MBAM) toolpaths. While several high-profile projects including the University of Stuttgart ICD/ITKE Research Pavilions 2014–15 and 2016–17, ETH-Digital Building Technologies project Levis Ergon Chair 2018, and 3D printed chair using Robotic Hybrid Manufacturing at Institute of Advanced Architecture of Catalonia (IAAC) 2019, have previously demonstrated the feasibility of 3d printing with either MBAM or sandwich structures, this method for printing Compound-Curved Sandwich Structures with Robotic MBAM combines these methods offering the possibility to significantly reduce the weight of spanning or cantilevered surfaces by incorporating the structural logic of open grid-core sandwiches with MBAM toolpath printing. Often built with fiber reinforced plastics (FRP), sandwich structures are a common solution for thin wall construction of compound curved surfaces that require a high strength-to-weight ratio with applications including aerospace, wind energy, marine, automotive, transportation infrastructure, architecture, furniture, and sports equipment manufacturing. Typical practices for producing sandwich structures are labor intensive, involving a multi-stage process including (1) the design and fabrication of a mould, (2) the application of a surface substrate such as FRP, (3) the manual application of a light-weight grid-core material, and (4) application of a second surface substrate to complete the sandwich. There are several shortcomings to this moulded manufacturing method that affect both the formal outcome and the manufacturing process: moulds are often costly and labor intensive to build, formal geometric freedom is limited by the minimum draft angles required for successful removal from the mould, and customization and refinement of product lines can be limited by the need for moulds. While the most common material for this construction method is FRP, our proof-of-concept experiments relied on low-cost thermoplastic using a specially configured pellet extruder. While the method proved feasible for small representative examples there remain significant challenges to the successful deployment of this manufacturing method at larger scales that can only be addressed with additional research. The digital workflow includes the following steps: (1) Create a 3D digital model of the base surface in Rhino, (2) Generate toolpaths for laminar printing in Grasshopper by converting surfaces into lists of oriented points, (3) Generate the structural grid-core using the same process, (4) Orient the robot to align in the direction of the substructure geometric planes, (5) Print the grid core using MBAM toolpaths, (6) Repeat step 1 and 2 for printing the outer surface with appropriate adjustments to the extruder orientation. During the design and printing process, we encountered several challenges including selecting geometry suitable for testing, extruder orientation, calibration of the hot end and extrusion/movement speeds, and deviation between the computer model and the physical object on the build platen. Physical models varied from their digital counterparts by several millimeters due to material deformation in the extrusion and cooling process. Real-time deviation verification studies will likely improve the workflow in future studies.
series cdrf
email
last changed 2024/05/29 14:04

_id ecaadesigradi2019_473
id ecaadesigradi2019_473
authors Brandao, Filipe, Paio, Alexandra and Lopes, Adriano
year 2019
title Interactive algorithm for generating accurate as-built plans by building owners
doi https://doi.org/10.52842/conf.ecaade.2019.2.069
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 69-78
summary Mass Customization systems in architecture have yet to adequately address the problem of capturing physical context, a fundamental aspect of dealing with building renovation, which has limited their scope of application. Previous research has demonstrated that existing methods of capturing as-built plans of rooms by non-expert users do not produce sufficiently accurate results for digital fabrication. The present paper reports on research into the development of an algorithm for semi-automated survey of convex or non-convex rooms by building owners. The improved workflow is tested by expert and non-expert users in a to-be renovated building and the results are compared with existing methods of survey.
keywords Mass Customization; As-built Plans; Building renovation; Polygon partition;
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id acadia19_642
id acadia19_642
authors Chua, Pamela Dychengbeng; Hui, Lee Fu
year 2019
title Compliant Laminar Assemblies
doi https://doi.org/10.52842/conf.acadia.2019.642
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 642-653
summary This paper presents an innovative approach to the design and fabrication of three-dimensional objects from single-piece flat sheets, inspired by the origami technique of twist-closing. While in origami twist-closing is merely used to stabilize a cylindrical or spherical structure, ensuring it maintains its shape, this research investigates the potential of twist-closing as a multi-functional mechanism that also activates and controls the transformation of a planar surface into a predesigned three-dimensional form. This exploration is directed towards an intended application to stiff and brittle sheet materials that are difficult to shape through other processes. The methods we have developed draw mainly upon principles of lattice kirigami and laminar reciprocal structures. These are reflected in a workflow that integrates digital form-generation and fabrication-rationalization techniques to reference and apply these principles at every stage. Significant capabilities of the developed methodology include: (1) achievement of pseudo-double-curvature with brittle, stiff sheet materials; (2) stabilization in a 3D end-state as a frameless self-contained single-element laminar reciprocal structure—essentially a compliant mechanism; and (3) an ability to pre-encode 3D assembly constraints in a 2D cutout pattern, which guides a moldless fabrication process. The paper reviews the precedent geometric techniques and principles that comprise this method of 3D surface fabrication and describes a sample deployment of the method as applied to the design of laminar modules made of high-pressure laminate (HPL).
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id caadria2019_665
id caadria2019_665
authors Jin, Jinxi, Han, Li, Chai, Hua, Zhang, Xiao and Yuan, Philip F.
year 2019
title Digital Design and Construction of Lightweight Steel-Timber Composite Gridshell for Large-Span Roof - A Practice of Steel-timber Composite Gridshell in Venue B for 2018 West Bund World AI Conference
doi https://doi.org/10.52842/conf.caadria.2019.1.183
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 183-192
summary Timber gridshell is an efficient structural system. However, the feature of double curved surface result in limitation of practical application of timber gridshell. Digital technology provides an opportunity to break this limitation and achieve a lightweight free-form gridshell. In the practice of Venue B for 2018 West Bund World AI Conference, architects and structural engineers cooperated to explore innovative design of lightweight steel-timber composite gridshell with the help of digital tools. Setting digital technology as support and restrains of the project as motivation, the design tried to achieve the realization of material, structure, construction and spatial expression. The digital design and construction process will be discussed from four aspects, including form-finding of gridshell surface, steel-timber composite design, digital detailed design and model-based fabrication and construction. We focuses on the use of digital tools in this process, as well as the role of the design subject.
keywords Timber Gridshell; Steel-timber Composite; Digital Design and Construction; Lightweight Structure; Large-span Roof
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaadesigradi2019_345
id ecaadesigradi2019_345
authors Jovanovic, Marko, Vucic, Marko, Stulic, Radovan and Petrovic, Maja
year 2019
title Design Guidelines for Zero Waste Manufacturing of Freeform EPS Facades
doi https://doi.org/10.52842/conf.ecaade.2019.2.779
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 779-788
summary The application of curved facade designs in contemporary architectural practice has become adamant in combining the digital tools with the material properties. By expanding the focus to manufacturing as well, the topic of waste is introduced. In order to avoid the generation of waste material during fabrication, in this research a workflow is introduced which describes the design of freeform surfaces out of expanded polystyrene blocks (EPS), while producing zero waste. The main premise is that a piece cut out of an EPS block has a piece that is left inside the block, its complement. Following the premise, it is only necessary to design one half of the freeform surface over a desired facade area and the other part would align to it. After the freeform surface is generated, a tessellation process is described, prepared for robotic hotwire cutting, following the limitation of the EPS block dimension and the inclusion of the minimal insulating layer.
keywords freeform surface; ruled surface approximation; minimal insulating layer; complements
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id ecaadesigradi2019_506
id ecaadesigradi2019_506
authors Kontovourkis, Odysseas, Georgiou, Christos, Stroumpoulis, Andreas, Kounnis, Constantinos, Dionyses, Christos and Bagdati, Styliana
year 2019
title Implementing Augmented Reality for the Holographic Assembly of a Modular Shading Device
doi https://doi.org/10.52842/conf.ecaade.2019.3.149
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 149-158
summary The development of innovative digital design and fabrication tools for material processing and manufacturing of complex and non-standard forms, apart from their advantages, have brought a number of challenges. These might be related to the effectiveness and sustainable potential of implementation associated with environmental, cost and time-related parameters, particularly in cases of large number of elements construction and complex assembly. Augmented Reality (AR) is an emerging technology with great potential for implementation in the construction industry, since it can enhance the real world with additional digital information, and thus, can assist towards manufacture and assemble of these particular systems. This study presents an AR methodology for assembling a modular shading device and discusses the advantages and disadvantages that this application can bring to the Architecture, Engineering and Construction (AEC) industry by taking into account precision and construction time issues based on the handling of the process by skilled and unskilled users/workers. Our aim is to investigate the potential implementation of AR in the assembly, and consequently, in the construction process as a whole. Also, this study aims at exploring existing constraints of the technology and suggests ways of improvement.
keywords Augmented Reality; Holographic assembly; Modular system; Shading device
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

_id caadria2019_407
id caadria2019_407
authors Loh, Paul, Leggett, David and Prohasky, Daniel
year 2019
title Robotic Fabrication of Doubly Curved Façade System - Constructing intelligence in the digital fabrication workflow
doi https://doi.org/10.52842/conf.caadria.2019.2.521
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 521-530
summary This paper presents a novel advance digital fabrication method to produce doubly curved concrete panel with no immediate waste as a facade system. Using a bespoke CNC adjustable mould frame system coupled with robotic trimming techniques, the research examines the streamlining of data within a cohesive fabrication workflow. The paper concludes by reviewing an integrated workflow that points towards a multifaceted system of design, engineering and advanced manufacturing that propel research to design application.
keywords Digital Fabrication; Design workflow; Robotic
series CAADRIA
email
last changed 2022/06/07 07:59

_id acadia19_100
id acadia19_100
authors Meibodi, Mania Aghae; Kladeftira, Marirena; Kyttas, Thodoris; Dillenburger, Benjamin
year 2019
title Bespoke Cast Facade
doi https://doi.org/10.52842/conf.acadia.2019.100
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 100-109
summary This paper presents a computational design approach and a digital fabrication method for a freeform aluminum facade made of prefabricated bespoke elements. The fabrication of customized metal elements for construction remains a challenge to this day. Traditional fabrication methods, such as sand casting, are labor intensive, while direct metal 3D printing has limitations for architecture where large-scale elements are needed. Our research investigates the use of Binder Jetting technology to 3D print sand molds for casting bespoke facade elements in aluminum. Using this approach, custom facade elements can be economically fabricated in a short time. By automating the generation of mold design for each element, an efficient digital process chain from design to fabrication was established. In search of a computational method to integrate casting constraints into the form generation and the design process, a differential growth algorithm was used. The application of this fabrication method (3D printed sand molds and casting) in architecture is demonstrated via the design and fabrication of a freeform facade-screen. The paper articulates the relationship between the fabrication process and the differential growth algorithm with a parallel process of adaptive design tools and fabrication tests to exhibit future potential of the method for architectural practice.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id caadria2019_632
id caadria2019_632
authors Raspall, Felix, Banon, Carlos and Tay, Jenn Chong
year 2019
title AirTable - Stainless steel printing for functional space frames
doi https://doi.org/10.52842/conf.caadria.2019.1.113
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 113-122
summary In architecture, the use of Additive Manufacturing (AM) technologies has been typically undermined by the long production time, elevated cost to manufacture parts and the low mechanical properties of 3D printed components. As AM becomes faster cheaper and stronger, opportunities for architectures that make creative use of AM to produce functional architectural pieces are emerging. In this paper, we propose and discuss the application of metal AM in complex space frames and the theoretical and practical implications. A functional lightweight metal table by the authors support our hypothesis that AM has a clear application in architecture and furniture design, and that space frames constitutes a promising structural typology. Specifically, we investigate how AM using metal as a material can be used in the application of fabrication of complex space frame structure components and connection details. The paper presents background research and our contribution to the digital design tools, the manufacturing and assembly processes, and the analysis of the performances of a parametrically designed and digitally fabricated large meeting table. Insights from this paper are deployed in an architectural scale project, AIRMesh, a metal 3D-printed pavilion set in the greenery of Gardens by the Bay, Singapore.
keywords Metal Additive Manufacturing; Space Frame; 3D Printing; Furniture Design
series CAADRIA
email
last changed 2022/06/07 08:00

_id caadria2019_648
id caadria2019_648
authors Schumann, Kyle and Johns, Ryan Luke
year 2019
title Airforming - Adaptive Robotic Molding of Freeform Surfaces through Incremental Heat and Variable Pressure
doi https://doi.org/10.52842/conf.caadria.2019.1.033
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 33-42
summary Advances in computational modelling and digital fabrication have created both the need and ability for novel strategies of bringing digitally modeled doubly curved surfaces into reality. In this paper, we introduce airforming as a non-contact and formwork-free method for fabricating digitally designed surfaces through the iterative robotic application of heat and air pressure, coupled with sensory feedback. The process lies somewhere between incremental metal fabrication and traditional vacuum forming of plastics. Airforming does not add or subtract material or use any mold or formwork materials that would typically be discarded as waste. Instead, airforming shapes a plastic sheet through the controlled spatial application of heat and the control of pressure and vacuum within an airtight chamber beneath the material. Through our research, we develop and test a method for airforming through 3D scanning and point cloud analysis, evolutionary physics simulation solvers, and robotic-aided actuation and control of heating and pressure systems. Different variations and analysis and workflow methods are explored. We demonstrate and posit potential future applications for the airforming method.
keywords Robotic Production; Digital Fabrication; Incremental Forming; Thermoforming; Freeform Surface
series CAADRIA
email
last changed 2022/06/07 07:56

_id acadia19_478
id acadia19_478
authors Vercruysse, Emmanuel
year 2019
title Autonomous Architectural Operations
doi https://doi.org/10.52842/conf.acadia.2019.478
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 478-489
summary The research set out in this paper investigates the conception, testing, and implementation of an advanced and bespoke workflow. By hybridizing a diverse set of technologies and processes, an innovative fabrication strategy was developed that combines large scale glue-laminated timber frames with a robotic band-saw application. The design strategy was influenced by a number of key preoccupations: exploring the relationship between drawing and making, evenly distributing analogue and digital technologies, and advancing alternatives modes of architectural practice. The project regards intuitive design processes as an important driver and looked to apply digital tools lightly, aiming to precisely embed them within established timber fabrication processes. This workflow was tested through the design and fabrication of a timber skeleton that provides the structural system for a library building at Hooke Park and acts as an articulated armature supporting the library’s envelope and accommodates its internal workings. Through the production of the sculptural skeleton, the project challenges conventions of existing methodologies and ultimately brings about a morphologic innovation in timber construction through the closed geometry glulam component.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id caadria2019_493
id caadria2019_493
authors Fischer, Thomas, Herr, Christiane M. and Grau, Michael
year 2019
title Triangulated Shell Foam Structures based on Robotic Hot-Wire-Cutting - A design, geometry rationalisation and fabrication workflow
doi https://doi.org/10.52842/conf.caadria.2019.2.551
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 551-560
summary This paper presents an interim report of an investigation into a digital design and production workflow to generate, rationalise and fabricate triangulated extruded shell foam structures. It reports on a speculative form-finding and geometry-generation process, a rationalisation approach, a new type of hot-wire-cutting robot and early findings gathered regarding technical and design strategies, geometric and fabrication constraints, as well as an outline of related future work.
keywords generative design; geometry rationalisation; hot wire cutting; robotic fabrication; process automation
series CAADRIA
email
last changed 2022/06/07 07:51

_id acadia19_40
id acadia19_40
authors Garcia del Castillo y López, Jose Luis
year 2019
title Robot Ex Machina
doi https://doi.org/10.52842/conf.acadia.2019.040
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 40-49
summary Industrial robotic arms are increasingly present in digital fabrication workflows due to their robustness, degrees of freedom, and potentially large scale. However, the range of possibilities they provide is limited by their typical software control paradigms, specifically offline programming. This model requires all the robotic instructions to be pre-defined before execution, a possibility only affordable in highly predictable environments. But in the context of architecture, design and art, it can hardly accommodate more complex forms of control, such as responding to material feedback, adapting to changing conditions on a construction site, or on-the-fly decision-making. We present Robot Ex Machina, an open-source computational framework of software tools for real-time robot programming and control. The contribution of this framework is a paradigm shift in robot programming models, systematically providing a platform to enable real-time interaction and control of mechanical actuators. Furthermore, it fosters programming styles that are reactive to, rather than prescriptive about, the state of the robot. We argue that this model is, compared to traditional offline programming, beneficial for creative individuals, as its concurrent nature and immediate feedback provide a deeper and richer set of possibilities, facilitates experimentation, flow of thought, and creative inquiry. In this paper, we introduce the framework, and discuss the unifying model around which all its tools are designed. Three case studies are presented, showcasing how the framework provides richer interaction models and novel outcomes in digital making. We conclude by discussing current limitations of the model and future work.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id ecaadesigradi2019_502
id ecaadesigradi2019_502
authors Gozen, Efe
year 2019
title A Framework for a Five-Axis Stylus for Design Fabrication
doi https://doi.org/10.52842/conf.ecaade.2019.1.215
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 215-220
summary This paper proposes a new workflow between design and fabrication phases through the introduction of a novel framework centered around a stylus that is tracked in real-time for five-axis by a single RGB-D camera. Often misconceived as a linear process, urgent reinterpretation of design and fabrication tools is discussed briefly. Similar to how industrial robots have become an enabler for fabrication process in the field of architecture and construction, the necessity for providing a similar tool that would reform the "design" process is underlined. A generic stylus is proposed with interchangeable operations which allows for intuitive, non-obstructive grasp of the user serves as the physical avatar that transform into a virtual representation of a fabrication tool mounted on a six-axis industrial robot arm. User interaction with the apparatus is simulated for the user, and the user is notified of any errors as the interaction is translated for motion planning of a KUKA KR20-3 industrial robot.
keywords Human-Computer Interaction; CAD / CAM; Robotic Motion Control
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

_id acadia20_192p
id acadia20_192p
authors Doyle, Shelby; Hunt, Erin
year 2020
title Melting 2.0
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 192-197
summary This project presents computational design and fabrication methods for locating standard steel reinforcement within 3D printed water-soluble PVA (polyvinyl alcohol) molds to create non-standard concrete columns. Previous methods from “Melting: Augmenting Concrete Columns with Water Soluble 3D Printed Formwork” and “Dissolvable 3D Printed Formwork: Exploring Additive Manufacturing for Reinforced Concrete” (Doyle & Hunt 2019) were adapted for larger-scale construction, including the introduction of new hardware, development of custom programming strategies, and updated digital fabrication techniques. Initial research plans included 3D printing continuous PVA formwork with a KUKA Agilus Kr10 R1100 industrial robotic arm. However, COVID-19 university campus closures led to fabrication shifting to the author’s home, and this phase instead relied upon a LulzBot TAZ 6 (build volume of 280 mm x 280 mm x 250 mm) with an HS+ (Hardened Steel) tool head (1.2 mm nozzle diameter). Two methods were developed for this project phase: new 3D printing hardware and custom GCode production. The methods were then evaluated in the fabrication of three non-standard columns designed around five standard reinforcement bars (3/8-inch diameter): Woven, Twisted, Aperture. Each test column was eight inches in diameter (the same size as a standard Sonotube concrete form) and 4 feet tall, approximately half the height of an architecturally scaled 8-foot-tall column. Each column’s form was generated from combining these diameter and height restrictions with the constraints of standard reinforcement placement and minimum concrete coverage. The formwork was then printed, assembled, cast, and then submerged in water to dissolve the molds to reveal the cast concrete. This mold dissolving process limits the applicable scale for the work as it transitions from the research lab to the construction site. Therefore, the final column was placed outside with its mold intact to explore if humidity and water alone can dissolve the PVA formwork in lieu of submersion.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id caadria2019_173
id caadria2019_173
authors Ng, Jonathan Ming-En, Ho, Samuel Yu De, Ng, Truman Wei Cheng, Soh, Jia Ying and Dritsas, Stylianos
year 2019
title Fabrication of Ultra-Lightweight Parametric Glass Fiber Reinforced Shell Assemblies
doi https://doi.org/10.52842/conf.caadria.2019.1.013
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 13-22
summary We present an experimental form-finding technique for ultra-thin glass fiber reinforced concrete components and assemblies. The objective is to challenge conventional concrete use in construction, often perceived as a massive and compressive structural material. Instead, we targeted production of fine shell assemblies principally operating in tension. To achieve thin profile components, we use a compliant molding technique where premixed GFRC is cast in polyethylene bags. Subsequently, a robotic arm system pins the bags on a substrate plate and the setup is inverted whereby gravity induces a curvature to components while concrete cures. Use of parametric modeling, computer simulation and statistical experimental methods allowed us to understand the behavior of the material process and translate computationally modeled designs into physical artifacts. We discuss the opportunity for digital fabrication methods to fuse with traditional form-finding techniques, contrast the use of computational modeling techniques and present a series of prototypes created through our process.
keywords Digital Fabrication; Glass Fibre Reinforced Concrete; Form-Finding
series CAADRIA
email
last changed 2022/06/07 07:58

_id caadria2019_660
id caadria2019_660
authors Aghaei Meibodi, Mania, Giesecke, Rena and Dillenburger, Benjamin
year 2019
title 3D Printing Sand Molds for Casting Bespoke Metal Connections - Digital Metal: Additive Manufacturing for Cast Metal Joints in Architecture
doi https://doi.org/10.52842/conf.caadria.2019.1.133
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 133-142
summary Metal joints play a relevant role in space frame constructions, being responsible for large amount of the overall material and fabrication cost. Space frames which are constructed with standardized metal joints are constrained to repetitive structures and topologies. For customized space frames, the fabrication of individual metal joints still remains a challenge. Traditional fabrication methods such as sand casting are labour intensive, while direct 3D metal printing is too expensive and slow for the large volumes needed in architecture.This research investigates the use of Binder Jetting technology to 3D print sand molds for casting bespoke metal joints in architecture. Using this approach, a large number of custom metal joints can be fabricated economically in short time. By automating the generation of the joint geometry and the corresponding mold system, an efficient digital process chain from design to fabrication is established. Several design studies for cast metal joints are presented. The approach is successfully tested on the example of a full scale space frame structure incorporating almost two hundred custom aluminum joints.
keywords 3D printing; binder jetting; sand casting; metal joints; metal casting; space frame; digital fabrication; computational design; lightweight; customization
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2023_138
id ecaade2023_138
authors Crolla, Kristof and Wong, Nichol
year 2023
title Catenary Wooden Roof Structures: Precedent knowledge for future algorithmic design and construction optimisation
doi https://doi.org/10.52842/conf.ecaade.2023.1.611
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 611–620
summary The timber industry is expanding, including construction wood product applications such as glue-laminated wood products (R. Sikkema et al., 2023). To boost further utilisation of engineered wood products in architecture, further development and optimisation of related tectonic systems is required. Integration of digital design technologies in this endeavour presents opportunities for a more performative and spatially diverse architecture production, even in construction contexts typified by limited means and/or resources. This paper reports on historic precedent case study research that informs an ongoing larger study focussing on novel algorithmic methods for the design and production of lightweight, large-span, catenary glulam roof structures. Given their structural operation in full tension, catenary-based roof structures substantially reduce material needs when compared with those relying on straight beams (Wong and Crolla, 2019). Yet, the manufacture of their non-standard geometries typically requires costly bespoke hardware setups, having resulted in recent projects trending away from the more spatially engaging geometric experiments of the second half of the 20th century. The study hypothesis that the evolutionary design optimisation of this tectonic system has the potential to re-open and expand its practically available design solution space. This paper covers the review of a range of built projects employing catenary glulam roof system, starting from seminal historic precedents like the Festival Hall for the Swiss National Exhibition EXPO 1964 (A. Lozeron, Swiss, 1964) and the Wilkhahn Pavilions (Frei Otto, Germany, 1987), to contemporary examples, including the Grandview Heights Aquatic Centre (HCMA Architecture + Design, Canada, 2016). It analysis their structural concept, geometric and spatial complexity, fabrication and assembly protocols, applied construction detailing solutions, and more, with as aim to identify methods, tools, techniques, and construction details that can be taken forward in future research aimed at minimising construction complexity. Findings from this precedent study form the basis for the evolutionary-algorithmic design and construction method development that is part of the larger study. By expanding the tectonic system’s practically applicable architecture design solution space and facilitating architects’ access to a low-tech producible, spatially versatile, lightweight, eco-friendly, wooden roof structure typology, this study contributes to environmentally sustainable building.
keywords Precedent Studies, Light-weight architecture, Timber shell, Catenary, Algorithmic Optimisation, Glue-laminated timber
series eCAADe
email
last changed 2023/12/10 10:49

_id acadia19_156
id acadia19_156
authors Dahy, Hanaa; Baszyñski, Piotr; Petrš, Jan
year 2019
title Experimental Biocomposite Pavilion
doi https://doi.org/10.52842/conf.acadia.2019.156
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 156-165
summary Excessive use of aggregate materials and metals in construction should be balanced by increasing use of construction materials from annually renewable resources based on natural lignocellulosic fibers. Parametric design tools gave here a possibility of using an alternative newly developed biocomposite material, for realization of complex geometries. Contemporary digital fabrication tools have enabled precise manufacturing possibilities and sophisticated geometry-making to take place that helped in obtaining high structural behavior of the overall global geometry of the discussed project. This paper presents a process of realizing an experimental structure made from Natural Fiber-Reinforced Polymers (NFRP)- also referred to as biocomposites, which were synthesized from lignocellulosic flexible core reinforced by 3D-veneer layers in a closed-moulding vacuum-assisted process. The biocomposite sandwich panels parameters were developed and defined before the final properties were imbedded in the parametric model. This paper showcases the multi-disciplinarity work between architects, structural engineers and material developers. It allowed the architects to work on the material development themselves and enabled to apply a new created design philosophy by the first author, namely applying ‘Materials as a Design-Tool’. The erected biocomposite segmented shell construction allowed a 1:1 validation for the whole design process, material development and the digital fabrication processes applied. The whole development has been reached after merging an ongoing industrial research project results with academic education at the school of architecture in Stuttgart-Germany.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_367
id ecaadesigradi2019_367
authors Goti, Kyriaki, Katz, Shir, Baharlou, Ehsan, Vasey, Lauren and Menges, Achim
year 2019
title Jamming Formations - Intuitive design and fabrication process through human-computer interaction
doi https://doi.org/10.52842/conf.ecaade.2019.1.669
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 669-680
summary This paper examines the potential of User Interfaces (UI) and sensor feedback to develop an intuitive design and fabrication process utilizing granular jamming. By taking advantage of the variable stiffness of granular jamming over time, an adaptive fabrication process is presented in which various structures are formed from individual jammed components which can weave or interlock in an overall system. A User Interface (UI) is developed as a design tool which would enable interactive design decisions and operations, based on pre-designed formal and tectonic strategies. The project has four research trajectories that are developed in parallel: (1) material system research; (2) development of an ad hoc digital recording system; (3) creation of a computational library that stores users' iterations; and (4) development of a User Interface (UI) that enables users' interaction with the computational library.
keywords Granular Jamming, Human-computer Interaction, Adaptive Fabrication
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_713850 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002