CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 286

_id acadia19_222
id acadia19_222
authors Birol, Eda Begum; Lu, Yao; Sekkin, Ege; Johnson, Colby; Moy, David; Islam, Yaseen; Sabin, Jenny
year 2019
title POLYBRICK 2.0
doi https://doi.org/10.52842/conf.acadia.2019.222
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 222-233
summary Natural load bearing structures are characterized by aspects of specialized morphology, lightweight, adaptability, and a regenerative life cycle. PolyBrick 2.0 aims to learn from and apply these characteristics in the pursuit of revitalizing ceramic load bearing structures. For this, algorithmic design processes are employed, whose physical manifestations are realized through available clay/porcelain additive manufacturing technologies (AMTs). By integrating specialized expertise across disciplines of architecture, engineering, and material science, our team proposes an algorithmic toolset to generate PolyBrick geometries that can be applied to various architectural typologies. Additionally, comparative frameworks for digital and physical performance analyses are outlined. Responding to increasing urgencies of material efficiency and environmental sensibility, this project strives to provide for designers a toolset for environmentally responsive, case-specific design, characterized by the embedded control qualities derived from the bone and its adaptability to specific loading conditions. Various approaches to brick tessellation and assembly are proposed and architectural possibilities are presented. As an outcome of this research, PolyBrick 2.0 is effectively established as a Grasshopper plug-in, “PolyBrick” to be further explored by designers.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id ecaadesigradi2019_381
id ecaadesigradi2019_381
authors Buš, Peter
year 2019
title Large-scale Prototyping Utilising Technologies and Participation - On-demand and Crowd-driven Urban Scenarios
doi https://doi.org/10.52842/conf.ecaade.2019.2.847
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 847-854
summary The paper theorises and elaborates the idea of crowd-driven assemblies for flexible and adaptive constructions utilising automatic technologies and participatory activities within the context of twenty-first century cities. As economic and technological movements and shifts in society and cultures are present and ongoing, the building technology needs to incorporate human inputs following the aspects of customisation to build adaptive architectural and urban scenarios based on immediate decisions made according to local conditions or specific spatial demands. In particular, the paper focuses on large-scale prototyping for urban applications along with on-site interactions between humans and automatic building technologies to create on-demand spatial scenarios. It discusses the current precedents in research and practice and speculates future directions to be taken in creation, development or customisation of contemporary and future cities based on participatory and crowd-driven building activities. The main aim of this theoretical overview is to offer a more comprehensive understanding of the relations between technology and humans in the context of reactive and responsive built environments.
keywords large-scale urban prototyping; on-site participation; human-machine interaction; intelligent cities; responsive cities; urban autopoiesis
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_592
id ecaadesigradi2019_592
authors Carvalho, Jo?o, Figueiredo, Bruno and Cruz, Paulo
year 2019
title Free-form Ceramic Vault System - Taking ceramic additive manufacturing to real scale
doi https://doi.org/10.52842/conf.ecaade.2019.1.485
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 485-492
summary The use of Additive Manufacturing (AM) for the production of architectural components has more and more examples attesting the possibilities and the advantages of its application. At the same time we seen a fast grow of the usage of ceramic materials to produce fully customised architectural components using Layer Deposition Modelling (LDM) [1] techniques. However, the use of this material, as paste, leads to a series of constraints relative to its behaviour when in the viscous state, but also in the drying and firing stages. Thus, when ceramic dries, the retraction effects may be a barrier to the regular use of this material to build future architectural systems. In this sense, it is important to study the material behaviour and know how to control and use it as a primary construction material. To do that we present the challenges and outcomes of project Hexashade, a ceramic vault shading system prototype whose geometry and internal structure is defined according to the solar incidence. This paper explain how we expect to build a real scale self-supporting prototype.
keywords Ceramic 3D printing; Additive Manufacturing; Vaulting Systems; Parametric Design; Performative Design
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id cf2019_056
id cf2019_056
authors Erdine, Elif ; Asli Aydin, Cemal Koray Bingol, Gamze Gunduz, Alvaro Lopez Rodriguez and Milad Showkatbakhsh
year 2019
title Robot-Aided Fabrication of Materially Efficient Complex Concrete Assemblies
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 454-472
summary This paper presents a novel approach for the materially efficient production of doubly-curved Expanded Polystyrene (EPS) form-work for insitu concrete construction and a novel application of a patented Glass Reinforced Concrete (GRC) technology. Research objectives focus on the development of complex form-work generation and concrete application via advanced computational and robotic methods. While it is viable to produce form-work with complex geometries with advanced digital and robotic fabrication tools, a key consideration area is the reduction of form-work waste material. The research agenda explores methods of associating architectural, spatial, and structural criteria with a material-informed holistic approach. The digital and physical investigations are founded on Robotic Hot-Wire Cutting (RHWC). The geometrical and physical principles of RHWC are transformed into design inputs, whereby digital and physical tests inform each other simultaneously. Correlations are set between form-work waste optimization with the geometrical freedom and constraints of hot-wire cutting via computational methods.
keywords Robotic fabrication, Robotic hot-wire cutting (RHWC), Glassreinforced concrete (GRC), Waste optimization, EPS form-work
series CAAD Futures
email
last changed 2019/07/29 14:18

_id acadia19_576
id acadia19_576
authors García del Castillo y López, Jose Luis; Bechthold, Martin; Seibold, Zach; Mhatre, Saurabh; Alhadidi, Suleiman
year 2019
title Janus Printing
doi https://doi.org/10.52842/conf.acadia.2019.576
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 576-585
summary The benefits of additive manufacturing technologies for the production of customized construction elements has been well documented for several decades. Multi-material additive manufacturing (MM-AM) enhances these capacities by introducing region-specific characteristics to printed objects. Several examples of the production of multi-material assemblies, including functionally-graded materials (FGMs) exist at the architectural scale, but none are known for ceramics. Factors limiting the development and application of this production method include the cost and complexity of existing MM-AM machinery, and the lack of a suitable computational workflow for the production of MM-AM ceramics, which often relies on a continuous linear toolpath. We present a method for the MM-AM of paste-based ceramics that allows for unique material expressions with relatively simple end-effector design. By borrowing methods of co-extrusion found in other industries and incorporating a 4th axis of motion into the printing process, we demonstrate a precisely controlled MM-AM deposition strategy for paste-based ceramics. We present a computational workflow for the generation of toolpaths, and describe full-body tiles and 3D artifacts that can be produced using this method. Future process refinements include the introduction of more precise control of material gradation and refinements to material composition for increased element functionality.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id ecaadesigradi2019_176
id ecaadesigradi2019_176
authors Giantini, Guilherme, Negris de Souza, Larissa, Turczyn, Daniel and Celani, Gabriela
year 2019
title Environmental Ceramics - Merging the digital and the physical in the design of a performance -based facade system
doi https://doi.org/10.52842/conf.ecaade.2019.2.749
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 749-758
summary Environmental comfort and space occupancy are essential considerations in architectural design process. Façade systems deeply impact both aspects but are usually standardized. However, performance-based facade systems tackle these issues through computational design to devise non-homogeneous elements. This work proposes a ceramic facade system designed according to a performance-based process grounded on environmental analysis and parametric design to allow adaptation and geometric variation according to specific building demands on environmental comfort and functionality. In this process, the Design Science Research method guided the exploration of both design and evaluation, bridging the gap between theory and practice. Positive facade environmental performance were found from digital and physical models assessment in terms of radiation, illuminance, dampness (with ventilation) and temperature. Computational processes minimized radiation inside the building while maximized illuminance. Their association influenced on operative temperature, which dropped according to local dampness and material absorption. Accordingly, this design process associates not only environmental comfort and functionality concepts but also adaptability, flexibility, mass customization, personal fabrication, additive manufacturing concepts, being an example architectural design changes in the 4th Industrial Revolution.
keywords sustainable design; facade system; computational design; environmental analysis; evolutionary algorithm
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

_id ecaadesigradi2019_353
id ecaadesigradi2019_353
authors Gönenç Sorguç, Arzu, Kruºa Yemiºcio?lu, Müge and Özgenel, Ça?lar F?rat
year 2019
title A Computational Design Workshop Experience for 21st Century Architecture Education
doi https://doi.org/10.52842/conf.ecaade.2019.1.127
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 127-136
summary With the rapid increase in the accessible data, available information surpasses one's ability to extract knowledge from, which puts a great emphasis on the skills of the individual to reach and use relevant information, adapt to changing conditions and sustain respective skills. ICT skills, critical thinking skills, and communication/collaboration skills emerge as the survival skills and key factors for individuals to cope with the demands of the 21st-century. It is known that educational institutions have struggles in changing the curricula/teaching system in coping with the requirements of the rapidly evolving industry. Thus, workshops gained more importance in different levels which are a part of curricular or extracurricular activities to re-furnish existing skills or gain new skills. In the scope of this study, the learning and teaching approaches based on STEAM approach are assessed through a three-day workshop aiming to illustrate how these survival skills can be conveyed and embedded into the architecture education. The workshop is designed to be inclusive for all architecture students regardless of their level of education or background knowledge/skills. Within the scope of this paper, the conduction strategies of the workshop are covered in detail to highlight the importance of these survival skills along with the modes of teaching and share the best practices and gained knowledge for future works.
keywords Computational Design Workshop; Architectural Education Strategies; Survival Skills
series eCAADeSIGraDi
email
last changed 2022/06/07 07:50

_id acadia19_16
id acadia19_16
authors Hosmer, Tyson; Tigas, Panagiotis
year 2019
title Deep Reinforcement Learning for Autonomous Robotic Tensegrity (ART)
doi https://doi.org/10.52842/conf.acadia.2019.016
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 16-29
summary The research presented in this paper is part of a larger body of emerging research into embedding autonomy in the built environment. We develop a framework for designing and implementing effective autonomous architecture defined by three key properties: situated and embodied agency, facilitated variation, and intelligence.We present a novel application of Deep Reinforcement Learning to learn adaptable behaviours related to autonomous mobility, self-structuring, self-balancing, and spatial reconfiguration. Architectural robotic prototypes are physically developed with principles of embodied agency and facilitated variation. Physical properties and degrees of freedom are applied as constraints in a simulated physics-based environment where our simulation models are trained to achieve multiple objectives in changing environments. This holistic and generalizable approach to aligning deep reinforcement learning with physically reconfigurable robotic assembly systems takes into account both computational design and physical fabrication. Autonomous Robotic Tensegrity (ART) is presented as an extended case study project for developing our methodology. Our computational design system is developed in Unity3D with simulated multi-physics and deep reinforcement learning using Unity’s ML-agents framework. Topological rules of tensegrity are applied to develop assemblies with actuated tensile members. Single units and assemblies are trained for a series of policies using reinforcement learning in single-agent and multi-agent setups. Physical robotic prototypes are built and actuated to test simulated results.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:50

_id acadia20_382
id acadia20_382
authors Hosmer, Tyson; Tigas, Panagiotis; Reeves, David; He, Ziming
year 2020
title Spatial Assembly with Self-Play Reinforcement Learning
doi https://doi.org/10.52842/conf.acadia.2020.1.382
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 382-393.
summary We present a framework to generate intelligent spatial assemblies from sets of digitally encoded spatial parts designed by the architect with embedded principles of prefabrication, assembly awareness, and reconfigurability. The methodology includes a bespoke constraint-solving algorithm for autonomously assembling 3D geometries into larger spatial compositions for the built environment. A series of graph-based analysis methods are applied to each assembly to extract performance metrics related to architectural space-making goals, including structural stability, material density, spatial segmentation, connectivity, and spatial distribution. Together with the constraint-based assembly algorithm and analysis methods, we have integrated a novel application of deep reinforcement (RL) learning for training the models to improve at matching the multiperformance goals established by the user through self-play. RL is applied to improve the selection and sequencing of parts while considering local and global objectives. The user’s design intent is embedded through the design of partial units of 3D space with embedded fabrication principles and their relational constraints over how they connect to each other and the quantifiable goals to drive the distribution of effective features. The methodology has been developed over three years through three case study projects called ArchiGo (2017–2018), NoMAS (2018–2019), and IRSILA (2019-2020). Each demonstrates the potential for buildings with reconfigurable and adaptive life cycles.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia19_542
id acadia19_542
authors Klemmt, Christoph; Pantic, Igor; Gheorghe, Andrei; Sebestyen, Adam
year 2019
title Discrete vs. Discretized Growth
doi https://doi.org/10.52842/conf.acadia.2019.542
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 542-553
summary Discrete computational growth simulations, such as Cellular Automata of Diffusion Limited Aggregation, appear often to be difficult to use for architectural design as their geometric outcomes tend to be difficult to control. On the contrary, free-form growth simulations such as Differential Growth or cell-based growth algorithms produce highly complex geometries that are difficult to construct at a larger scale. We, therefore, propose a methodology of discretized free-form Cellular Growth algorithms in order to utilize the emerging qualities of growth simulations for a feasible architectural design. The methodology has been tested within the framework of a workshop and resulted in the efficient construction of a large physical prototype.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id ecaade2024_92
id ecaade2024_92
authors Mayor Luque, Ricardo; Beguin, Nestor; Rizvi Riaz, Sheikh; Dias, Jessica; Pandey, Sneham
year 2024
title Multi-material Gradient Additive Manufacturing: A data-driven performative design approach to multi-materiality through robotic fabrication
doi https://doi.org/10.52842/conf.ecaade.2024.1.381
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 1, pp. 381–390
summary Buildings are responsible for 39% of global energy-related carbon emissions, with operational activities contributing 28% and materials and construction accounting for 11%(World Green Building Council, 2019) It is therefore vital to reconsider our reliance on fossil fuels for building materials and to develop new advanced manufacturing techniques that enable an integrated approach to material-controlled conception and production. The emergence of Multi-material Additive Manufacturing (MM-AM) technology represents a paradigm shift in producing elements with hybrid properties derived from novel and optimized solutions. Through robotic fabrication, MM-AM offers streamlined operations, reduced material usage, and innovative fabrication methods. It encompasses a plethora of methods to address diverse construction needs and integrates material gradients through data-driven analyses, challenging traditional prefabrication practices and emphasizing the current growth of machine learning algorithms in design processes. The research outlined in this paper presents an innovative approach to MM-AM gradient 3D printing through robotic fabrication, employing data-driven performative analyses enabling control over print paths for sustainable applications in both the AM industry and our built environment. The article highlights several designed prototypes from two distinct phases, demonstrating the framework's viability, implications, and constraints: a workshop dedicated to data-driven analyses in facade systems for MM-AM 3D-printed brick components, and a 3D-printed brick facade system utilizing two renewable and bio-materials—Cork sourced from recycled stoppers and Charcoal, with the potential for carbon sequestration.
keywords Data-driven Performative design, Multi-material 3d Printing, Material Research, Fabrication-informed Material Design, Robotic Fabrication
series eCAADe
email
last changed 2024/11/17 22:05

_id ecaadesigradi2019_389
id ecaadesigradi2019_389
authors Mohite, Ashish, Kochneva, Mariia and Kotnik, Toni
year 2019
title Speed of Deposition - Vehicle for structural and aesthetic expression in CAM
doi https://doi.org/10.52842/conf.ecaade.2019.1.729
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 729-738
summary This paper presents intermediate results of an experimental research directed towards development of a method that uses additive manufacturing technology as a generative agent in architectural design process. The primary technique is to variate speed of material deposition of a 3D printer in order to produce undetermined textural effects. These effects demonstrate local variation of material distribution, which is treated as a consequence of interaction between machining parameters and material properties. Current stage of inquiry is concerned with studying the impact of these textural artefacts on structure. Experiments demonstrate that manipulating distribution of matter locally results in more optimal structural performance, it solves printability issues of overhanging geometry without the need for additional supports and provides variation to the surface. The research suggests aesthetic and structural benefits of applying the developed method for mass-customized fabrication. It questions the linear thinking that is predominant in the field of 3D printing and provides an approach that articulates interaction between digital and material logics as it directs the formation of an object that is informed by both.
keywords digital fabrication; digital craft; texture; ceramic 3D printing
series eCAADeSIGraDi
email
last changed 2022/06/07 07:58

_id ecaadesigradi2019_455
id ecaadesigradi2019_455
authors Moreira, Jo?o, Figueiredo, Bruno and Cruz, Paulo
year 2019
title Ceramic Additive Manufacturing in Architecture - Computational Methodology for Defining a Column System
doi https://doi.org/10.52842/conf.ecaade.2019.1.471
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 471-476
summary The present paper describes a research that explores the design and production of customised architectural ceramic components defined through parametric relations of biomorphic inspiration and to be built through additive manufacturing. In this sense, is presented a case study that develops a system of both architectural and structural components - a column system. The definition process of the system is mediated by computational design, implementing not only structural analysis and optimization strategies, but also mimetic formal characteristics of nature to an initial grid, creating a model that adapts its formal attributes, depending on its assumptions and the material constraints. This process resulted in the definition of a set of solutions that better answer to a specific design problem.
keywords Additive Manufacturing; Ceramic 3D; Computational Design; Structural Optimization; Biomorphism
series eCAADeSIGraDi
email
last changed 2022/06/07 07:58

_id lasg_whitepapers_2019_235
id lasg_whitepapers_2019_235
authors Parlac, Vera
year 2019
title Soft Kinetics; Integrating Soft Robotics into Architectural Assemblies
source Living Architecture Systems Group White Papers 2019 [ISBN 978-1-988366-18-0] Riverside Architectural Press: Toronto, Canada 2019. pp.235 - 250
summary The project described in this paper explores the integration of custom-made soft robotic muscles into a component-based surface. This project is part of a broader research that focuses on new material behaviors and their capacity to produce adaptive and dynamic material systems. The paper discusses the use of a pneumatic system as a form of material-based actuation. It presents the ongoing research into the capacity of integrated [pneu] structures to generate kinetic movement within a component-based assembly to produce a responsive and “programmable” architectural skin. This is a prototype-based exploration that demonstrates different kinds of movement achieved by different silicone muscle types and proposes a light modular construct, its components, and patterns of aggregation that work in unison with the silicone muscles to produce a dynamic architectural skin. The project is informed by a history of pneumatic structures, the technology of soft robotics, and a kit-of-parts design strategy.
keywords living architecture systems group, organicism, intelligent systems, design methods, engineering and art, new media art, interactive art, dissipative systems, technology, cognition, responsiveness, biomaterials, artificial natures, 4DSOUND, materials, virtual projections,
email
last changed 2019/07/29 14:02

_id acadia19_606
id acadia19_606
authors Russo, Rhett
year 2019
title Lithophanic Dunes: The Dunejars
doi https://doi.org/10.52842/conf.acadia.2019.606
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 606-615
summary The design of masonry, tile, and ceramics is an integral part of architectural history. High fired clays are unique in that they are amorphous, vitreous, and translucent. Similar types of light transmission through minerals and clays has been achieved in window panes using alabaster or marble, but unlike porcelain these cannot be cast, and they are susceptible to moisture. Additionally, glass and metal are commonly used to glaze ceramics, and this provides further possibility for the combination of translucency with surface ornamentation and decaling. It is within this architectural lineage, of compound stone and glass objects, that the Dunejars are situated. The Dunejars are translucent porcelain vessels that are designed as lenses to transmit different wavelengths of light into intricate and unexpected patterns. Similar recipes for porcelain were developed using wax positives during the 19th century to manufacture domestic Lithophanes; picturesque screens made of translucent porcelain, often displayed in windows or produced as candle shades (Maust 1966). The focus of the research involves pinpointing the lithophanic qualities of the clay so that they can be repeated by recipe, and refined through a digital workflow. The methods outlined here are the product of an interdisciplinary project residency at The European Ceramic Workcenter (Sundaymorning@EKWC) in 2018 to make tests, and obtain technical precision in the areas of, plaster mold design, slip-casting, finishing, firing, and glazing of the Dunejars. The modular implementation of these features at the scale of architecture can be applied across a range of scales, including fixtures, finishes and envelopes, all of which merit further investigation.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_522
id ecaadesigradi2019_522
authors Shi, Ji, Cho, Yesul, Taylor, Meghan and Correa, David
year 2019
title Guiding Instability - A craft-based approach for modular 3D clay printed masonry screen units
doi https://doi.org/10.52842/conf.ecaade.2019.1.477
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 477-484
summary As the field of 3D printing technologies expand, complex materials that require a deeper engagement, due to their more unstable properties, are of increasing interest. Cementitious composites, clays and other ceramic materials are of particular relevance: their potential for fast large-scale fabrication and local availability position these technologies at the forefront of expansion for 3D printing. Despite the extensive benefits inherent to clays, their irregularities and the largely unpredictable deviations that occur when printing from a digital model, currently limit design and architectural-scale applications. However, these deformations could conversely be harnessed as design generators, opening up avenues for both aesthetic and functional exploration. The paper presents an investigation into the inherent material instabilities of the clay 3D printing process for the development of an architectural masonry facade system. Through an iterative process based in craft, a new capacity for material expression and authenticity beyond previous manufacturing capabilities can become actualized.
keywords 3D printing; digital craft; clay; material computation; uncertainty; hybrid fabrication
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id ijac201917201
id ijac201917201
authors Trilsbeck, Matthew; Nicole Gardner, Alessandra Fabbri, Matthias Hank Haeusler, Yannis Zavoleas and Mitchell Page
year 2019
title Meeting in the middle: Hybrid clay three-dimensional fabrication processes for bio-reef structures
source International Journal of Architectural Computing vol. 17 - no. 2, 148-165
summary Despite the relative accessibility of clay, its low cost and reputation as a robust and sustainable building material, clay three-dimensional printing remains an under-utilized digital fabrication technique in the production of architectural artefacts. Given this, numerous research projects have sought to extend the viability of clay three-dimensional digital fabrication by streamlining and automating workflows through computational methods and robotic technologies in ways that afford agency to the digital and machinic processes over human bodily skill. Three-dimensional printed clay has also gained prominence as a resilient material well suited to the design and fabrication of artificial reef and habitat- enhancing seawall structures for coastal marine environments depleted and disrupted by human activity, climate change and pollution. Still, these projects face similar challenges when three-dimensional printing complex forms from the highly plastic and somewhat unpredictable feed material of clay. In response, this article outlines a research project that seeks to improve the translation of complex geometries into physical clay artefacts through additive three- dimensional printing processes by drawing on the notion of digital craft and giving focus to human–machine interaction as a collaborative practice. Through the case study of the 1:1 scale fabrication of a computationally generated bio-reef structure using clay as a feed material and a readily available Delta Potterbot XLS-2 ceramic printer, the research project documents how, by exploiting the human ability to intuitively handle clay and adapt, and the machine’s ability to work efficiently and with precision, humans and machines can fabricate together . With the urgent need to develop more sustainable building practices and materials, this research contributes valuable knowledge of hybrid fabrication processes towards extending the accessibility and viability of clay three-dimensional printing as a resilient material and fabrication system.
keywords Clay three-dimensional printing, digital fabrication, hybrid fabrication, digital craft, human–machine interaction
series journal
email
last changed 2019/08/07 14:04

_id ijac201917206
id ijac201917206
authors Ackerman, Aidan; Jonathan Cave, Chien-Yu Lin and Kyle Stillwell
year 2019
title Computational modeling for climate change: Simulating and visualizing a resilient landscape architecture design approach
source International Journal of Architectural Computing vol. 17 - no. 2, 125-147
summary Coastlines are changing, wildfires are raging, cities are getting hotter, and spatial designers are charged with the task of designing to mitigate these unknowns. This research examines computational digital workflows to understand and alleviate the impacts of climate change on urban landscapes. The methodology includes two separate simulation and visualization workflows. The first workflow uses an animated particle fluid simulator in combination with geographic information systems data, Photoshop software, and three-dimensional modeling and animation software to simulate erosion and sedimentation patterns, coastal inundation, and sea level rise. The second workflow integrates building information modeling data, computational fluid dynamics simulators, and parameters from EnergyPlus and Landsat to produce typologies and strategies for mitigating urban heat island effects. The effectiveness of these workflows is demonstrated by inserting design prototypes into modeled environments to visualize their success or failure. The result of these efforts is a suite of workflows which have the potential to vastly improve the efficacy with which architects and landscape architects use existing data to address the urgency of climate change.
keywords Modeling, simulation, environment, ecosystem, landscape, climate change, sea level rise, urban heat island
series journal
email
last changed 2019/08/07 14:04

_id ijac201917105
id ijac201917105
authors Agkathidis, Asterios; Yorgos Berdos and André Brown
year 2019
title Active membranes: 3D printing of elastic fibre patterns on pre-stretched textiles
source International Journal of Architectural Computing vol. 17 - no. 1, 74-87
summary There has been a steady growth, over several decades, in the deployment of fabrics in architectural applications; both in terms of quantity and variety of application. More recently, three-dimensional printing and additive manufacturing have added to the palette of technologies that designers in architecture and related disciplines can call upon. Here, we report on research that brings those two technologies together – the development of active membrane elements and structures. We show how these active membranes have been achieved by laminating three-dimensional printed elasto-plastic fibres onto pre-stretched textile membranes. We report on a set of experimentations involving one-, two- and multi-directional geometric arrangements that take TPU 95 and polypropylene filaments and apply them to Lycra textile sheets, to form active composite panels. The process involves a parameterised design, actualised through a fabrication process including stress-line simulation, fibre pattern three-dimensional printing and the lamination of embossed patterns onto a pre-stretched membrane; followed by the release of tension afterwards in order to allow controlled, self-generation of the final geometry. Our findings document the investigation into mapping between the initial two-dimensional geometries and their resulting three-dimensional doubly curved forms. We also reflect on the products of the resulting, partly serendipitous, design process.
keywords Digital fabrication, three-dimensional printing, parametric design, material computation, fabrics
series journal
email
last changed 2019/08/07 14:04

_id acadia19_630
id acadia19_630
authors Ahlquist, Sean
year 2019
title Expanding the Systematic Agencyof a Material System
doi https://doi.org/10.52842/conf.acadia.2019.630
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 630-641
summary Computational design and fabrication have reached an accomplished level of ubiquity and proficiency in the field of architecture, in both academia and practice. Materiality driving structure, responsiveness, and spatial organization can be seen to evolve, in kind, with the capabilities to fabricate deeper material hierarchies. Such maturity of a procedural material-driven approach spurs a need to shift from the dictations of how to explorations of why material efficiencies, bespoke aesthetics, and performativity are critical to a particular architecture, requiring an examination of linkages between approach, techniques, and process. The material system defines a branch of architectural research utilizing bespoke computational techniques to generate performative material capacities that are inextricably linked to both internal and external forces and energies. This paper examines such a self-referential view to define an expanded ecological approach that integrates new modes of design agency and shift the material system from closed-loop relationship with site to open-ended reciprocation with human behavior. The critical need for this capacity is shown in applications of novel textile hybrid material systems—as sensorially-responsive environments for children with the neurological autism spectrum disorder—in ongoing research titled Social Sensory Architectures. Through engaging fabrication across all material scales, manners of elastic responsivity are shown, through a series of feasibility studies, to exhibit a capacity for children to become design agents in exploring the beneficial interrelationship of sensorimotor agency and social behavior. The paper intends to contribute a theoretical approach by which novel structural capacities of a material system can support a larger ecology of social and behavioral agency.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 14HOMELOGIN (you are user _anon_32660 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002