CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 624

_id ecaade2021_203
id ecaade2021_203
authors Arora, Hardik, Bielski, Jessica, Eisenstadt, Viktor, Langenhan, Christoph, Ziegler, Christoph, Althoff, Klaus-Dieter and Dengel, Andreas
year 2021
title Consistency Checker - An automatic constraint-based evaluator for housing spatial configurations
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 351-358
doi https://doi.org/10.52842/conf.ecaade.2021.2.351
summary The gradual rise of artificial intelligence (AI) and its increasing visibility among many research disciplines affected Computer-Aided Architectural Design (CAAD). Architectural deep learning (DL) approaches are being developed and published on a regular basis, such as retrieval (Sharma et al. 2017) or design style manipulation (Newton 2019; Silvestre et al. 2016). However, there seems to be no method to evaluate highly constrained spatial configurations for specific architectural domains (such as housing or office buildings) based on basic architectural principles and everyday practices. This paper introduces an automatic constraint-based consistency checker to evaluate the coherency of semantic spatial configurations of housing construction using a small set of design principles to evaluate our DL approaches. The consistency checker informs about the overall performance of a spatial configuration followed by whether it is open/closed and the constraints it didn't satisfy. This paper deals with the relation of spaces processed as mathematically formalized graphs contrary to existing model checking software like Solibri.
keywords model checking, building information modeling, deep learning, data quality
series eCAADe
email
last changed 2022/06/07 07:54

_id ijac201917106
id ijac201917106
authors Brown, Nathan C. and Caitlin T. Mueller
year 2019
title Design variable analysis and generation for performance-based parametric modeling in architecture
source International Journal of Architectural Computing vol. 17 - no. 1, 36-52
summary Many architectural designers recognize the potential of parametric models as a worthwhile approach to performance- driven design. A variety of performance simulations are now possible within computational design environments, and the framework of design space exploration allows users to generate and navigate various possibilities while considering both qualitative and quantitative feedback. At the same time, it can be difficult to formulate a parametric design space in a way that leads to compelling solutions and does not limit flexibility. This article proposes and tests the extension of machine learning and data analysis techniques to early problem setup in order to interrogate, modify, relate, transform, and automatically generate design variables for architectural investigations. Through analysis of two case studies involving structure and daylight, this article demonstrates initial workflows for determining variable importance, finding overall control sliders that relate directly to performance and automatically generating meaningful variables for specific typologies.
keywords Parametric design, design space formulation, data analysis, design variables, dimensionality reduction
series journal
email
last changed 2019/08/07 14:04

_id caadria2019_143
id caadria2019_143
authors Kato, Yuri and Matsukawa, Shohei
year 2019
title Development of Generating System for Architectural Color Icons Using Google Map Platform and Tensorflow-Segmentation
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 81-90
doi https://doi.org/10.52842/conf.caadria.2019.2.081
summary In this research, the goal is to develop a generating system for architectural color icons using Google Map Platform and Tensorflow-Segmentation. There has been no case of developing a system that allows users to visualize the color tendency of buildings as architectural color icons for each building element from images of various regions. It is considered meaningful to be able to create criteria for decision making in architecture and the urban design by developing a system to clarify the current state of the architectural colors. It will contribute a rise in the consciousness of landscape conservation and be essential for the design of architectures and public objects. This paper includes the explanation of development method, use experiments, and consideration of five problems among architectural color icons creation. It is assumed that the accuracy of the present system will be better as the technology improves.
keywords Google street view; machine learning; image segmentation; color palette; color analysis
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaadesigradi2019_327
id ecaadesigradi2019_327
authors Silva, Daniela, Paio, Alexandra and Sousa, José Pedro
year 2019
title Reprogramming Practice - Revising design thinking through digital fabrication
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 379-386
doi https://doi.org/10.52842/conf.ecaade.2019.1.379
summary Questioning the importance and impact of design thinking methodologies in the architectural design studios is a backbone of architectural education in twenty first century. 3D printing and digital manufacturing are disruptive technologies that are changing architects and designers daily lives. These trends require new skills, based on a deep understanding of digital continuum from design to production, from generation to fabrication. This continuity transcends the merely instrumental contributions of a person-machine relationship to praxis, has begun to evolve as a medium that supports a continuous logic of design thinking and making. Design thinking methodologies associated with digital fabrication emerged as a leading technological and design issue of digital research and design. As designers, we are witnessing a no frontier between computational design and digital fabrication. For this paper is taken into consideration the work of two architecture studios that share a unique background on new methodologies by embracing the digital technology in their own practice. Their work reflects on new design methodologies facing the expansion of digital technology in architectural practice. This paper discusses the possibility of new design thinking methods driven by digital fabrication.
keywords Design thinking; Digital Fabrication; AEC; Collaborative Design; Architectural Practice
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id acadia19_380
id acadia19_380
authors Özel, Güvenç; Ennemoser, Benjamin
year 2019
title Interdisciplinary AI
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 380- 391
doi https://doi.org/10.52842/conf.acadia.2019.380
summary Architecture does not exist in a vacuum. Its cultural, conceptual, and aesthetic agendas are constantly influenced by other visual and artistic disciplines ranging from film, photography, painting and sculpture to fashion, graphic and industrial design. The formal qualities of the cultural zeitgeist are perpetually influencing contemporary architectural aesthetics. In this paper, we aim to introduce a radical yet methodical approach toward regulating the relationship between human agency and computational form-making by using Machine Learning (ML) as a conceptual design tool for interdisciplinary collaboration and engagement. Through the use of a highly calibrated and customized ML systems that can classify and iterate stylistic approaches that exist outside the disciplinary boundaries of architecture, the technique allows for machine intelligence to design, coordinate, randomize, and iterate external formal and aesthetic qualities as they relate to pattern, color, proportion, hierarchy, and formal language. The human engagement in this design process is limited to the initial curation of input data in the form of image repositories of non-architectural disciplines that the Machine Learning system can extrapolate from, and consequently in regulating and choosing from the iterations of images the Artificial Neural Networks are capable of producing. In this process the architect becomes a curator that samples and streamlines external cultural influences while regulating their significance and weight in the final design. By questioning the notion of human agency in the design process and providing creative license to Artificial Intelligence in the conceptual design phase, we aim to develop a novel approach toward human-machine collaboration that rejects traditional notions of disciplinary autonomy and streamlines the influence of external aesthetic disciplines on contemporary architectural production.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:57

_id ijac201917206
id ijac201917206
authors Ackerman, Aidan; Jonathan Cave, Chien-Yu Lin and Kyle Stillwell
year 2019
title Computational modeling for climate change: Simulating and visualizing a resilient landscape architecture design approach
source International Journal of Architectural Computing vol. 17 - no. 2, 125-147
summary Coastlines are changing, wildfires are raging, cities are getting hotter, and spatial designers are charged with the task of designing to mitigate these unknowns. This research examines computational digital workflows to understand and alleviate the impacts of climate change on urban landscapes. The methodology includes two separate simulation and visualization workflows. The first workflow uses an animated particle fluid simulator in combination with geographic information systems data, Photoshop software, and three-dimensional modeling and animation software to simulate erosion and sedimentation patterns, coastal inundation, and sea level rise. The second workflow integrates building information modeling data, computational fluid dynamics simulators, and parameters from EnergyPlus and Landsat to produce typologies and strategies for mitigating urban heat island effects. The effectiveness of these workflows is demonstrated by inserting design prototypes into modeled environments to visualize their success or failure. The result of these efforts is a suite of workflows which have the potential to vastly improve the efficacy with which architects and landscape architects use existing data to address the urgency of climate change.
keywords Modeling, simulation, environment, ecosystem, landscape, climate change, sea level rise, urban heat island
series journal
email
last changed 2019/08/07 14:04

_id cf2019_020
id cf2019_020
authors Belém, Catarina; Luís Santos and António Leitão
year 2019
title On the Impact of Machine Learning: Architecture without Architects?
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 148-167
summary Architecture has always followed and adopted technological breakthroughs of other areas. As a case in point, in the last decades, the field of computation changed the face of architectural practice. Considering the recent breakthroughs of Machine Learning (ML), it is expectable to see architecture adopting ML-based approaches. However, it is not yet clear how much this adoption will change the architectural practice and in order to forecast this change it is necessary to understand the foundations of ML and its impact in other fields of human activity. This paper discusses important ML techniques and areas where they were successfully applied. Based on those examples, this paper forecast hypothetical uses of ML in the realm of building design. In particular, we examine ML approaches in conceptualization, algorithmization, modeling, and optimization tasks. In the end, we conjecture potential applications of such approaches, suggest future lines of research, and speculate on the future face of the architectural profession.
keywords Machine Learning, Algorithmic Design, AI for Building Design
series CAAD Futures
type normal paper
email
last changed 2019/07/29 14:54

_id ecaadesigradi2019_425
id ecaadesigradi2019_425
authors Betti, Giovanni, Aziz, Saqib and Ron, Gili
year 2019
title Pop Up Factory : Collaborative Design in Mixed Rality - Interactive live installation for the makeCity festival, 2018 Berlin
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 115-124
doi https://doi.org/10.52842/conf.ecaade.2019.3.115
summary This paper examines a novel, integrated and collaborative approach to design and fabrication, enabled through Mixed Reality. In a bespoke fabrication process, the design is controlled and altered by users in holographic space, through a custom, multi-modal interface. Users input is live-streamed and channeled to 3D modelling environment,on-demand robotic fabrication and AR-guided assembly. The Holographic Interface is aimed at promoting man-machine collaboration. A bespoke pipeline translates hand gestures and audio into CAD and numeric fabrication. This enables non-professional participants engage with a plethora of novel technology. The feasibility of Mixed Reality for architectural workflow was tested through an interactive installation for the makeCity Berlin 2018 festival. Participants experienced with on-demand design, fabrication an AR-guided assembly. This article will discuss the technical measures taken as well as the potential in using Holographic Interfaces for collaborative design and on-site fabrication.Please write your abstract here by clicking this paragraph.
keywords Holographic Interface; Augmented Reality; Multimodal Interface; Collaborative Design; Robotic Fabrication; On-Site Fabrication
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id ijac202119302
id ijac202119302
authors BuHamdan, Samer; Alwisy, Aladdin; Bouferguene, Ahmed
year 2021
title Generative systems in the architecture, engineering and construction industry: A systematic review and analysis
source International Journal of Architectural Computing 2021, Vol. 19 - no. 3, 226–249
summary Researchers have been extensively exploring the employment of generative systems to support design practices in the architecture, engineering and construction industry since the 1970s. More than half a century passed since the first architecture, engineering and construction industry’s generative systems were developed; researchers have achieved remarkable leaps backed by advances in computing power and algorithms’ capacity. In this article, we present a systematic analysis of the literature published between 2009 and 2019 on the utilization of generative systems in the design practices of the architecture, engineering and construction industry. The present research studies present trends, collaborations and applications of generative systems in the architecture, engineering and construction industry in order to identify existing shortcomings and potential advancements that balance the need for theory development and practical application. It provides insightful observations that are translated into meaningful recommendations for future research necessary to progress the incorporation of generative systems into the design practices of the architecture, engineering and construction industry.
keywords Generative systems, architecture, engineering and construction industry, performative design, generative design, systematic literature review, future directions
series journal
email
last changed 2024/04/17 14:29

_id ecaadesigradi2019_381
id ecaadesigradi2019_381
authors Buš, Peter
year 2019
title Large-scale Prototyping Utilising Technologies and Participation - On-demand and Crowd-driven Urban Scenarios
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 847-854
doi https://doi.org/10.52842/conf.ecaade.2019.2.847
summary The paper theorises and elaborates the idea of crowd-driven assemblies for flexible and adaptive constructions utilising automatic technologies and participatory activities within the context of twenty-first century cities. As economic and technological movements and shifts in society and cultures are present and ongoing, the building technology needs to incorporate human inputs following the aspects of customisation to build adaptive architectural and urban scenarios based on immediate decisions made according to local conditions or specific spatial demands. In particular, the paper focuses on large-scale prototyping for urban applications along with on-site interactions between humans and automatic building technologies to create on-demand spatial scenarios. It discusses the current precedents in research and practice and speculates future directions to be taken in creation, development or customisation of contemporary and future cities based on participatory and crowd-driven building activities. The main aim of this theoretical overview is to offer a more comprehensive understanding of the relations between technology and humans in the context of reactive and responsive built environments.
keywords large-scale urban prototyping; on-site participation; human-machine interaction; intelligent cities; responsive cities; urban autopoiesis
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id ecaade2023_138
id ecaade2023_138
authors Crolla, Kristof and Wong, Nichol
year 2023
title Catenary Wooden Roof Structures: Precedent knowledge for future algorithmic design and construction optimisation
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 611–620
doi https://doi.org/10.52842/conf.ecaade.2023.1.611
summary The timber industry is expanding, including construction wood product applications such as glue-laminated wood products (R. Sikkema et al., 2023). To boost further utilisation of engineered wood products in architecture, further development and optimisation of related tectonic systems is required. Integration of digital design technologies in this endeavour presents opportunities for a more performative and spatially diverse architecture production, even in construction contexts typified by limited means and/or resources. This paper reports on historic precedent case study research that informs an ongoing larger study focussing on novel algorithmic methods for the design and production of lightweight, large-span, catenary glulam roof structures. Given their structural operation in full tension, catenary-based roof structures substantially reduce material needs when compared with those relying on straight beams (Wong and Crolla, 2019). Yet, the manufacture of their non-standard geometries typically requires costly bespoke hardware setups, having resulted in recent projects trending away from the more spatially engaging geometric experiments of the second half of the 20th century. The study hypothesis that the evolutionary design optimisation of this tectonic system has the potential to re-open and expand its practically available design solution space. This paper covers the review of a range of built projects employing catenary glulam roof system, starting from seminal historic precedents like the Festival Hall for the Swiss National Exhibition EXPO 1964 (A. Lozeron, Swiss, 1964) and the Wilkhahn Pavilions (Frei Otto, Germany, 1987), to contemporary examples, including the Grandview Heights Aquatic Centre (HCMA Architecture + Design, Canada, 2016). It analysis their structural concept, geometric and spatial complexity, fabrication and assembly protocols, applied construction detailing solutions, and more, with as aim to identify methods, tools, techniques, and construction details that can be taken forward in future research aimed at minimising construction complexity. Findings from this precedent study form the basis for the evolutionary-algorithmic design and construction method development that is part of the larger study. By expanding the tectonic system’s practically applicable architecture design solution space and facilitating architects’ access to a low-tech producible, spatially versatile, lightweight, eco-friendly, wooden roof structure typology, this study contributes to environmentally sustainable building.
keywords Precedent Studies, Light-weight architecture, Timber shell, Catenary, Algorithmic Optimisation, Glue-laminated timber
series eCAADe
email
last changed 2023/12/10 10:49

_id ijac201917102
id ijac201917102
authors Cutellic, Pierre
year 2019
title Towards encoding shape features with visual event-related potential based brain–computer interface for generative design
source International Journal of Architectural Computing vol. 17 - no. 1, 88-102
summary This article will focus on abstracting and generalising a well-studied paradigm in visual, event-related potential based brain–computer interfaces, for the spelling of characters forming words, into the visually encoded discrimination of shape features forming design aggregates. After identifying typical technologies in neuroscience and neuropsychology of high interest for integrating fast cognitive responses into generative design and proposing the machine learning model of an ensemble of linear classifiers in order to tackle the challenging features that electroencephalography data carry, it will present experiments in encoding shape features for generative models by a mechanism of visual context updating and the computational implementation of vision as inverse graphics, to suggest that discriminative neural phenomena of event-related potentials such as P300 may be used in a visual articulation strategy for modelling in generative design.
keywords Generative design, machine learning, brain–computer interface, design computing and cognition, integrated cognition, neurodesign, shape, form and geometry, design concepts and strategies
series journal
email
last changed 2019/08/07 14:04

_id acadia19_130
id acadia19_130
authors Devadass, Pradeep; Heimig, Tobias; Stumm, Sven; Kerber, Ethan; Cokcan, Sigrid Brell
year 2019
title Robotic Constraints Informed Design Process
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 130-139
doi https://doi.org/10.52842/conf.acadia.2019.130
summary Promising results in efficiently producing highly complex non-standard designs have been accomplished by integrating robotic fabrication with parametric design. However, the project workflow is hampered due to the disconnect between designer and robotic fabricator. The design is most often developed by the designer independently from fabrication process constraints. This results in fabrication difficulties or even non manufacturable components. In this paper we explore the various constraints in robotic fabrication and assembly processes, analyze their influence on design, and propose a methodology which bridges the gap between parametric design and robotic production. Within our research we investigate the workspace constraints of robots, end effectors, and workpieces used for the fabrication of an experimental architectural project: “The Twisted Arch.” This research utilizes machine learning approaches to parameterize, quantify, and analyze each constraint while optimizing how those parameters impact the design output. The research aims to offer a better planning to production process by providing continuous feedback to the designer during early stages of the design process. This leads to a well-informed “manufacturable” design.
keywords Robotic Fabrication and Assembly, Mobile Robotics, Machine Learning, Parametric Design, Constraint Based Design.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id ecaadesigradi2019_116
id ecaadesigradi2019_116
authors Fernando, Shayani
year 2019
title Collaborative Crafting of Interlocking Structures in Stereotomic Practice
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 183-190
doi https://doi.org/10.52842/conf.ecaade.2019.2.183
summary Situated within the art of cutting solids (stereotomy) and the evolution of machine tools; this research will investigate subtractive fabrication in relation to robotic carving of stone structures. The advancement of the industrial revolutions in the mid to late 19th century saw the rise of new building techniques and materials which were primarily based on structural steel construction. The modern aesthetic of the time further diminished the place of traditional stonework and ornamentation in modern structures within the building arts. This paper will focus on the design and fabrication of three sculptural dry-stone modular prototypes investigating interlocking self-supporting structures in stone. Examining the value of robotic technologies in the design and construction process in relation to collaborative crafting of the hand and machine. Accommodating for material tolerances which are a major factor in this research. Interrogating the value of robotic crafting with material implications and exploring the role of the artisan in machine crafted architectural components.
keywords Collaborative; Crafting; Interlocking; Structures; Robotic Fabrication; Digital Stone
series eCAADeSIGraDi
email
last changed 2022/06/07 07:50

_id acadia19_430
id acadia19_430
authors Goepel, Garvin
year 2019
title Augmented Construction
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 430-437
doi https://doi.org/10.52842/conf.acadia.2019.430
summary This paper discusses the integration of Mixed Reality in the design and implementation of non-standard architecture. It deliberates a method that does not require conventional 2D drawings, and the need for skilled labor, by using the aid of holographic instructions. Augmented Construction allow builders to execute complex tasks and to understand structural relations intuitively by overlaying digital design information onto their field of view on the building site. This gives the implementation system authors different levels of control. As a proof of concept, a group of non-professionals reconstructed the south wall of Corbusier’s Ronchamp chapel, the Notre-Dame du Haut, at scale 1:5 using no architectural 2D drawings but only custom-built Augmented Reality apps for HoloLens and mobile devices. This project focused on the assembly of non-standard prefabricated elements, based on an optimized parametric structure that enables designers to integrate imprecision within the construction phases into the design through a constant feedback-loop between the real and the digital. The setup was designed in a non-linear process that allows the integration of new information during the Augmented Construction phases. The paper evaluates applied Augmented Construction for further improvements and research and concludes by discussing the impact potential of Augmented Construction on architectural design, socio-cultural, and economical levels.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id ecaadesigradi2019_273
id ecaadesigradi2019_273
authors Hadighi, Mahyar and Duarte, Jose
year 2019
title Using Grammars to Trace Architectural Hybridity in American Modernism - The case of William Hajjar single-family house
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 529-540
doi https://doi.org/10.52842/conf.ecaade.2019.1.529
summary In this paper, mid-century modern single-family houses designed by William Hajjar are analyzed through a shape grammar methodology within the context of the traditional architecture of an American college town. A member of the architecture faculty at the Pennsylvania State University, Hajjar was a practitioner in State College, PA, where the University Park campus is located, and an influential figure in the history of architecture in the area. The residential architecture he designed for and built in the area incorporates many of the formal and functional features typical of both modern European architecture and traditional American architecture. Based on a computational methodology, this study offers an investigation into this hybridity phenomenon by exploring Hajjar's architecture in relation to the traditional American architecture prevalent in the college town of State College.
keywords shape grammar; American architecture; William Hajjar; hybridity; college town
series eCAADeSIGraDi
email
last changed 2022/06/07 07:49

_id acadia19_448
id acadia19_448
authors Hahm, Soomeen
year 2019
title Augmented Craftsmanship
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 448-457
doi https://doi.org/10.52842/conf.acadia.2019.448
summary Over the past decade, we have witnessed rapid advancements on both practical and theoretical levels in regard to automated construction as a consequence of increasing sophistication of digital fabrication technologies such as robotics, 3D printing, etc. However, digital fabrication technology is often very limited when it comes to dealing with delicate and complex crafting processes. Although digital fabrication processes have become widely accessible and utilized across industries in recent times, there are still a number of fabrication techniques—which heavily rely on human labour—due to the complex nature of procedures and delicacy of materials. With this in mind, we need to ask ourselves if full automation is truly an ultimate goal, or if we need to (re)consider the role of humans in the architectural construction chain, as automation becomes more prevalent. We propose rethinking the role which human, machine, and computer have in construction— occupying the territory between purely automated, exclusively robotically-driven fabrication and highly crafted processes requiring human labour. This is to propose an alternative to reducing construction to fully automated assembly of simplified/discretized building parts, by appreciating physical properties of materials and nature of crafting processes. The research proposes a design-to-construction workflow pursued and enabled by augmented humans using AR devices. As a result, proposed workflows are tested on three prototypical inhabitable structure, aiming to be applicable to other projects in the near future, and to bridge the gap between purely automated construction processes on one hand, and craft-based, material-driven but labour-intensive processes on the other.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id ecaadesigradi2019_073
id ecaadesigradi2019_073
authors Junk, Stefan, Niederhüfner, Michelle, Borkowska, Nina and Schrock, Steffen
year 2019
title Direct Digital Manufacturing of Architectural Models using Binder Jetting and Polyjet Modeling
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 451-456
doi https://doi.org/10.52842/conf.ecaade.2019.1.451
summary Today, architectural models are an important tool for illustrating drawn-on plans or computer-generated virtual models and making them understandable. In addition to the conventional methods for the manufacturing of physical models, a wide range of processes for Direct Digital Manufacturing (DDM) has spread rapidly in recent years. In order to facilitate the application of these new methods for architects, this contribution examines which technical and economic results are possible using 3D printed architectural models. Within a case study, it will be shown on the basis of a multi-storey detached house, which kind of data preparation is necessary. The DDM of architectural models will be demonstrated using two widespread techniques and the resulting costs will be compared.
keywords Architeetual model; CAAD; Direct Digital Manufacturing; Binder Jetting; Polyjet Modelling
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id ijac201917401
id ijac201917401
authors Kabošová, Lenka; Isak Foged, Stanislav Kmet’ and Dušan Katunský
year 2019
title Hybrid design method for wind-adaptive architecture
source International Journal of Architectural Computing vol. 17 - no. 4, 307-322
summary The linkage of individual design skills and computer-based capabilities in the design process offers yet unexplored environment-adaptive architectural solutions. The conventional perception of architecture is changing, creating a space for reconfigurable, “living” buildings responding, for instance, to climatic influences. Integrating the element of wind to the architectural morphogenesis process can lead toward wind-adaptive designs that in turn can enhance the wind microclimate in their vicinity. Geometric relations coupled with material properties enable to create a tensegrity- membrane structural element, bending in the wind. First, the properties of such elements are investigated by a hybrid method, that is, computer simulations are coupled with physical prototyping. Second, the system is applied to basic- geometry building envelopes and investigated using computational fluid dynamics simulations. Third, the findings are transmitted to a case study design of a streamlined building envelope. The results suggest that a wind-adaptive building envelope plays a great role in reducing the surface wind suction and enhancing the wind microclimate.
keywords Wind, computational fluid dynamics, tensegrity structure, responsive envelope, computational design
series journal
email
last changed 2020/11/02 13:34

_id ijac201917204
id ijac201917204
authors Karaoglan Füsun Cemre and Sema Alaçam
year 2019
title Design of a post-disaster shelter through soft computing
source International Journal of Architectural Computing vol. 17 - no. 2, 185-205
summary Temporary shelters become a more critical subject of architectural design as the increasing number of natural disasters taking place each year result in a larger number of people in need of urgent sheltering. Therefore, this project focuses on designing a temporary living space that can respond to the needs of different post-disaster scenarios and form a modular system through differentiation of units. When designing temporary shelters, it is a necessity to deal with the provision of materials, low-cost production and the time limit in the emergency as well as the needs of the users and the experiential quality of the space. Although computational approaches might lead to much more efficient and resilient design solutions, they have been utilized in very few examples. For that reason and due to their suitability to work with architectural design problems, soft computing methods shape the core of the methodology of the study. Initially, a digital model is generated through a set of rules that define a growth algorithm. Then, Multi-Objective Genetic Algorithms alter this growth algorithm while evaluating different configurations through the objective functions constructed within a Fuzzy Neural Tree. The struggle to represent design goals in the form of Fuzzy Neural Tree holds potential for the further use of it for architectural design problems centred on resilience. Resilience in this context is defined as a measure of how agile a design is when dealing with a major sheltering need in a post-disaster environment. Different from the previous studies, this article aims to focus on the design of a temporary shelter that can respond to different user types and disaster scenarios through mass customization, using Fuzzy Neural Tree as a novel approach. While serving as a temporary space, the design outcomes are expected to create a more neighbourhood-like pattern with a stronger sense of community for the users compared to the previous examples.
keywords Humanitarian design, emergency architecture, computational design, Fuzzy Neural Tree, Multi-Objective Genetic Algorithms
series journal
email
last changed 2019/08/07 14:04

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_357884 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002