CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 623

_id caadria2019_202
id caadria2019_202
authors Yang, Chunxia, Gu, Zhuoxing and Yao, Ziying
year 2019
title Adaptive Urban Design Research based on Multi-Agent System - Taking The Urban Renewal Design Of Shanghai Hongkou Port Area As An Example
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 225-234
doi https://doi.org/10.52842/conf.caadria.2019.1.225
summary Utilizing digital method to establish a multi-agent simulation platform and establish an interactive simulation between site elements and agents particles behavior. In this study, urban space could not have the absolute frozen state, it is always evolving and self-renewing. We hope to integrate such unstable relationships into urban design methods and programs. By constructing various type of agent particles and the interaction behaviors, we not only directly simulate the flow of people or traffic, but also simulate the public space relationship such as line of sight space, waterfront space accessibility, commercial supporting function layout, and historical and cultural block attraction from a more abstract level. From macro to micro, the result of spatial simulation has an intrinsic close causal relationship with the site's landform, building status, site function, and planning pattern, can be the basis for space generation.
keywords Self-organization; Multi-agent System; Cluster City; Particle Personality; Site Elements
series CAADRIA
email
last changed 2022/06/07 07:57

_id acadia19_630
id acadia19_630
authors Ahlquist, Sean
year 2019
title Expanding the Systematic Agencyof a Material System
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 630-641
doi https://doi.org/10.52842/conf.acadia.2019.630
summary Computational design and fabrication have reached an accomplished level of ubiquity and proficiency in the field of architecture, in both academia and practice. Materiality driving structure, responsiveness, and spatial organization can be seen to evolve, in kind, with the capabilities to fabricate deeper material hierarchies. Such maturity of a procedural material-driven approach spurs a need to shift from the dictations of how to explorations of why material efficiencies, bespoke aesthetics, and performativity are critical to a particular architecture, requiring an examination of linkages between approach, techniques, and process. The material system defines a branch of architectural research utilizing bespoke computational techniques to generate performative material capacities that are inextricably linked to both internal and external forces and energies. This paper examines such a self-referential view to define an expanded ecological approach that integrates new modes of design agency and shift the material system from closed-loop relationship with site to open-ended reciprocation with human behavior. The critical need for this capacity is shown in applications of novel textile hybrid material systems—as sensorially-responsive environments for children with the neurological autism spectrum disorder—in ongoing research titled Social Sensory Architectures. Through engaging fabrication across all material scales, manners of elastic responsivity are shown, through a series of feasibility studies, to exhibit a capacity for children to become design agents in exploring the beneficial interrelationship of sensorimotor agency and social behavior. The paper intends to contribute a theoretical approach by which novel structural capacities of a material system can support a larger ecology of social and behavioral agency.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id caadria2019_362
id caadria2019_362
authors Lee, Jaejong, Ikeda, Yasushi and Hotta, Kensuke
year 2019
title Comparative Evaluation of Viewing Elements by Visibility Heat Map of 3D Isovist - Urban planning experiment for Shinkiba in Tokyo Bay
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 341-350
doi https://doi.org/10.52842/conf.caadria.2019.1.341
summary This paper presents a visibility analysis for 3D urban environments and its possible applications for urban design. This multi-view visibility analysis tool was generated by 3D isovist in Grasshopper, Rhino. The advantage of this analysis tool is that it can be compared within the measurement area. In addition, setting a visual object different from the existing isovist. The visual object is a landmark of a city space, such as landscape or object. First, the application experimented on the relevance between the calculation time and precision by this analysis tool. Based on the results of this experiment, it applied it to an actual part of an urban space. The multi-view visibility includes confirming the possibility of a comprehensive evaluation on the urban redevelopment and change of the view caused by the building layout plan - by numerical analysis showing the visual characteristics of the area while using 3D isovist theory. The practically applied area is Shinkiba, which is a part of Tokyo's landfill site; and while using the calculated data, multi-view visibility of each plan in the simulation of the visibility map is compared and evaluated.
keywords 3D isovist; Multi-view visibility; Comprehensive integration visibility evaluation; Urban redevelopment; Algorithmic urban design
series CAADRIA
email
last changed 2022/06/07 07:51

_id ecaadesigradi2019_427
id ecaadesigradi2019_427
authors Sanatani, Rohit Priyadarshi
year 2019
title An Empirical Inquiry into the Perceptual Qualities of Spatial Enclosures in Head Mounted Display Driven VR Systems - Quantifying the 'Intangibles' of Space
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 125-132
doi https://doi.org/10.52842/conf.ecaade.2019.3.125
summary This research is an inquiry into correlations between specific configurations of virtual spatial enclosures and corresponding perceptual responses in subjects. The experiments comprised of three sets - opening configurations, volume configurations and partition configurations. The perceptual parameters tested were Degree of Enclosure (E), Degree of Separation (P), and Spaciousness (S) respectively. Immersive virtual environments depicting enclosures with these different configurations were presented to 25 subjects through a head mounted VR gear. Responses were recorded in the form of verbal ratings. The results revealed that one's visual field along the horizontal axis at eye level plays a major role in the way specific attributes of spatial enclosures are perceived. One's perception of 'openness' in an enclosure correlated strongly with the amount of physical opening that was present along the horizontal axis at eye level, while the perception of 'spaciousness' correlated strongly with the amount of visual obstruction within one's horizontal visual field at eye level. It was found that larger unified openings between enclosures along eye level created a weaker sense of visual separation as compared smaller dispersed openings of equal cumulative area.
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_643
id ecaadesigradi2019_643
authors Stein?, Nicolai
year 2019
title Parametric Urban Design from Concept to Practice
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 817-826
doi https://doi.org/10.52842/conf.ecaade.2019.1.817
summary Little research has been made into the application of parametric urban design approaches to urban design in practice. On the part of urban design practitioners, lack of knowledge of parametric design, time constraints and a focus on day-to-day operations contribute to this situation. And on the part of parametric design researchers, lack of understanding of practice workflows, project types and media output types also contribute. The limited interaction between academia and practice in itself constitutes a barrier to changing the situation. This paper presents some first results from a research project aiming to overcome this barrier. The research design involves a theoretical framework for parameterising site design on the level of site layout, building forms and facade schemas. It also involves an analysis of typical workflows from urban design practice, as well as of the types of media which are typically used to present urban design projects.
keywords parametric design; urban design; urban design practice; methodology; workflow
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_318
id ecaadesigradi2019_318
authors Al Bondakji, Louna, Lammich, Anne-Liese and Werner, Liss C.
year 2019
title ViBe (Virtual Berlin) - Immersive Interactive 3D Urban Data Visualization - Immersive interactive 3D urban data visualization
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 83-90
doi https://doi.org/10.52842/conf.ecaade.2019.3.083
summary The project investigates the possibility of visualizing open source data in a 3D interactive virtual environment. We propose a new tool, 'ViBe'. We programmed 'ViBe' using Unity for its compatibility with HTC VIVE glasses for virtual reality (VR). ViBe offers an abstract visualization of open source data in a 3D interactive environment. The ViBe environment entails three main topics a) inhabitants, b) environmental factors, and c) land-use; acting as representatives of parameters for cities and urban design. Berlin serves as a case study. The data sets used are divided according to Berlin's twelve administrative districts. The user immerses into the virtual environment where they can choose, using the HTC Vive controllers, which district (or Berlin as a whole) they want information for and which topics they want to be visualized, and they can also teleport back and forth between the different districts. The goal of this project is to represent different urban parameters an abstract simulation where we correlate the corresponding data sets. By experiencing the city through visualized data, ViBe aims to provide the user with a clearer perspective onto the city and the relationship between its urban parameters. ViBe is designed for adults and kids, urban planners, politicians and real estate developers alike.
keywords 3D-Visualization; open source data; immersive virtual reality; interactive ; Unity
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id caadria2019_196
id caadria2019_196
authors Bekele, Mafkereseb Kassahun and Champion, Erik
year 2019
title Redefining Mixed Reality: User-Reality-Virtuality and Virtual Heritage Perspectives
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 675-684
doi https://doi.org/10.52842/conf.caadria.2019.2.675
summary The primary objective of this paper is to present a redefinition of Mixed Reality from a perspective emphasizing the relationship between users, virtuality and reality as a fundamental component. The redefinition is motivated by three primary reasons. Firstly, current literature in which Augmented Reality is the focus appears to approach Augmented Reality as an alternative to Mixed Reality. Secondly, Mixed Reality is often considered to encompass Augmented Reality and Virtual Reality rather than specifying it as a segment along the reality-virtuality continuum. Thirdly, most common definitions of Augmented Reality (AR), Augmented Virtuality (AV), Virtual Reality (VR) and Mixed Reality (MxR) in current literature are based on outdated display technologies, and a relationship between virtuality and reality, neglecting the importance of the users necessarily complicit sense of immersion from the relationship. The focus of existing definitions is thus currently technological, rather than experiential. We resolve this by redefining the continuum and MxR, taking into consideration the experiential symbiotic relationship and interaction between users, reality, and current immersive reality technologies. In addition, the paper will suggest some high-level overview of the redefinition's contextual applicability to the Virtual Heritage (VH) domain.
keywords Mixed Reality; Reality-Virtuality Continuum; Virtual Heritage
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_381
id ecaadesigradi2019_381
authors Buš, Peter
year 2019
title Large-scale Prototyping Utilising Technologies and Participation - On-demand and Crowd-driven Urban Scenarios
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 847-854
doi https://doi.org/10.52842/conf.ecaade.2019.2.847
summary The paper theorises and elaborates the idea of crowd-driven assemblies for flexible and adaptive constructions utilising automatic technologies and participatory activities within the context of twenty-first century cities. As economic and technological movements and shifts in society and cultures are present and ongoing, the building technology needs to incorporate human inputs following the aspects of customisation to build adaptive architectural and urban scenarios based on immediate decisions made according to local conditions or specific spatial demands. In particular, the paper focuses on large-scale prototyping for urban applications along with on-site interactions between humans and automatic building technologies to create on-demand spatial scenarios. It discusses the current precedents in research and practice and speculates future directions to be taken in creation, development or customisation of contemporary and future cities based on participatory and crowd-driven building activities. The main aim of this theoretical overview is to offer a more comprehensive understanding of the relations between technology and humans in the context of reactive and responsive built environments.
keywords large-scale urban prototyping; on-site participation; human-machine interaction; intelligent cities; responsive cities; urban autopoiesis
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id lasg_whitepapers_2019_089
id lasg_whitepapers_2019_089
authors Byrne, Daragh; and Dana Cupkova
year 2019
title Towards Psychosomatic Architecture; Attuning Reactive Architectural Materials through Biofeedback
source Living Architecture Systems Group White Papers 2019 [ISBN 978-1-988366-18-0] Riverside Architectural Press: Toronto, Canada 2019. pp.089 - 100
summary The built environment is known to affect human health and wellbeing. Yet, architecture does not respond to our bodies or our minds. It tends to be static, ignoring the human occupant, their mood, behaviors, and emotions. There is evidence that this monotony of average space is harmful to human health. Additionally, differences in gender, race and cultural conditions vary the perception of and preferences for temperature and color. To improve the psychosomatic relationship with architectural spaces, there arises the necessity for it to have a greater range of spatial reactivity and better support for personalized thermoregulation and aesthetics. This paper proposes an architecture that operates like a mood-ring, one that creates rich feedback between architecture and occupant towards individualized reactivity and expression. [Sentient Concrete] ([Image 1]) is a prototype of a thermochromically treated concrete panel that is thermally actuated by embedded electromechanical systems and can dynamically produce localized thermally reactive responses. It serves as a test case for outlining further research agendas and possible design frameworks for psychosomatic architecture.
keywords living architecture systems group, organicism, intelligent systems, design methods, engineering and art, new media art, interactive art, dissipative systems, technology, cognition, responsiveness, biomaterials, artificial natures, 4DSOUND, materials, virtual projections,
email
last changed 2019/07/29 14:02

_id caadria2019_286
id caadria2019_286
authors Dobbs, Tiara
year 2019
title Face-to-Face with People in Spaces - A method to identify face-to-face interactions using an indoor positioning system.
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 643-652
doi https://doi.org/10.52842/conf.caadria.2019.2.643
summary Recent developments in indoor positioning technology means gathering personal interaction data is possible however, the process of analysing this data to determine where and when interactions occur indoors is not yet standardised.This paper proposes a method to gather and examine indoor positioning data to infer face-to-face interactions indoors. The case study looks specifically at indoor office environment however the principles shown can be applied to other indoor spaces. This paper explores a high-level technological methodology that gathers indoor positioning data from users. A formula is used to calculate if, when and where interactions occur over a floor-plan, as well as visualising these interactions to highlight high and low interaction areas. The system considers the proximity between the individuals, the angle between their forward physical orientation, and any obstructions that might divide individuals from each other. The information presented in this paper can be used as a theoretical baseline to inform future post-occupancy evaluation methods. Additionally, this paper demonstrates the merit of using indoor positioning systems to test the effectiveness of design principles in encouraging face-to-face interactions of the users.
keywords Post-occupancy evaluations; Face-to-face interac-tions; Indoor positioning system; Data driven design
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaadesigradi2019_016
id ecaadesigradi2019_016
authors Eloy, Sara, Dias, Luís, Ourique, Lázaro and Sales Dias, Miguel
year 2019
title Home Mobility Hazards Detected via Object Recognition in Augmented Reality
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 415-422
doi https://doi.org/10.52842/conf.ecaade.2019.2.415
summary We present an Environmental Analysis and Safety Advisor system capable of identify the environmental barriers and hazards found in the homes of elderly people. This augmented reality tool runs on a portable computing device and can be used by informal and formal caregivers without specific knowledge of Accessible Design, to evaluate the safeness of an elderly home environment, ensuring that potential fall hazards are detected and corrected. The system recognizes specific indoor elements of the house (e.g. arm-chair, bed, chair), and then computes and analyses their mutual distances in the environment so that a warning of hazard is emitted in case of need (e.g. loose cable, not enough space to pass a wheelchair). In this context, we implemented object recognition at the category level of miniature versions of real sized furniture and the determination of the distance between neighboring objects, signaling if it is below a certain threshold value. Environmental Analysis tool can then recognize furniture and measure the distance between two furniture elements enabling the system to pop up an alert sign if the space left does not guarantee good accessibility.
keywords augmented reality; computer vision; object category recognition; ambient assisted living
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id acadia19_554
id acadia19_554
authors Farzaneh, Ali; Weinstock, Michael
year 2019
title Mathematical Modeling of Cities as Complex Systems
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 554-563
doi https://doi.org/10.52842/conf.acadia.2019.554
summary Within the domain of computational modelling for cities, the study of complex systems has stimulated a body of research (through mathematical and scientific modelling) that has given greater insight into the characteristic of cities. These characteristics share principles in their hierarchical organisation and formation over time with that of complex living systems. The central focus of the research lies in two parts: the first is the understanding of cities as complex systems that share principles with complex living systems; the second is the computational modelling of cities as complex systems. This paper presents a computational model capable of generating urban tissues of differentiated spatial and morphological patterns that emerge over time. The generative process is driven by simultaneous interaction and exchanges between block and network systems.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id ecaadesigradi2019_282
id ecaadesigradi2019_282
authors Fernández González, Alberto, Guerrero del Rio, Camilo and Jorquera Sepúlveda, Layla
year 2019
title BIM Chilean Social Housing Analysis - from the 70´s to 90´s
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 259-266
doi https://doi.org/10.52842/conf.ecaade.2019.1.259
summary This research based on education digs on the "evolution" of Chilean social housing between the period from 70's to 90's asking us the "phylogenic" relation between "typos" of designs that developed several problems in the urban fabric development during 20 years of intricate design just thinking in quantity but not quality in our country.The focus in this research is as the first step understanding the design behind dwellings between this time range, then its process of evolution and transformation by users, and then by BIM understand the virtues and defects of each design and rethink the typologies in a housing life cycle look for the next years.
keywords BIM; Social Housing; Catalogue; Design; Intervention; Strategies
series eCAADeSIGraDi
email
last changed 2022/06/07 07:50

_id ecaadesigradi2019_516
id ecaadesigradi2019_516
authors Fioravanti, Antonio and Trento, Armando
year 2019
title Close Future: Co-Design Assistant - How Proactive design paradigm can help
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 155-160
doi https://doi.org/10.52842/conf.ecaade.2019.1.155
summary The present paper is focused on exploring a new paradigm in architectural design process that should raise the bar for a mutual collaboration between humans and digital assistants, able to face challenging problems of XXI century. Such a collaboration will aid design process freeing designer from middle level reasoning tasks, so they could focus on exploring - on the fly - design alternatives at a higher abstraction layer of knowledge. Such an assistant should explore and instantiate as much as possible knowledge structures and their inferences thanks to an extensive use of defaults, demons and agents, combined with its power and ubiquity so that they will be able to mimic behaviour of architectural design human experts. It aims other than to deal with data (1st layer) and simple reasoning tools (2nd layer) to automate design exploring consequences and side effects of design decisions and comparing goals (3rd layer). This assistant will speed up the evaluation of fresh design solutions, will suggest solutions by means of generative systems and will be able of a digital creativity.
keywords Design process paradigm; Architectural design; Design assistant; Agents; Knowledge structures
series eCAADeSIGraDi
email
last changed 2022/06/07 07:50

_id acadia19_430
id acadia19_430
authors Goepel, Garvin
year 2019
title Augmented Construction
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 430-437
doi https://doi.org/10.52842/conf.acadia.2019.430
summary This paper discusses the integration of Mixed Reality in the design and implementation of non-standard architecture. It deliberates a method that does not require conventional 2D drawings, and the need for skilled labor, by using the aid of holographic instructions. Augmented Construction allow builders to execute complex tasks and to understand structural relations intuitively by overlaying digital design information onto their field of view on the building site. This gives the implementation system authors different levels of control. As a proof of concept, a group of non-professionals reconstructed the south wall of Corbusier’s Ronchamp chapel, the Notre-Dame du Haut, at scale 1:5 using no architectural 2D drawings but only custom-built Augmented Reality apps for HoloLens and mobile devices. This project focused on the assembly of non-standard prefabricated elements, based on an optimized parametric structure that enables designers to integrate imprecision within the construction phases into the design through a constant feedback-loop between the real and the digital. The setup was designed in a non-linear process that allows the integration of new information during the Augmented Construction phases. The paper evaluates applied Augmented Construction for further improvements and research and concludes by discussing the impact potential of Augmented Construction on architectural design, socio-cultural, and economical levels.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id ecaadesigradi2019_153
id ecaadesigradi2019_153
authors Gomez-Zamora, Paula, Bafna, Sonit, Zimring, Craig, Do, Ellen and Romero Vega, Mario
year 2019
title Spatiotemporal Occupancy for Building Analytics
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 111-120
doi https://doi.org/10.52842/conf.ecaade.2019.2.111
summary Numerous studies on Space Syntax and Evidence-based Design explored occupancy and movements in the built environment using traditional methods for behavior mapping, such as observation and surveys. This approach, however, has majorly focused on studying such behaviors as aggregated results -totals or averages- to corroborate the idea that people's interactions are outcomes of the influence of space. The research presented in this paper focuses on capturing human occupancy with a high spatiotemporal data resolution of 1 sq.ft per second (0.1 sq.mt./s). This research adapts computer vision to obtain large occupancy datasets in a hospitalization setting for one week, providing opportunities to explore correlations among spatial configurations, architectural programs, organizational activities planned and unplanned, and time. The vision is to develop new analytics for building occupancy dynamics, with the purpose of endorsing the integration of a temporal dimension into architectural research. This study introduces the "Isovist-minute"; a metric that captures the relationship between space and occupancy, towards a point of interest, in a dynamic sequence.
keywords Spatiotemporal Occupancy; Occupancy Analytics; Occupancy Patterns; Building-Organizational Performance; Healthcare Settings
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

_id caadria2019_625
id caadria2019_625
authors Konieva, Kateryna, Knecht, Katja and Koenig, Reinhard
year 2019
title Collaborative Large-Scale Urban Design with the Focus on the Agent-Based Traffic Simulation
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 221-230
doi https://doi.org/10.52842/conf.caadria.2019.2.221
summary The better integration of the knowledge and expertise from different disciplines into urban design and the creation of more interdisciplinary and collaborative work processes to accommodate this have been under discussion in related research for decades. Nevertheless, many barriers preventing a seamless collaborative work flow still persist. In this paper we present an experiment taking place under real-world conditions, which outlines an alternative way for more efficient collaboration by focusing on the design process rather than the result and thus providing additional insights for all parties involved. A parametric design approach was chosen to help mediate between the areas of expertise involved supporting the smooth transition of data, the mutual translation of design feedback and better informed design decisions as an outcome. The case study presented in this paper exemplifies the application of the approach in a design project on masterplan scale integrating inputs from urban design, economics and mobility experts; and shows the opportunity for transforming the formerly segregated design process into a platform for transparent negotiations.
keywords parametric urban design; urban mobility; collaborative design
series CAADRIA
email
last changed 2022/06/07 07:51

_id caadria2019_256
id caadria2019_256
authors Lertsithichai, Surapong
year 2019
title Augemented Architecture - Interplay between Digital and Physical Environments
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 353-362
doi https://doi.org/10.52842/conf.caadria.2019.2.353
summary In an increasingly connected world where computers are everywhere, surrounding us in embedded small portable devices, appliances and inside buildings, implementing these interconnected and embedded computers have now become common practice in the design of smart spaces and intelligent environments of today. Digital information is constantly being collected and distributed by a network of digital devices communicating with users and vice versa. New behaviors and activities that may have not been considered before in the design of architectural building types are now commonly found in public and private spaces throughout the world. In an attempt to explore and experiment with the concept of interplay between digital and physical environments, an option studio was proposed to 4th year architecture students to develop a new type of augmented architecture that corresponds to changes in human social behavior due to digital technologies. Five pilot projects are presented with experiments conducted to question three social activities commonly found in everyday lives using Arduino prototypes installed in real physical locations. The prototypes were then used as a basis for the development of large-scale projects proposed as augmented architecture.
keywords Human-Computer Interaction; Ubiquitous Computing; Virtual / Augmented Reality; Computational Design Research; IoT for Built Environments
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaadesigradi2019_152
id ecaadesigradi2019_152
authors Liotta, Salvator-John A.
year 2019
title Contemporary Architecture between Research and Practice - Experimentations in Digital Wood
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 595-604
doi https://doi.org/10.52842/conf.ecaade.2019.1.595
summary This paper is a take on contemporary works in wood designed with parametric softwares and seen from an academic and professional point of view. The knowledge about digital wood developed through Digital Fabrication Laboratories has proved to be effective but with certain limitations when used for real constructions. In fact, translating the freedom of building temporary architectures -which is usually one of the "learn by doing" activities of design studio or workshops- into wood architecture that respect all the constraints of real construction is a challenge. This paper shows several experiences where innovative ideas developed through research have been applied to temporary pavilions and real constructions in Japan, Italy and France.
keywords Parametric design and fabrication strategies; Pedagogy and Practice; CNC and Woodworking Technology; Wood complex surface
series eCAADeSIGraDi
email
last changed 2022/06/07 07:59

_id caadria2019_270
id caadria2019_270
authors Liu, Quan, Li, Xintian, Mao, Ming, Gu, Mengjie and Ye, Qingfeng
year 2019
title The Study on the Relationship between Storm Surface Runoff and the Form of Street-Block using the Cellular Automata Model
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 331-340
doi https://doi.org/10.52842/conf.caadria.2019.1.331
summary This paper focuses on the reduction of storm surface runoff through optimizing the layout of permeable green area and other morphological elements of the urban street-block, and a distributed hydrological model based on cellular automata (CA) are used to accurately distinguish the impact of storm runoff reduction of various blocks, accordingly helping to find the morphological principle of surface runoff optimization. The model includes morphological setting and hydrological setting. The morphological setting includes the shape and size, land cover, and slope of street-block. The hydrological setting is based on Nanjing, China and include the process of rainfall, infiltration, surface flow, out flow. Comparing the results of runoff indicators, it can be found that the runoff can be greatly influenced by the layout of morphological elements of street-block. Therefore, it can be reduced by optimization the form of street-block in design process.
keywords urban form; street-block; building fabric; storm surface runoff; cellular automata
series CAADRIA
email
last changed 2022/06/07 07:59

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_326529 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002