CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 617

_id ijac201917206
id ijac201917206
authors Ackerman, Aidan; Jonathan Cave, Chien-Yu Lin and Kyle Stillwell
year 2019
title Computational modeling for climate change: Simulating and visualizing a resilient landscape architecture design approach
source International Journal of Architectural Computing vol. 17 - no. 2, 125-147
summary Coastlines are changing, wildfires are raging, cities are getting hotter, and spatial designers are charged with the task of designing to mitigate these unknowns. This research examines computational digital workflows to understand and alleviate the impacts of climate change on urban landscapes. The methodology includes two separate simulation and visualization workflows. The first workflow uses an animated particle fluid simulator in combination with geographic information systems data, Photoshop software, and three-dimensional modeling and animation software to simulate erosion and sedimentation patterns, coastal inundation, and sea level rise. The second workflow integrates building information modeling data, computational fluid dynamics simulators, and parameters from EnergyPlus and Landsat to produce typologies and strategies for mitigating urban heat island effects. The effectiveness of these workflows is demonstrated by inserting design prototypes into modeled environments to visualize their success or failure. The result of these efforts is a suite of workflows which have the potential to vastly improve the efficacy with which architects and landscape architects use existing data to address the urgency of climate change.
keywords Modeling, simulation, environment, ecosystem, landscape, climate change, sea level rise, urban heat island
series journal
email
last changed 2019/08/07 14:04

_id caadria2019_413
id caadria2019_413
authors Ahrens, Chandler, Chamberlain, Roger, Mitchell, Scott, Barnstorff, Adam and Gelbard, Joshua
year 2019
title Controlling Daylight Reflectance with Cyber-physical Systems
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 433-442
doi https://doi.org/10.52842/conf.caadria.2019.1.433
summary Cyber-physical systems increasingly inform and alter the perception of atmospheric conditions within interior environments. The Catoptric Surface research project uses computation and robotics to precisely control the location of reflected daylight through a building envelope to form an image-based pattern of light on the building interior's surfaces. In an attempt to amplify or reduce spatial perception, the daylighting reflected onto architectural surfaces within a built environment generates atmospheric effects. The modification of light patterns mapped onto existing or new surfaces enables the perception of space to not rely on form alone. The mapping of a new pattern that is independent of architectural surfaces creates a visual effect of a formless atmosphere and holds the potential to affect the way people interact with the space. People need different amounts and quality of daylight depending on physiological differences due to age or the types of tasks they perform. This research argues for an informed luminous and atmospheric environment that is relative both to the user and more conceptual architectural aspirations of spatial perception controlled by a cyber-physical robotic façade system.
keywords Contextual; Computation
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_200
id ecaadesigradi2019_200
authors Ghandi, Mona
year 2019
title Cyber-Physical Emotive Spaces: Human Cyborg, Data, and Biofeedback Emotive Interaction with Compassionate Spaces
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 655-664
doi https://doi.org/10.52842/conf.ecaade.2019.2.655
summary This paper aims to link human's emotions and cognition to the built environment to improve the user's mental health and well-being. It focuses on cyber-physical adaptive spaces that can respond to the user's physiological and psychological needs based on their biological and neurological data. Through artificial intelligence and affective computing, this paper seeks to create user-oriented spaces that can learn from occupant's behavioral patterns in real-time, reduce user's anxiety and depression, enhance environmental quality, and promote more flexible human-centered designs for people with mental/physical disabilities. To achieve its objectives, this research integrates tangible computing devices/interfaces, robotic self-adjusting structures, interactive systems of control, programmable materials, human behavior, and a sensory network. Through embedded responsiveness and material intelligence, the goal is to blur the lines between the physical, digital, and biological spheres and create cyber-physical spaces that can "feel" and be controlled by the user's mind and feelings.
keywords AI for Design and Built Environment; Cyber-Physical Spaces; Artificial Emotional Intelligence; Human-Computer Interaction; Affective Computing; Mental Health and Well-Being; Interactive and Responsive Built Environments;
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

_id ecaadesigradi2019_153
id ecaadesigradi2019_153
authors Gomez-Zamora, Paula, Bafna, Sonit, Zimring, Craig, Do, Ellen and Romero Vega, Mario
year 2019
title Spatiotemporal Occupancy for Building Analytics
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 111-120
doi https://doi.org/10.52842/conf.ecaade.2019.2.111
summary Numerous studies on Space Syntax and Evidence-based Design explored occupancy and movements in the built environment using traditional methods for behavior mapping, such as observation and surveys. This approach, however, has majorly focused on studying such behaviors as aggregated results -totals or averages- to corroborate the idea that people's interactions are outcomes of the influence of space. The research presented in this paper focuses on capturing human occupancy with a high spatiotemporal data resolution of 1 sq.ft per second (0.1 sq.mt./s). This research adapts computer vision to obtain large occupancy datasets in a hospitalization setting for one week, providing opportunities to explore correlations among spatial configurations, architectural programs, organizational activities planned and unplanned, and time. The vision is to develop new analytics for building occupancy dynamics, with the purpose of endorsing the integration of a temporal dimension into architectural research. This study introduces the "Isovist-minute"; a metric that captures the relationship between space and occupancy, towards a point of interest, in a dynamic sequence.
keywords Spatiotemporal Occupancy; Occupancy Analytics; Occupancy Patterns; Building-Organizational Performance; Healthcare Settings
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

_id caadria2019_080
id caadria2019_080
authors Green, Stephen, King, Geoff, Fabbri, Alessandra, Gardner, Nicole, Haeusler, M. Hank and Zavoleas, Yannis
year 2019
title Designing Out Urban Heat Islands - Optimisation of footpath materials with different albedo value through evolutionary algorithms to address urban heat island effect
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 603-612
doi https://doi.org/10.52842/conf.caadria.2019.2.603
summary The Urban Heat Island (UHI) effect is pronounced in dense urban developments, and particular an issue in the case study city of Parramatta, where temperature increases are impacting use of public space, health, and economic productivity. To mitigate against elevated temperatures in built up areas, this research explores the optimisation of paving material layouts through using an evolutionary algorithm. High albedo (reflective) materials are objectively cooler than low albedo (absorbent) materials yet tend to be more expensive. To reduce the amount of heat absorbent pavement materials whilst keeping in mind material costs, a range of materials of different albedo levels (reflectivity) can be assigned on the same path using an evolutionary algorithm to optimise the coolest materials for the cheapest price. Over the course of this paper, this research aim will be approached using visual scripting software such as Grasshopper to simulate daylight analysis and to generate an optimisation algorithm. Previous research on the topics of UHI have revealed different methods for solving specific problems, all focusing on using software analysis to determine an informed decision on construction. The paper contributes via a computational approach of material selection to battle urban heat island effects.
keywords urban heat island; albedo value; material properties; evolutionary algorithm ; landscape architecture
series CAADRIA
email
last changed 2022/06/07 07:51

_id caadria2019_285
id caadria2019_285
authors Holth, James, Meekings, Scott, Schnabel, Marc Aurel and Moleta, Tane Jacob
year 2019
title Influences of a New Digital Cultural Layer on Design at Varying Scales
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 373-380
doi https://doi.org/10.52842/conf.caadria.2019.2.373
summary Architects work with data daily. Spatial metrics, building codes and client requirements form the main considerations for many designers, yet new layers of data are impacting the way cities and inhabitants interact with each. This data can be used to more effectively analyse and predict patterns and behaviors to produce environments better suited to users.This paper reviews a selection of ideas from across digital architectural discourse by discussing tangible outcomes from a practitioner point of view and advocates for a greater integration of this digital cultural context into the design process. This paper considers a city-wide digital logic, rather than a new-age technological zeitgeist, that is as much a part of a city as its buildings are and through this provides a lens into our environment and devices that can be used to influence design at multiple scales.
keywords Big Data; Digital Identity; Built Environment; Authenticity
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2019_256
id caadria2019_256
authors Lertsithichai, Surapong
year 2019
title Augemented Architecture - Interplay between Digital and Physical Environments
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 353-362
doi https://doi.org/10.52842/conf.caadria.2019.2.353
summary In an increasingly connected world where computers are everywhere, surrounding us in embedded small portable devices, appliances and inside buildings, implementing these interconnected and embedded computers have now become common practice in the design of smart spaces and intelligent environments of today. Digital information is constantly being collected and distributed by a network of digital devices communicating with users and vice versa. New behaviors and activities that may have not been considered before in the design of architectural building types are now commonly found in public and private spaces throughout the world. In an attempt to explore and experiment with the concept of interplay between digital and physical environments, an option studio was proposed to 4th year architecture students to develop a new type of augmented architecture that corresponds to changes in human social behavior due to digital technologies. Five pilot projects are presented with experiments conducted to question three social activities commonly found in everyday lives using Arduino prototypes installed in real physical locations. The prototypes were then used as a basis for the development of large-scale projects proposed as augmented architecture.
keywords Human-Computer Interaction; Ubiquitous Computing; Virtual / Augmented Reality; Computational Design Research; IoT for Built Environments
series CAADRIA
email
last changed 2022/06/07 07:52

_id ijac201917104
id ijac201917104
authors Matthews, Linda and Gavin Perin
year 2019
title Exploiting ambiguity: The diffraction artefact and the architectural surface
source International Journal of Architectural Computing vol. 17 - no. 1, 103-115
summary In the contemporary ‘envisioned’ environment, Internet webcams, low- and high-altitude unmanned aerial vehicles and satellites are the new vantage points from which to construct the image of the city. Armed with hi-resolution digital optical technologies, these vantage points effectively constitute a ubiquitous visioning apparatus serving either the politics of promotion or surveillance. Given the political dimensions of this apparatus, it is important to note that this digital imaging of public urban space refers to the human visual system model. In order to mimic human vision, a set of algorithm patterns are used to direct numerous ‘soft’ and ‘hard’ technologies. Mimicry thus has a cost because this insistence on the human visual system model necessitates multiple transformative moments in the production and transmission pipeline. If each transformative moment opens a potential vulnerability within the visioning apparatus, then every glitch testifies to the artificiality of the image. Moreover, every glitch potentially interrupts the political narratives be communicated in contemporary image production and transmission. Paradoxically, the current use of scripting to create glitch-like images has reimagined glitches as a discrete aesthetic category. This article counters this aestheticisation by asserting glitching as a disruption in communication. The argument will rely on scaled tests produced by one of the authors who show how duplicating the digital algorithmic patterns used within the digital imaging pipeline on any exterior building surface glitches the visual data captured within that image. Referencing image-based techniques drawn from the Baroque and contemporary modes of camouflage, it will be argued that the visual aberrations created by these algorithm-based patterned facades can modify strategically the ‘emission signature’ of selected parts of the urban fabric. In this way, the glitch becomes a way to intercede in the digital portrayal of city.
keywords Surveillance, algorithms, diffraction, pattern, disruptive, optics
series journal
email
last changed 2019/08/07 14:04

_id ecaade2023_227
id ecaade2023_227
authors Moorhouse, Jon and Freeman, Tim
year 2023
title Towards a Genome for Zero Carbon Retrofit of UK Housing
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 197–206
doi https://doi.org/10.52842/conf.ecaade.2023.2.197
summary The United Kingdom has some of the worst insulated housing stock in Northern Europe. This is in part due to the age of housing in the UK, with over 90% being built before 1990 [McCrone 2017, Piddington 2020]. Moreover, 85% of current UK housing will still be in use in 2050 by which stage their Government are targeting Net Carbon Zero [Eyre 2019]. Domestic energy use accounts for around 25% of UK carbon emissions. The UK will need to retrofit 20 million dwellings in order to meet this target. If this delivery were evenly spread, it would equate to over 2,000 retrofit completions each day. Government-funded initiatives are stimulating the market, with upwards of 60,000 social housing retrofits planned for 2023, but it is clear that a system must be developed to enable the design and implementation of housing-stock improvement at a large scale.This paper charts the 20-year development of a digital approach to the design for low-carbon domestic retrofit by architects Constructive Thinking Studio Limited and thence documents the emergence of a collaborative approach to retrofit patterns on a National scale. The author has led the Research and Development stream of this practice, developing a Building Information Modelling methodology and integrated Energy Modelling techniques to optimise design for housing retrofit [Georgiadou 2019, Ben 2020], and then inform a growing palette of details and a database of validated solutions [Moorhouse 2013] that can grow and be used to predict options for future projects [D’Angelo 2022]. The data is augmented by monitoring energy and environmental performance, enabling a growing body of knowledge that can be aligned with existing big data to simulate the benefits of nationwide stock improvement. The paper outlines incremental case studies and collaborative methods pivotal in developing this work The proposed outcome of the work is a Retrofit Genome that is available at a national level.
keywords Retrofit, Housing, Zero-Carbon, BIM, Big Data, Design Genome
series eCAADe
email
last changed 2023/12/10 10:49

_id acadia19_246
id acadia19_246
authors Zhang, Viola; Qian, William; Sabin, Jenny
year 2019
title PolyBrickH2.0
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 246-257
doi https://doi.org/10.52842/conf.acadia.2019.246
summary This project emerged from collaborative trans-disciplinary research between architecture, engineering, biology, and materials science to generate novel applications in micro-scale 3D printed ceramics. Specifically, PolyBrick H2.0 adapts internal bone-based hydraulic networks through controlled water flow from 3D printed micro-textures and surface chemistry. Engagement across disciplines produced the PolyBrick series at the Sabin Lab (Sabin, Miller, and Cassab 2014) . The series is a manifestation of novel digital fabrication techniques, bioinspired design, materials inquiry, and contemporary evolutions of building materials. A new purpose for the brick is explored that is not solely focused on the mechanical constraints necessary for built masonry structures. PolyBrick H2.0 interweaves the intricacies of living systems (beings and environments combined) to create a more responsive and interactive material system. The PolyBrick 2.0 series looks at human bone as a design model for foundational research. PolyBrick H2.0 merges the cortical bone hydraulic network with new functionalities as a water filtration and collection system for self-preservation and conservation as well as passive cooling solutions. It also pushes the ability of 3D printing techniques to the microscale. These functionalities are investigated under context for a better construction material, but its use may extend further.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:57

_id cf2019_048
id cf2019_048
authors Argota Sanchez-Vaquerizo, Javier and Daniel Cardoso Llach
year 2019
title The Social Life of Small Urban Spaces 2.0 Three Experiments in Computational Urban Studies
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 430
summary This paper introduces a novel framework for urban analysis that leverages computational techniques, along with established urban research methods, to study how people use urban public space. Through three case studies in different urban locations in Europe and the US, it demonstrates how recent machine learning and computer vision techniques may assist us in producing unprecedently detailed portraits of the relative influence of urban and environmental variables on people’s use of public space. The paper further discusses the potential of this framework to enable empirically-enriched forms of urban and social analysis with applications in urban planning, design, research, and policy.
keywords Data Analytics, Urban Design, Machine Learning, Artificial Intelligence, Big Data, Space Syntax
series CAAD Futures
email
last changed 2019/07/29 14:18

_id caadria2019_328
id caadria2019_328
authors Boychenko, Kristina
year 2019
title Agency of Interactive Space in Social Relationship
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 381-390
doi https://doi.org/10.52842/conf.caadria.2019.2.381
summary Embedded computation allows built space to be intelligent and get smarter, becoming interactive and gaining agency with ability not to merely adapt to changing conditions, but to process information and react, observe and learn, communicate and make decisions. The paper investigates agency of interactive space based on interpretation of input data, like users' response to the spatial agency, data from environment or other actors, and ability to change its performance accordingly. The research is focused on the role of interactive space as an active participant in social relationship communicating with users, constantly changing and having its' attitude. The research is aimed at defining social role of interactive environments and explains how they interact with users, what qualities are enabled by interactive behaviour and how do they influence space perception, revealing the significance of bi-directional communication between society and smart spaces. Interactive space does not just providing location for activities and facility for lifestyle, but influences these activities. Users and interactive space constitute one social network being constantly aware of each other establishing bi-directional communication.
keywords interactive architecture; computation; programmable; design; social
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2019_195
id caadria2019_195
authors Brandao, Filipe JS and Paio, Alexandra
year 2019
title Context-Aware Mass Customization Construction System - Methods for user captured as-built plans
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 101-110
doi https://doi.org/10.52842/conf.caadria.2019.2.101
summary The problem of context, a fundamental aspect of dealing with built environments, has not been adequately addressed by mass customization systems so far, which has limited their scope of application. The aim of the present article is to evaluate the adequacy of existing methods of producing as-built plans of rooms by non-expert users for the automatic generation and production of partition walls for building renovation. This paper highlights criteria to develop appropriate methods of capturing context for mass customization construction systems.
keywords Mass Customization; As-built Plans; Building Renovation; Computational design
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_381
id ecaadesigradi2019_381
authors Buš, Peter
year 2019
title Large-scale Prototyping Utilising Technologies and Participation - On-demand and Crowd-driven Urban Scenarios
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 847-854
doi https://doi.org/10.52842/conf.ecaade.2019.2.847
summary The paper theorises and elaborates the idea of crowd-driven assemblies for flexible and adaptive constructions utilising automatic technologies and participatory activities within the context of twenty-first century cities. As economic and technological movements and shifts in society and cultures are present and ongoing, the building technology needs to incorporate human inputs following the aspects of customisation to build adaptive architectural and urban scenarios based on immediate decisions made according to local conditions or specific spatial demands. In particular, the paper focuses on large-scale prototyping for urban applications along with on-site interactions between humans and automatic building technologies to create on-demand spatial scenarios. It discusses the current precedents in research and practice and speculates future directions to be taken in creation, development or customisation of contemporary and future cities based on participatory and crowd-driven building activities. The main aim of this theoretical overview is to offer a more comprehensive understanding of the relations between technology and humans in the context of reactive and responsive built environments.
keywords large-scale urban prototyping; on-site participation; human-machine interaction; intelligent cities; responsive cities; urban autopoiesis
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id cf2019_069
id cf2019_069
authors Caetano, Inês ;and António Leitão
year 2019
title Weaving Architectural Façades: Exploring algorithmic stripe-based design patterns
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 565-584
summary With the recent technological developments, particularly, the integration of computational design approaches in architecture, the traditional art techniques became increasingly important in the field. This includes weaving techniques, which have a promising application in architectural screens and façade designs. Nevertheless, the adoption of weaving as a design strategy still has many unexplored areas, particularly those related to Algorithmic Design (AD). This paper addresses the creation of weave-based façade patterns by presenting a Generative System (GS) that aids architects that intend to use AD in the design of façades inspired on traditional weaving techniques. This GS proves to reduce the time and effort spent with the programming task, while supporting the exploration of a wider solution space. Moreover, in addition to enabling the integration of user-generated weaving patterns, the GS also provides rationalization algorithms to assess the construction feasibility of the obtained solutions.
keywords Algorithmic Design, Façade Design, Weaving Patterns, Algorithmic Framework, Rationalization Processes
series CAAD Futures
type normal paper
email
last changed 2019/07/29 14:19

_id ecaadesigradi2019_358
id ecaadesigradi2019_358
authors Cocho-Bermejo, Ana and Navarro-Mateu, Diego
year 2019
title User-centered Responsive Sunlight Reorientation System based on Multiagent Decision-making, UDaMaS
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 695-704
doi https://doi.org/10.52842/conf.ecaade.2019.2.695
summary UDaMaS (Universal Daylight Managing System), is a user-centered responsive system for built scenarios that can reorient sunlight to improve light conditions in specific urban environments.This on-going research is based on developing more efficient energy/light supply methods through IoT (internet of things) and data mining based on the improved relationship with technology.A user centered responsive multi-agent system using norm emergence is proposed for controlling the efficiency of sunlight reoriented society of mirror robots. Society of robots will make decisions about which users to serve, depending on the users' requests through the UdaMas app.
keywords responsive; lighting; user-centric; multi-agent system; artificial intelligence; ambient intelligence
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id caadria2021_089
id caadria2021_089
authors Cristie, Verina, Ibrahim, Nazim and Joyce, Sam Conrad
year 2021
title Capturing and Evaluating Parametric Design Exploration in a Collaborative Environment - A study case of versioning for parametric design
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 131-140
doi https://doi.org/10.52842/conf.caadria.2021.2.131
summary Although parametric modelling and digital design tools have become ubiquitous in digital design, there is a limited understanding of how designers apply them in their design processes (Yu et al., 2014). This paper looks at the use of GHShot versioning tool developed by the authors (Cristie & Joyce, 2018; 2019) used to capture and track changes and progression of parametric models to understand early-stage design exploration and collaboration empirically. We introduce both development history graph-based metrics (macro-process) and parametric model and geometry change metric (micro-process) as frameworks to explore and understand the captured progression data. These metrics, applied to data collected from three cohorts of classroom collaborative design exercises, exhibited students' distinct modification patterns such as major and complex creation processes or minor parameter explorations. Finally, with the metrics' applicability as an objective language to describe the (collaborative) design process, we recommend using versioning for more data-driven insight into parametric design exploration processes.
keywords Design exploration; parametric design; history recording; version control; collaborative design
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2020_090
id caadria2020_090
authors Crolla, Kristof and Goepel, Garvin
year 2020
title Designing with Uncertainty - Objectile vibrancy in the TOROO bamboo pavilion
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 507-516
doi https://doi.org/10.52842/conf.caadria.2020.2.507
summary This paper challenges digital preoccupations with precision and control and questions the status of tolerance, allowance and error in post-digital, human-centred architectural production. It uses the participatory action research design-and-build project TOROO, a light-weight bending-active bamboo shell structure, built in Hsinchu, Taiwan, in June 2019, as a demonstrator project to discuss how protean digital design diagrams, named 'vibrant objectiles,' are capable of productively absorbing serendipity throughout project crystallisation processes, increasing designer agency in challenging construction contexts with high degrees of unpredictability. The demonstrator project is then used to discuss future research directions that were exposed by the project. Finally, the applicability of working with 'vibrant objectiles' is discussed beyond its local project use. Common characteristics and requirements are extracted, highlighting project setup preconditions for which the scope covered by the architect needs to be both broadened and relaxed to allow for feedback from design implementation phases.
keywords Post-digital; Bamboo; Bending-active shell structures; Uncertainty; Objectile
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_334
id ecaadesigradi2019_334
authors Dembski, Fabian, Wössner, Uwe and Letzgus, Mike
year 2019
title The Digital Twin - Tackling Urban Challenges with Models, Spatial Analysis and Numerical Simulations in Immersive Virtual Environments.
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 795-804
doi https://doi.org/10.52842/conf.ecaade.2019.1.795
summary For the built environment's transformation we are confronted with complex dynamics connected to economic, ecologic and demographic change (Czerkauer-Yamu et al., 2013; Yamu, 2014). In general, cities are complex systems being a "heterogeneous mosaic" of a variety of cultures and functions, characterised by diverging perceptions and interests (ibid). The juxtaposed perceptions and interests in relation to ongoing spatial processes of change create a particularly complex situation. Thus, for planning processes we are in need of approaches that are able to cope not only with the urban complexity but also allow for participatory processes to empower citizens. This paper presents the approach of using Digital Twins in virtual reality (VR) for civic engagement in urban planning, enriched with quantitative and qualitative empirical data as one promising approach to tackle not only the complexity of cities but also involve citizens in the planning process.
keywords Digital Twin; Collaborative Planning; Planning and Decision Support; Participation; Virtual Reality; Global System Science
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id ecaadesigradi2019_645
id ecaadesigradi2019_645
authors Diniz, Nancy, Melendez, Frank, Boonyapanachoti, Woraya and Morales, Sebastian
year 2019
title Body Architectures - Real time data visualization and responsive immersive environments
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 739-746
doi https://doi.org/10.52842/conf.ecaade.2019.2.739
summary This project sets up a design framework that promotes augmenting the human body's interactions exploring methods for merging and blending the users of physical and virtual environments, through the design of wearable devices that are embedded with sensors and actuators. This allows for haptic and visual feedback through the use of data that reflects changes in the surrounding physical environment, and visualized in the immersive Virtual Reality (VR) environment. We consider the Body Architectures project to serve as mechanisms for augmenting the body in relation to the virtual architecture. These wearable devices serve to bring a hyper-awareness to our senses, as closed-loop cybernetic systems that utilize 'digitized' biometric and environmental data through the use of 3D scanning technologies and cloud point models, virtual reality visualization, sensing technologies, and actuation. The design of Body Architectures relies on hybrid design, transdisciplinary collaborations, to explore new possibilities for wearable body architectures that evolve human-machine-environment interactions, and create hyper awareness of the temporal, atmospheric qualities that make up our experience of space, as 'sensorial envelopes' (Lally 2014).
keywords Virtual Reality; Wearable Design; Physical Computing; Data Visualization; Immersive Environments; Responsive Architecture
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_50643 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002