CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 624

_id acadia19_266
id acadia19_266
authors MacDonald, Katie; Schumann, Kyle; Hauptman, Jonas
year 2019
title Digital Fabrication of Standardless Materials
doi https://doi.org/10.52842/conf.acadia.2019.266
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 266-275
summary Digital fabrication techniques have long been aimed at creating unique geometries and forms from standardized, often industrially produced or processed material. These materials have predictable, uniform geometries which allow the fabrication process to be aimed at producing variation through Computer Numerically Controlled (CNC) milling of topological surfaces from volumetric stock or profiles from sheet material. More recently, digital fabrication techniques have been expanded and categorized to address the inherent variation in a found material. Digital materiallurgy defines an approach where standard techniques are applied to non-standard materials; in form-searching, non-standard materials such as unmilled timber members or chunks of concrete waste are analyzed for optimization within a digital fabrication process. Processes of photogrammetry, 3D scanning, and parametric analysis have been used to advance these methods and minimize part reduction and material waste. In this paper, we explore how such methods may be applied to materials without traditional standards—allowing for materials that are inherently variable in geometry to be made usable and for such eccentricities to be leveraged within a design. This paper uses bamboo as a case study for standardless material, and proposes an integrated digital fabrication method for using such material: (1) material stock analysis using sensing technology, (2) parametric best-fit part selection that optimizes a given piece of material within an assembly, and (3) parametric feedback between available material and the design of an assembly which allows for the assembly to adjust its geometry to a set of available parts.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:59

_id ecaadesigradi2019_354
id ecaadesigradi2019_354
authors Mendes Correia, Ricardo and Guerreiro, Rosalia
year 2019
title The Roots of 4IR in Architecture - A military drawing machine used for space perception in architecture
doi https://doi.org/10.52842/conf.ecaade.2019.1.397
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 397-406
summary This paper analyses how architecture became a pioneer discipline in digital interactivity research. It describes how that pioneer research derives from a lineage of researchers whose work spans more than two decades beginning in the early fifties. Military funds enabled the creation of the first computer graphic interfaces that evolved into a "drawing machine", the first interactive CAD, that made possible the role of architecture as a pioneering discipline in interactivity research. It is expected to demonstrate that the same architecture that nowadays uses mainly interactive digital design was one of first disciplines to research interactivity addressing a gap in the study of the link between architecture and interactivity.
keywords CAD; interactivity research; architectural design; ;
series eCAADeSIGraDi
email
last changed 2022/06/07 07:58

_id ecaadesigradi2019_481
id ecaadesigradi2019_481
authors Vasconselos, Tássia Borges de and Sperling, David Moreno
year 2019
title Notes on Digital Architectural Design in the Undergraduate Teaching in Brazil
doi https://doi.org/10.52842/conf.ecaade.2019.1.147
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 147-154
summary This study focus in design process that uses the digital environment in context of undergraduate courses of Architecture and Urbanism, mainly the Digital Architectural Design (DAD). From author's previous studies that classified the teaching practice in Latin America, the Brazilian data were analyzed due to its expressive and heterogeneous features. Faced with a scenario that points to institutional characteristics reflect in the teaching approach, a horizontal mapping was performed. A data cross-referencing through correlation methodology was carried out. As result, there is a prevalence of public institutions that use teaching practice using DAD, most of them located at South and Southeast with a close link between teaching and research.
keywords Digital Architectural Design; Levels of design computability; Mapping study; Teaching practices
series eCAADeSIGraDi
email
last changed 2022/06/07 07:58

_id caadria2019_070
id caadria2019_070
authors White, Michael, Haeusler, M. Hank and Zavoleas, Yannis
year 2019
title Planting Design by Simulated Competition - A computational-ecological model for the selection and distribution of plant species on urban roof terraces
doi https://doi.org/10.52842/conf.caadria.2019.2.031
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 31-40
summary This paper investigates ecologically-inspired computational strategies for the intelligent performance based landscape design of urban rooftop gardens. Plant communities in nature form resilient layouts that maximise use of available resources through a process of competitive pressure. Simulating these processes could allow us to design vegetation systems for the built environment that are adapted to variables on site, while meeting our design goals. This paper uses an agent-based model to ask if simulated ecological competition can be used as a computational method for producing effective planting layouts for urban roof terraces. A case study will be conducted to review the performance of the simulation. Through further research we will examine whether these strategies can also optimise for benefits including increased biodiversity, favourable microclimate, and reduced energy and water use.
keywords Computational Landscape Architecture / Ecology; Urban Heat Island; Rooftop Terrace Gardens; Emergence; Climate Change
series CAADRIA
email
last changed 2022/06/07 07:57

_id cf2019_058
id cf2019_058
authors Zandoná Pazini, Ernani and Andrea Quadrado Mussi
year 2019
title Parametric Design: measuring learning states
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 485-498
summary Project teaching and learning comprises properties, strategies and procedures that currently involve computational thinking and logical reasoning. In general, this problem arises from the possibilities offered by the new software and the increase of the level of dominion of the project by the designer. In this context, this study aims to estimate how much the student profile contemporary of architecture is motivated and engaged in learning new project processes that use computational reasoning and logical reasoning, characteristic of parametric design. Methodologically, the research is based on the theory of Flow, presents results of an investigation of engagement and learning of students of a school of Architecture and Urbanism in Brazil, referring to the themes and uses of parametric drawing. This study contributed to the practice and use of parametric design in the educational environment, besides allowing the integration of computational thinking in the creative process of the project.
keywords Parametric Design, Project Processes, Learning, Computational Thinking
series CAAD Futures
email
last changed 2019/07/29 14:18

_id acadia21_76
id acadia21_76
authors Smith, Rebecca
year 2021
title Passive Listening and Evidence Collection
doi https://doi.org/10.52842/conf.acadia.2021.076
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 76-81.
summary In this paper, I present the commercial, urban-scale gunshot detection system ShotSpotter in contrast with a range of ecological sensing examples which monitor animal vocalizations. Gunshot detection sensors are used to alert law enforcement that a gunshot has occurred and to collect evidence. They are intertwined with processes of criminalization, in which the individual, rather than the collective, is targeted for punishment. Ecological sensors are used as a “passive” practice of information gathering which seeks to understand the health of a given ecosystem through monitoring population demographics, and to document the collective harms of anthropogenic change (Stowell and Sueur 2020). In both examples, the ability of sensing infrastructures to “join up and speed up” (Gabrys 2019, 1) is increasing with the use of machine learning to identify patterns and objects: a new form of expertise through which the differential agendas of these systems are implemented and made visible. I trace the differential agendas of these systems as they manifest through varied components: the spatial distribution of hardware in the existing urban environment and / or landscape; the software and other informational processes that organize and translate the data; the visualization of acoustical sensing data; the commercial factors surrounding the production of material components; and the apps, platforms, and other forms of media through which information is made available to different stakeholders. I take an interpretive and qualitative approach to the analysis of these systems as cultural artifacts (Winner 1980), to demonstrate how the political and social stakes of the technology are embedded throughout them.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2019_600
id caadria2019_600
authors Subramanian, Ramanathan, Tuncer, Bige and Binder, Alexander
year 2019
title Thermal Comfort Based Performance Appraisal of Covered Walkways in Singapore
doi https://doi.org/10.52842/conf.caadria.2019.1.805
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 805-814
summary This paper describes an ongoing research project to establish a thermal comfort based walkway performance analysis that embodies the effect of context and climate. This study combines the survey data (perceived comfort) from walkway users and thermal sensor data (actual thermal comfort) collected at various covered walkways across Singapore. One contribution is the combination of subjective and objective comfort measurements in a tropical context . We work with descriptive statistical measures to help better understand the ranges of thermal comfort offered by covered walkways. This research highlighted that the comfort offered by current walkways were identified to have no significance, and the walkways are unable to reduce the heat stress into the moderate range at all times of the day. A key contribution of this research project identified missing datasets and help improve our data collection methodology for the future expansion dataset that employ machine learning.
keywords Biometeorology; Data analytics; Informed design
series CAADRIA
email
last changed 2022/06/07 07:56

_id ijac201917206
id ijac201917206
authors Ackerman, Aidan; Jonathan Cave, Chien-Yu Lin and Kyle Stillwell
year 2019
title Computational modeling for climate change: Simulating and visualizing a resilient landscape architecture design approach
source International Journal of Architectural Computing vol. 17 - no. 2, 125-147
summary Coastlines are changing, wildfires are raging, cities are getting hotter, and spatial designers are charged with the task of designing to mitigate these unknowns. This research examines computational digital workflows to understand and alleviate the impacts of climate change on urban landscapes. The methodology includes two separate simulation and visualization workflows. The first workflow uses an animated particle fluid simulator in combination with geographic information systems data, Photoshop software, and three-dimensional modeling and animation software to simulate erosion and sedimentation patterns, coastal inundation, and sea level rise. The second workflow integrates building information modeling data, computational fluid dynamics simulators, and parameters from EnergyPlus and Landsat to produce typologies and strategies for mitigating urban heat island effects. The effectiveness of these workflows is demonstrated by inserting design prototypes into modeled environments to visualize their success or failure. The result of these efforts is a suite of workflows which have the potential to vastly improve the efficacy with which architects and landscape architects use existing data to address the urgency of climate change.
keywords Modeling, simulation, environment, ecosystem, landscape, climate change, sea level rise, urban heat island
series journal
email
last changed 2019/08/07 14:04

_id caadria2019_005
id caadria2019_005
authors Alva, Pradeep, Janssen, Patrick and Stouffs, Rudi
year 2019
title A Spatial Decision Support Framework For Planning - Creating Tool-Chains for Organisational Teams
doi https://doi.org/10.52842/conf.caadria.2019.2.011
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 11-20
summary In practice, most planners do not make significant use of planning support systems. Although significant research has been conducted, the focus tends to be on supporting individual tasks, and the outcomes are often the development of new stand-alone tools that are difficult to integrate into existing workflows. The knowledge contribution in this paper focuses on developing a novel spatial decision support framework focusing on the workflows and tool-chains that span across different teams within an organisation, with varying skill sets and objectives. In the proposed framework, the core decision-making process uses set decision parameters that are combined using a weighted decision tree. The framework is evaluated by developing and testing tool-chains for a real-world land suitability case study. The tool-chain was implemented on top of a GIS platform.
keywords GIS SDSS PSS; Planning Automation; Geoprocessing; Data Analytics; Geoinformatics
series CAADRIA
email
last changed 2022/06/07 07:54

_id ijac201917403
id ijac201917403
authors Alva, Pradeep; Patrick Janssen and Rudi Stouffs
year 2019
title Geospatial tool-chains: Planning support systems for organisational teams
source International Journal of Architectural Computing vol. 17 - no. 4, 336-356
summary In practice, most planners do not make significant use of planning support systems. Although extensive research has been conducted, the focus tends to be on supporting individual tasks, and the outcomes are often the development of new stand-alone tools that are difficult to integrate into existing workflows. The knowledge contribution in this article focuses on developing a novel spatial decision support framework focusing on the workflows and tool-chains that span across different teams with varying skill sets and objectives, within an organisation. In the proposed framework, the core decision-making process uses a set of decision parameters that are combined using a weighted decision tree. The framework is evaluated by developing and testing a workflow and GIS tool-chain for a real-world case study of land suitability and mixed-use potentiality analysis.
keywords GIS, SDSS, PSS, planning automation, TOD, raster geoprocessing, data analytics, geoinformatics
series journal
email
last changed 2020/11/02 13:34

_id cf2019_020
id cf2019_020
authors Belém, Catarina; Luís Santos and António Leitão
year 2019
title On the Impact of Machine Learning: Architecture without Architects?
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 148-167
summary Architecture has always followed and adopted technological breakthroughs of other areas. As a case in point, in the last decades, the field of computation changed the face of architectural practice. Considering the recent breakthroughs of Machine Learning (ML), it is expectable to see architecture adopting ML-based approaches. However, it is not yet clear how much this adoption will change the architectural practice and in order to forecast this change it is necessary to understand the foundations of ML and its impact in other fields of human activity. This paper discusses important ML techniques and areas where they were successfully applied. Based on those examples, this paper forecast hypothetical uses of ML in the realm of building design. In particular, we examine ML approaches in conceptualization, algorithmization, modeling, and optimization tasks. In the end, we conjecture potential applications of such approaches, suggest future lines of research, and speculate on the future face of the architectural profession.
keywords Machine Learning, Algorithmic Design, AI for Building Design
series CAAD Futures
type normal paper
email
last changed 2019/07/29 14:54

_id caadria2020_090
id caadria2020_090
authors Crolla, Kristof and Goepel, Garvin
year 2020
title Designing with Uncertainty - Objectile vibrancy in the TOROO bamboo pavilion
doi https://doi.org/10.52842/conf.caadria.2020.2.507
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 507-516
summary This paper challenges digital preoccupations with precision and control and questions the status of tolerance, allowance and error in post-digital, human-centred architectural production. It uses the participatory action research design-and-build project TOROO, a light-weight bending-active bamboo shell structure, built in Hsinchu, Taiwan, in June 2019, as a demonstrator project to discuss how protean digital design diagrams, named 'vibrant objectiles,' are capable of productively absorbing serendipity throughout project crystallisation processes, increasing designer agency in challenging construction contexts with high degrees of unpredictability. The demonstrator project is then used to discuss future research directions that were exposed by the project. Finally, the applicability of working with 'vibrant objectiles' is discussed beyond its local project use. Common characteristics and requirements are extracted, highlighting project setup preconditions for which the scope covered by the architect needs to be both broadened and relaxed to allow for feedback from design implementation phases.
keywords Post-digital; Bamboo; Bending-active shell structures; Uncertainty; Objectile
series CAADRIA
email
last changed 2022/06/07 07:56

_id acadia19_412
id acadia19_412
authors Del Campo, Matias; Manninger, Sandra; Carlson, Alexandra
year 2019
title Imaginary Plans
doi https://doi.org/10.52842/conf.acadia.2019.412
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 412-418
summary Artificial Neural Networks (NN) have become ubiquitous across disciplines due to their high performance in modeling the real world to execute complex tasks in the wild. This paper presents a computational design approach that uses the internal representations of deep vision neural networks to generate and transfer stylistic form edits to both 2D floor plans and building sections. The main aim of this paper is to demonstrate and interrogate a design technique based on deep learning. The discussion includes aspects of machine learning, 2D to 2D style transfers, and generative adversarial processes. The paper examines the meaning of agency in a world where decision making processes are defined by human/machine collaborations (Figure 1), and their relationship to aspects of a Posthuman design ecology. Taking cues from the language used by experts in AI, such as Hallucinations, Dreaming, Style Transfer, and Vision, the paper strives to clarify the position and role of Artificial Intelligence in the discipline of Architecture.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id ecaadesigradi2019_641
id ecaadesigradi2019_641
authors Dunn, Kate, Haeusler, M. Hank, Zavoleas, Yannis, Bishop, Mel, Dafforn, Katherine, Sedano, Francisco, Yu, Daniel and Schaefer, Nina
year 2019
title Recycled Sustainable 3D Printing Materials for Marine Environments
doi https://doi.org/10.52842/conf.ecaade.2019.2.583
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 583-592
summary The paper discusses the design and testing of sustainable recycled materials for large scale 3D printed construction in a marine context. This research is part of a 3-phase project involving a multidisciplinary team of designers, architects, material specialists and marine ecologists. The Bio Shelters Project uses an innovative approach to designing and fabricating marine bio-shelters that ecologically enhance seawalls, by promoting native biodiversity and providing seawater filtration, carbon sequestration and fisheries productivity. The design of the 3D print structure is a data-driven approach that incorporates ecological data to optimise the form for growth and survivorship of marine species under the environmental conditions of the installation site as well as being an integral part of the design project and the site.
keywords 3D printing; material research; sustainability; marine biology
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id ecaadesigradi2019_648
id ecaadesigradi2019_648
authors Eisenstadt, Viktor, Langenhan, Christoph and Althoff, Klaus-Dieter
year 2019
title Generation of Floor Plan Variations with Convolutional Neural Networks and Case-based Reasoning - An approach for transformative adaptation of room configurations within a framework for support of early conceptual design phases
doi https://doi.org/10.52842/conf.ecaade.2019.2.079
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 79-84
summary We present an approach for computer-aided generation of different variations of floor plans during the early phases of conceptual design in architecture. The early design phases are mostly characterized by the processes of inspiration gaining and search for contextual help in order to improve the building design at hand. The generation method described in this work uses the novel as well as established artificial intelligence methods, namely, generative adversarial nets and case-based reasoning, for creation of possible evolutions of the current design based on the most similar previous designs. The main goal of this approach is to provide the designer with information on how the current floor plan can evolve over time in order to influence the direction of the design process. The work described in this paper is part of the methodology FLEA (Find, Learn, Explain, Adapt) whose task is to provide a holistic structure for support of the early conceptual phases in architecture. The approach is implemented as the adaptation component of the framework MetisCBR that is based on FLEA.
keywords room configuration; adaptation; case-based reasoning; convolutional neural networks; conceptual design
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id cf2019_005
id cf2019_005
authors Eisenstadt, Viktor; Klaus-Dieter Althoff and Christoph Langenhan
year 2019
title Supporting Architectural Design Process with FLEA A Distributed AI Methodology for Retrieval, Suggestion, Adaptation, and Explanation of Room Configurations
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 24
summary The artificial intelligence methods, such as case-based reasoning and artificial neural networks were already applied to the task of architectural design support in a multitude of specific approaches and tools. However, modern AI trends, such as Explainable AI (XAI), and additional features, such as providing contextual suggestions for the next step of the design process, were rarely considered an integral part of these approaches or simply not available. In this paper, we present an application of a distributed AI-based methodology FLEA (Find, Learn, Explain, Adapt) to the task of room configuration during the early conceptual phases of architectural design. The implementation of the methodology in the framework MetisCBR applies CBR-based methods for retrieval of similar floor plans to suggest possibly inspirational designs and to explain the returned results with specific explanation patterns. Furthermore, it makes use of a farm of recurrent neural networks to suggest contextually suitable next configuration steps and to present design variations that show how the designs may evolve in the future. The flexibility of FLEA allows for variational use of its components in order to activate the currently required modules only. The methodology was initialized during the basic research project Metis (funded by German Research Foundation) during which the architectural semantic search patterns and a family of corresponding floor plan representations were developed. FLEA uses these patterns and representations as the base for its semantic search, explanation, next step suggestion, and adaptation components. The methodology implementation was iteratively tested during quantitative evaluations and user studies with multiple floor plan datasets.
keywords Room con?guration, Distributed AI, Case-based reasoning, Neural networks, Explainable AI
series CAAD Futures
type normal paper
email
last changed 2019/07/29 14:11

_id caadria2019_651
id caadria2019_651
authors Imani, Marzieh, Sayah, Iman, Vale, Brenda and Donn, Michael
year 2019
title An Innovative, Hierarchical Energy Performance Data Visualization for Facilitating Recognition of Thermal Issues
doi https://doi.org/10.52842/conf.caadria.2019.1.815
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 815-824
summary This paper discusses the characteristics of and relationships between the most common building energy performance tools for simulating and visualising the thermal behaviour of buildings at the early stage of building design. The necessity for the latter and the importance of using relevant tools in practice are discussed. By highlighting existing gaps in these tools, a complementary component has been suggested that could assist building scientists in evaluating energy simulation results. The proposed energy performance data visualisation (EPDV) component is an under-development plugin (SlowLoris) that is intended to be added to the existing Grasshopper add-ons. This EPDV component provides users with simultaneous but different visualisation styles of monthly energy reports for individual floors and thermal zones. As an example, this paper uses a 2-storey building model to show the applicability of the plugin to analysis of energy simulation results.
keywords Building energy simulation; Data visualization; Energy performance analysis
series CAADRIA
email
last changed 2022/06/07 07:50

_id acadia19_510
id acadia19_510
authors Leder, Samuel; Weber, Ramon; Wood, Dylan; Bucklin, Oliver; Menges, Achim
year 2019
title Distributed Robotic Timber Construction
doi https://doi.org/10.52842/conf.acadia.2019.510
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 510-519
summary Advances in computational design and robotic building methods have the potential to enable architects to author more sustainable, efficient, and geometrically varied systems that shape our built environment. To fully harness this potential, the inherent relationship of design and building processes requires a fundamental shift in the way we design and how we build. High degree of customization in architectural projects and constantly changing conditions of construction environments pose significant challenges for the implementation of automated construction machines. Beyond traditional, human-inspired, industrial robotic building methods, we present a distributed robotic system where the robotic builders are designed in direct relationship with the material and architecture they assemble. Modular, collaborative, single axis robots are designed to utilize standardized timber struts as a basic building material, and as a part of their locomotion system, to create large-scale timber structures with high degrees of differentiation. The decentralized, multi-robot system uses a larger number of simple machines that collaborate in teams to work in parallel on varying tasks such as material transport, placement, and fixing. The research explores related architectural and robotic typologies to create timber structures with novel aesthetics and performances.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id caadria2022_74
id caadria2022_74
authors Mazza, Domenico, Kocaturk, Tuba and Kaljevic, Sofija
year 2022
title Geelong Digital Outdoor Museum (GDOM) - Photogrammetry as the Surface for a Portable Museum
doi https://doi.org/10.52842/conf.caadria.2022.1.677
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 677-686
summary This paper presents the development and evaluation of the Geelong Digital Outdoor Museum (GDOM) prototype accessible at https://gdom.mindlab.cloud. GDOM is a portable museum‚our novel adaptation of the distributed museum model (Stuedahl & Lowe, 2013) which uses mobile devices to present museum collections attached to physical sites. Our prototype defines a way for intangible heritage associated with tangible landscapes to be accessible via personal digital devices using 360 3D scanned digital replicas of physical landscapes (photogrammetric digital models). Our work aligns with efforts set out in the UN Sustainable Development Goal 11 (SDG 11) to safeguard cultural and natural heritage, by openly disseminating the heritage of physical sites seamlessly through the landscape. Using a research by design methodology we delivered our prototype as a modular web-based platform that leveraged the Matterport digital model platform. We qualitatively evaluated the prototype's usability and future development opportunities with 32 front-end users and 13 potential stakeholders. We received a wide gamut of responses that included: users feeling empowered by the greater accessibility, users finding a welcome common ground with comparable physical experiences, and users and potential stakeholders seeing the potential to re-create physical world experiences with modifications to the digital model along with on-site activation. Our potential stakeholders suggested ways in which GDOM could be integrated into the arts, education, and tourism to widen its utility and applicability. In future we see design potential in breaking out of the static presentation of the digital model and expanding our portable museum experience to work on-site as a complement to the remote experience. However, we recognise the way in which on-site activation integrate into users' typical activities can be tangential (McGookin et al., 2019) and this would necessitate further investigation into how to best integrate the experience on-site.
keywords Cultural Heritage, Intangible Heritage, Digital Heritage, Web Platform, 3D Scanning, Photogrammetry, Digital model, Portable Museum, Distributed Museum, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id cf2019_068
id cf2019_068
authors Md Rian, Iasef
year 2019
title IFS-Based Computational Morphogenesis of a Hierarchical Trussed Beam
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 552-564
summary This paper applies IFS (Iterated Function System) as a rule-based computational modeling process for modeling a hierarchical truss beam inspired by the concept of fractal geometry. IFS is a type of recursive algorithm, which repeatedly uses the outcome as a input for an affine transformation function in generating a fractal shape, i.e., a complex shape which contains the self-similar repetitions of the overall shape in its parts. Hierarchical trusses also follow a similar geometric configuration. IFS-based computational modeling, hence, allows us to parametrically morph a parent model, thus repeat the same morphing to all its self-similar parts automatically. This IFS-based morphogenesis opens a possibility to find an optimal configuration of a hierarchical truss structurally. In this parametric modeling process, the iteration number is a unique geometric parameter. This paper uses two geometric variables (iteration number and angle) to find the most efficient design of a hierarchical truss beam through an optimization process.
keywords hierarchical truss, fractal geometry, IFS, computational design
series CAAD Futures
email
last changed 2019/07/29 14:18

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_934550 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002