CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 617

_id ecaade2023_138
id ecaade2023_138
authors Crolla, Kristof and Wong, Nichol
year 2023
title Catenary Wooden Roof Structures: Precedent knowledge for future algorithmic design and construction optimisation
doi https://doi.org/10.52842/conf.ecaade.2023.1.611
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 611–620
summary The timber industry is expanding, including construction wood product applications such as glue-laminated wood products (R. Sikkema et al., 2023). To boost further utilisation of engineered wood products in architecture, further development and optimisation of related tectonic systems is required. Integration of digital design technologies in this endeavour presents opportunities for a more performative and spatially diverse architecture production, even in construction contexts typified by limited means and/or resources. This paper reports on historic precedent case study research that informs an ongoing larger study focussing on novel algorithmic methods for the design and production of lightweight, large-span, catenary glulam roof structures. Given their structural operation in full tension, catenary-based roof structures substantially reduce material needs when compared with those relying on straight beams (Wong and Crolla, 2019). Yet, the manufacture of their non-standard geometries typically requires costly bespoke hardware setups, having resulted in recent projects trending away from the more spatially engaging geometric experiments of the second half of the 20th century. The study hypothesis that the evolutionary design optimisation of this tectonic system has the potential to re-open and expand its practically available design solution space. This paper covers the review of a range of built projects employing catenary glulam roof system, starting from seminal historic precedents like the Festival Hall for the Swiss National Exhibition EXPO 1964 (A. Lozeron, Swiss, 1964) and the Wilkhahn Pavilions (Frei Otto, Germany, 1987), to contemporary examples, including the Grandview Heights Aquatic Centre (HCMA Architecture + Design, Canada, 2016). It analysis their structural concept, geometric and spatial complexity, fabrication and assembly protocols, applied construction detailing solutions, and more, with as aim to identify methods, tools, techniques, and construction details that can be taken forward in future research aimed at minimising construction complexity. Findings from this precedent study form the basis for the evolutionary-algorithmic design and construction method development that is part of the larger study. By expanding the tectonic system’s practically applicable architecture design solution space and facilitating architects’ access to a low-tech producible, spatially versatile, lightweight, eco-friendly, wooden roof structure typology, this study contributes to environmentally sustainable building.
keywords Precedent Studies, Light-weight architecture, Timber shell, Catenary, Algorithmic Optimisation, Glue-laminated timber
series eCAADe
email
last changed 2023/12/10 10:49

_id caadria2019_350
id caadria2019_350
authors Tomarchio, Ludovica, Hasler, Stephanie, Herthogs, Pieter, Müller, Johannes, Tunçer, Bige and He, Peijun
year 2019
title Using an Online Participation Tool to Collect Relevant Data for Urban Design - The construction of two participation exercices
doi https://doi.org/10.52842/conf.caadria.2019.2.747
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 747-756
summary This paper discusses the design of an online digital participation campaign, developed as an academic research project in Singapore. In order to develop appropriate exercises which fitted the tool and the context, we addressed several questions: how can online participation tools maintain a negotiation and education power? What data generated by citizens, in the form of a design proposals, is useful for urban design? We created two different exercises, at different scales: one exercise asking people to design proposals with functional blocks and one where citizens could decide the equipment and furniture in a public space. For each exercise we discuss the scale, the elements, the educating and mediating impact, but also the way we intended to use the gathered local knowledge in urban design. The exercise did not receive the expected contributions, gathering little attention from internet users. More results were obtained using an offline experimental setup. In conclusion, we reconsider the weakest points of the design in a critical analysis and provide direction for future online participation tools.
keywords participation; urban design ; online tool; engagement
series CAADRIA
email
last changed 2022/06/07 07:58

_id ecaade2023_259
id ecaade2023_259
authors Sonne-Frederiksen, Povl Filip, Larsen, Niels Martin and Buthke, Jan
year 2023
title Point Cloud Segmentation for Building Reuse - Construction of digital twins in early phase building reuse projects
doi https://doi.org/10.52842/conf.ecaade.2023.2.327
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 327–336
summary Point cloud processing has come a long way in the past years. Advances in computer vision (CV) and machine learning (ML) have enabled its automated recognition and processing. However, few of those developments have made it through to the Architecture, Engineering and Construction (AEC) industry. Here, optimizing those workflows can reduce time spent on early-phase projects, which otherwise could be spent on developing innovative design solutions. Simplifying the processing of building point cloud scans makes it more accessible and therefore, usable for design, planning and decision-making. Furthermore, automated processing can also ensure that point clouds are processed consistently and accurately, reducing the potential for human error. This work is part of a larger effort to optimize early-phase design processes to promote the reuse of vacant buildings. It focuses on technical solutions to automate the reconstruction of point clouds into a digital twin as a simplified solid 3D element model. In this paper, various ML approaches, among others KPConv Thomas et al. (2019), ShapeConv Cao et al. (2021) and Mask-RCNN He et al. (2017), are compared in their ability to apply semantic as well as instance segmentation to point clouds. Further it relies on the S3DIS Armeni et al. (2017), NYU v2 Silberman et al. (2012) and Matterport Ramakrishnan et al. (2021) data sets for training. Here, the authors aim to establish a workflow that reduces the effort for users to process their point clouds and obtain object-based models. The findings of this research show that although pure point cloud-based ML models enable a greater degree of flexibility, they incur a high computational cost. We found, that using RGB-D images for classifications and segmentation simplifies the complexity of the ML model but leads to additional requirements for the data set. These can be mitigated in the initial process of capturing the building or by extracting the depth data from the point cloud.
keywords Point Clouds, Machine Learning, Segmentation, Reuse, Digital Twins
series eCAADe
email
last changed 2023/12/10 10:49

_id caadria2019_396
id caadria2019_396
authors Cao, Rui, Fukuda, Tomohiro and Yabuki, Nobuyoshi
year 2019
title Quantifying Visual Environment by Semantic Segmentation Using Deep Learning - A Prototype for Sky View Factor
doi https://doi.org/10.52842/conf.caadria.2019.2.623
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 623-632
summary Sky view factor (SVF) is the ratio of radiation received by a planar surface from the sky to that received from the entire hemispheric radiating environment, in the past 20 years, it was more applied to urban-climatic areas such as urban air temperature analysis. With the urbanization and the development of cities, SVF has been paid more and more attention on as the important parameter in urban construction and city planning area because of increasing building coverage ratio to promote urban forms and help creating a more comfortable and sustainable urban residential building environment to citizens. Therefore, efficient, low cost, high precision, easy to operate, rapid building-wide SVF estimation method is necessary. In the field of image processing, semantic segmentation based on deep learning have attracted considerable research attention. This study presents a new method to estimate the SVF of residential environment by constructing a deep learning network for segmenting the sky areas from 360-degree camera images. As the result of this research, an easy-to-operate estimation system for SVF based on high efficiency sky label mask images database was developed.
keywords Visual environment; Sky view factor; Semantic segmentation; Deep learning; Landscape simulation
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_282
id ecaadesigradi2019_282
authors Fernández González, Alberto, Guerrero del Rio, Camilo and Jorquera Sepúlveda, Layla
year 2019
title BIM Chilean Social Housing Analysis - from the 70´s to 90´s
doi https://doi.org/10.52842/conf.ecaade.2019.1.259
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 259-266
summary This research based on education digs on the "evolution" of Chilean social housing between the period from 70's to 90's asking us the "phylogenic" relation between "typos" of designs that developed several problems in the urban fabric development during 20 years of intricate design just thinking in quantity but not quality in our country.The focus in this research is as the first step understanding the design behind dwellings between this time range, then its process of evolution and transformation by users, and then by BIM understand the virtues and defects of each design and rethink the typologies in a housing life cycle look for the next years.
keywords BIM; Social Housing; Catalogue; Design; Intervention; Strategies
series eCAADeSIGraDi
email
last changed 2022/06/07 07:50

_id ecaade2024_4
id ecaade2024_4
authors Irodotou, Louiza; Gkatzogiannis, Stefanos; Phocas, Marios C.; Tryfonos, George; Christoforou, Eftychios G.
year 2024
title Application of a Vertical Effective Crank–Slider Approach in Reconfigurable Buildings through Computer-Aided Algorithmic Modelling
doi https://doi.org/10.52842/conf.ecaade.2024.1.421
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 1, pp. 421–430
summary Elementary robotics mechanisms based on the effective crank–slider and four–bar kinematics methods have been applied in the past to develop architectural concepts of reconfigurable structures of planar rigid-bar linkages (Phocas et al., 2020; Phocas et al., 2019). The applications referred to planar structural systems interconnected in parallel to provide reconfigurable buildings with rectangular plan section. In enabling structural reconfigurability attributes within the spatial circular section buildings domain, a vertical setup of the basic crank–slider mechanism is proposed in the current paper. The kinematics mechanism is integrated on a column placed at the middle of an axisymmetric circular shaped spatial linkage structure. The definition of target case shapes of the structure is based on a series of numerical geometric analyses that consider certain architectural and construction criteria (i.e., number of structural members, length, system height, span, erectability etc.), as well as structural objectives (i.e., structural behavior improvement against predominant environmental actions) aiming to meet diverse operational requirements and lightweight construction. Computer-aided algorithmic modelling is used to analyze the system's kinematics, in order to provide a solid foundation and enable rapid adaptation for mechanisms that exhibit controlled reconfigurations. The analysis demonstrates the implementation of digital parametric design tools for the investigation of the kinematics of the system at a preliminary design stage, in avoiding thus time-demanding numerical analysis processes. The design process may further provide enhanced interdisciplinary performance-based design outcomes.
keywords Reconfigurable Structures, Spatial Linkage Structures, Kinematics, Parametric Associative Design
series eCAADe
email
last changed 2024/11/17 22:05

_id acadia19_156
id acadia19_156
authors Dahy, Hanaa; Baszyñski, Piotr; Petrš, Jan
year 2019
title Experimental Biocomposite Pavilion
doi https://doi.org/10.52842/conf.acadia.2019.156
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 156-165
summary Excessive use of aggregate materials and metals in construction should be balanced by increasing use of construction materials from annually renewable resources based on natural lignocellulosic fibers. Parametric design tools gave here a possibility of using an alternative newly developed biocomposite material, for realization of complex geometries. Contemporary digital fabrication tools have enabled precise manufacturing possibilities and sophisticated geometry-making to take place that helped in obtaining high structural behavior of the overall global geometry of the discussed project. This paper presents a process of realizing an experimental structure made from Natural Fiber-Reinforced Polymers (NFRP)- also referred to as biocomposites, which were synthesized from lignocellulosic flexible core reinforced by 3D-veneer layers in a closed-moulding vacuum-assisted process. The biocomposite sandwich panels parameters were developed and defined before the final properties were imbedded in the parametric model. This paper showcases the multi-disciplinarity work between architects, structural engineers and material developers. It allowed the architects to work on the material development themselves and enabled to apply a new created design philosophy by the first author, namely applying ‘Materials as a Design-Tool’. The erected biocomposite segmented shell construction allowed a 1:1 validation for the whole design process, material development and the digital fabrication processes applied. The whole development has been reached after merging an ongoing industrial research project results with academic education at the school of architecture in Stuttgart-Germany.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id ecaade2024_92
id ecaade2024_92
authors Mayor Luque, Ricardo; Beguin, Nestor; Rizvi Riaz, Sheikh; Dias, Jessica; Pandey, Sneham
year 2024
title Multi-material Gradient Additive Manufacturing: A data-driven performative design approach to multi-materiality through robotic fabrication
doi https://doi.org/10.52842/conf.ecaade.2024.1.381
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 1, pp. 381–390
summary Buildings are responsible for 39% of global energy-related carbon emissions, with operational activities contributing 28% and materials and construction accounting for 11%(World Green Building Council, 2019) It is therefore vital to reconsider our reliance on fossil fuels for building materials and to develop new advanced manufacturing techniques that enable an integrated approach to material-controlled conception and production. The emergence of Multi-material Additive Manufacturing (MM-AM) technology represents a paradigm shift in producing elements with hybrid properties derived from novel and optimized solutions. Through robotic fabrication, MM-AM offers streamlined operations, reduced material usage, and innovative fabrication methods. It encompasses a plethora of methods to address diverse construction needs and integrates material gradients through data-driven analyses, challenging traditional prefabrication practices and emphasizing the current growth of machine learning algorithms in design processes. The research outlined in this paper presents an innovative approach to MM-AM gradient 3D printing through robotic fabrication, employing data-driven performative analyses enabling control over print paths for sustainable applications in both the AM industry and our built environment. The article highlights several designed prototypes from two distinct phases, demonstrating the framework's viability, implications, and constraints: a workshop dedicated to data-driven analyses in facade systems for MM-AM 3D-printed brick components, and a 3D-printed brick facade system utilizing two renewable and bio-materials—Cork sourced from recycled stoppers and Charcoal, with the potential for carbon sequestration.
keywords Data-driven Performative design, Multi-material 3d Printing, Material Research, Fabrication-informed Material Design, Robotic Fabrication
series eCAADe
email
last changed 2024/11/17 22:05

_id caadria2020_093
id caadria2020_093
authors Cerovsek, Tomo and Martens, Bob
year 2020
title The Evolution of CAADRIA Conferences - A Bibliometric Approach
doi https://doi.org/10.52842/conf.caadria.2020.1.325
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 325-334
summary This paper presents an analysis of the output, impact, use and content of 1,860 papers that were published in the CAADRIA conference proceedings over the last 20+ years (from 1996 to 2019). The applied methodology is a blend of bibliometrics, webometrics and clustering with text mining. The bibliometric analysis leads to quantitative and qualitative results on three levels: (1) author, (2) article and (3) association. The most productive authors authored over 50 papers, and the top 20% authors have over 80 % of all citations generated by CAADRIA proceedings. The overall impact of CAADRIA may be characterised by nearly 2,000 known citations and by the h-index that is 17. The webometrics based on CumInCAD.org reveals that the CAADRIA papers served over 200 k users, which is a considerable visibility for scientific CAAD output. The keywords most frequently used by authors were digital fabrication, BIM and parametric, generative, computational design. Notably, 90% of the papers' descriptors are 2-grams. This study may be useful to researchers, educators and publishers interested in CAAD.
keywords bibliometrics; open source; text clustering; n-gram
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2019_650
id caadria2019_650
authors Papasotiriou, Tania
year 2019
title Identifying the Landscape of Machine Learning-Aided Architectural Design - A Term Clustering and Scientometrics Study
doi https://doi.org/10.52842/conf.caadria.2019.2.815
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 815-824
summary Recent advances in Machine Learning and Deep Learning revolutionise many industry disciplines and underpin new ways of problem-solving. This paradigm shift hasn't left Architecture unaffected. To investigate the impact on architectural design, this study utilises two approaches. First, a text mining method for content analysis is employed, to perform a robust review of the field's literature. This allows identifying and discussing current trends and possible future directions of this research domain in a systematic manner. Second, a Scientometrics study based on bibliometric reviews is employed to obtain quantitative measures of the global research activity in the described domain. Insights on research trends and identification of the most influential networks in this dataset were acquired by analysing terms co-occurrence, scientific collaborations, geographic distribution, and co-citation analysis. The paper concludes with a discussion on the limitations, opportunities and future research directions in the field of Machine Learning-aided architectural design.
keywords Machine Learning; Text mining; Scientometrics
series CAADRIA
email
last changed 2022/06/07 08:00

_id ecaadesigradi2019_370
id ecaadesigradi2019_370
authors Sperling, David, Vizioli, Simone Helena Tanoue, Botasso, Gabriel Braulio, Tiberti, Mateus Segnini, Santana, Eduardo Felipe Zambom and Sígolo, Brianda de Oliveira Ordonho
year 2019
title Crossing Timelines - Main research topics in the histories of eCAADe and SIGraDi
doi https://doi.org/10.52842/conf.ecaade.2019.1.407
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 407-416
summary Being in tune with the joint eCAADe and SIGraDi conference, this paper systematizes and analyzes data related to the set of papers presented in the history of the conferences of both societies. Which paths traced from eCAADe and SIGraDi brought us to the "architecture in the age of the fourth industrial revolution"? This paper describes a bibliometric study focused on eCCADe and SIGraDi papers from 2003 to 2018 retrieved from CumInCad by using an open source software developed by the team for this research. The most used keywords and most cited authors, cross-citations between societies and time series about this data were synthesized, recovering part of the histories of these societies. Some similarities and differences between them are pointed out allowing to understand their past for better drawing their future.
keywords CAAD; History; Bibliometrics; Cumincad; eCAADe; SIGraDi
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_340
id ecaadesigradi2019_340
authors Azambuja Varela, Pedro and Sousa, José Pedro
year 2019
title Digital Expansion of Stereotomy - A semantic classification
doi https://doi.org/10.52842/conf.ecaade.2019.1.387
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 387-396
summary This paper presents a critical analysis and reflection on stereotomy with the purpose of updating its theoretical discourse. Having risen to the apex of architecture technological possibilities in the 17th century, stereotomic construction lost its importance in favour of iron, steel and other materials and construction techniques brought by the Industrial Revolution. More recently, much owing to the possibilities offered by digital technologies, a resurgence of interest in the subject has spawned various researches which bring stereotomy back to the architectural discourse. Although technological applications and design innovations in service of stereotomy have developed in multiple interesting paths, there is a lack of a common theory on the subject which is capable of relating these multiple apparently diverging stereotomic approaches between each other and, maybe even more importantly, to the classical practice which sparked the development this discipline. The research presented in this paper shows how the digital tools were instrumental in bringing this tradition to architecture contemporaneity and how a current stereotomy is largely supported by these technologies, while keeping strong relations to its classic origin.
keywords stereotomy; classification; history; digital
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id acadia19_458
id acadia19_458
authors Bartosh, Amber; Anzalone, Phillip
year 2019
title Experimental Applications of Virtual Reality in Design Education
doi https://doi.org/10.52842/conf.acadia.2019.458
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 458-467
summary By introducing rapid reproduction, algorithms, and complex formal configurations, the digital era of architecture began a revolution. Architects incorporated the computational capacity of the computer into the design process both as a tool and as a critical component of the theories and practice of architecture as a whole. As we move into what has been coined “the second digital turn,” a period in which digital integration is considered ubiquitous, how can we consider, prepare, and propel towards the next technological innovation to significantly inform design thinking, representation, and manifestation? What tools are available to investigate this speculative design future and how can they be implemented? If the integration of technology in architecture is now a given, perhaps the next digital design era is not just digital but virtual. As new technologies emerge the potential for integrating the virtual design world with our physical senses affords novel possibilities for interactive design, simulation, analysis and construction. Hybrid reality technologies including virtual reality (VR) and augmented reality (AR), embody the potential to supersede conventional representation methodologies such as drawing, rendering, physical modeling, and animation. As they become increasingly pervasive, they will transform how we communicate ideas and data as spatial concepts. Further, they will reform the construct of the built environment when applied to both materiality and fabrication. This paper will describe the incorporation of VR as a tool in various classroom and laboratory settings, recognize the educational outcomes of this incorporation, and identify the potential relationship of these technologies to future academic exploration and application to practice.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id sigradi2023_39
id sigradi2023_39
authors Borges, Marina, Karantino, Lucas and Gorges, Diego
year 2023
title Walkability: Digital Parametric Process for Analyzing and Evaluating Walkability Criteria in Peripheral Central Regions of Belo Horizonte
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 397–408
summary According to one of the Sustainable Development Goals (UN, 2018), it is important for cities to be inclusive, safe, resilient, and sustainable. Therefore, it is necessary to value pedestrians and consequently active mobility, giving priority to the concepts of the Transportation Oriented Development (TOD) methodology. Although the Master Plan (BELO HORIZONTE, 2019) proposes that areas located in regional centralities are enhancing active mobility, can residents actually benefit from these resources at a walkable distance to access basic services? Thus, the aim of this research is to utilize digital technologies to visualize, analyze, and assess pedestrians' access conditions to commerce and basic services, identifying areas lacking infrastructure. The goal is for the model to serve as a reference for the development of public policies. To achieve this, metadata was used for parametric modeling to study walkability in the peripheral region of the city of Belo Horizonte.
keywords Walkability, Urban Data Analysis, Urban Design, Parametric Urbanism, Algorithmic Logic
series SIGraDi
email
last changed 2024/03/08 14:07

_id ijac202119302
id ijac202119302
authors BuHamdan, Samer; Alwisy, Aladdin; Bouferguene, Ahmed
year 2021
title Generative systems in the architecture, engineering and construction industry: A systematic review and analysis
source International Journal of Architectural Computing 2021, Vol. 19 - no. 3, 226–249
summary Researchers have been extensively exploring the employment of generative systems to support design practices in the architecture, engineering and construction industry since the 1970s. More than half a century passed since the first architecture, engineering and construction industry’s generative systems were developed; researchers have achieved remarkable leaps backed by advances in computing power and algorithms’ capacity. In this article, we present a systematic analysis of the literature published between 2009 and 2019 on the utilization of generative systems in the design practices of the architecture, engineering and construction industry. The present research studies present trends, collaborations and applications of generative systems in the architecture, engineering and construction industry in order to identify existing shortcomings and potential advancements that balance the need for theory development and practical application. It provides insightful observations that are translated into meaningful recommendations for future research necessary to progress the incorporation of generative systems into the design practices of the architecture, engineering and construction industry.
keywords Generative systems, architecture, engineering and construction industry, performative design, generative design, systematic literature review, future directions
series journal
email
last changed 2024/04/17 14:29

_id ecaadesigradi2019_249
id ecaadesigradi2019_249
authors Chiarella, Mauro, Gronda, Luciana and Veizaga, Martín
year 2019
title RILAB - architectural envelopes - From spatial representation (generative algorithm) to geometric physical optimization (scientific modeling)
doi https://doi.org/10.52842/conf.ecaade.2019.3.017
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 17-24
summary Augmented graphical thinking operates by integrating algorithmic, heuristic, and manufacturing processes. The Representation and Ideation Laboratory (RILAB-2018) exercise begins with the application of a parametric definition developed by the team of teachers, allowing for the construction of structural systems by the means of the combination of segmental shells and bending-active. The main objetive is the construction of a scientific model of simulation for bending-active laminar structures has brought into reality trustworthy previews for architectural envelopes through the interaction of parametrized relational variables. This way we put designers in a strategic role for the building of the pre-analysis models, allowing more preciseness at the time of picking and defining materials, shapes, spaces and technologies and thus minimizing the decisions based solely in the definition of structural typological categories, local tradition or direct experience. The results verify that the strategic integration of models of geometric physical optimization and spatial representation greatly expand the capabilities in the construction of the complex system that operates in the act of projecting architecture.
keywords architectural envelopes; augmented graphic thinking; geometric optimization; bending-active
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id cf2019_014
id cf2019_014
authors Ferrando, Cecilia; Niccolo Dalmasso, Jiawei Mai, Daniel Cardoso Llach
year 2019
title Architectural Distant Reading Using Machine Learning to Identify Typological Traits Across Multiple Buildings
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 114-127
summary This paper introduces an approach to architectural “distant reading”: the use of computational methods to analyze architectural data in order to derive spatial insights from—and explore new questions concerning—large collections of architectural work. Through a case study comprising a dataset of religious buildings, we show how we may use machine learning techniques to identify typological and functional traits from building plans. We find that spatial structure, rather than local features, is particularly effective in supporting this type of analysis. Further, we speculate on the potential of this computational method to enrich architectural design, research, and criticism by, for example, enabling new ways of thinking about architectural concepts such as typology in ways that reflect gradual variations, rather than sharp distinctions.
keywords Architectural Analytics, Machine Learning, Classification, Religious buildings, Space Syntax
series CAAD Futures
email
last changed 2019/07/29 14:08

_id ecaadesigradi2019_065
id ecaadesigradi2019_065
authors Fukuda, Tomohiro, Novak, Marcos and Fujii, Hiroyuki
year 2019
title Development of Segmentation-Rendering on Virtual Reality for Training Deep-learning, Simulating Landscapes and Advanced User Experience
doi https://doi.org/10.52842/conf.ecaade.2019.2.433
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 433-440
summary Virtual reality (VR) has been suggested for various purposes in the field of architecture, engineering, and construction (AEC). This research explores new roles for VR toward the super-smart society in the near future. In particular, we propose to develop post-processing rendering, segmentation-rendering and shadow-casting rendering algorithms for novel VR expressions to enable more versatile approaches than the normal photorealistic red, green, and blue (RGB) expressions. We succeeded in applying a wide variety of VR renderings in urban-design projects after implementation. The developed system can create images in real time to train deep-learning algorithms, can also be applied to landscape analysis and contribute to advanced user experience.
keywords Super-smart society; Virtual Reality; Segmentation; Deep-learning; Landscape simulation; Shader
series eCAADeSIGraDi
email
last changed 2022/06/07 07:50

_id ecaadesigradi2019_176
id ecaadesigradi2019_176
authors Giantini, Guilherme, Negris de Souza, Larissa, Turczyn, Daniel and Celani, Gabriela
year 2019
title Environmental Ceramics - Merging the digital and the physical in the design of a performance -based facade system
doi https://doi.org/10.52842/conf.ecaade.2019.2.749
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 749-758
summary Environmental comfort and space occupancy are essential considerations in architectural design process. Façade systems deeply impact both aspects but are usually standardized. However, performance-based facade systems tackle these issues through computational design to devise non-homogeneous elements. This work proposes a ceramic facade system designed according to a performance-based process grounded on environmental analysis and parametric design to allow adaptation and geometric variation according to specific building demands on environmental comfort and functionality. In this process, the Design Science Research method guided the exploration of both design and evaluation, bridging the gap between theory and practice. Positive facade environmental performance were found from digital and physical models assessment in terms of radiation, illuminance, dampness (with ventilation) and temperature. Computational processes minimized radiation inside the building while maximized illuminance. Their association influenced on operative temperature, which dropped according to local dampness and material absorption. Accordingly, this design process associates not only environmental comfort and functionality concepts but also adaptability, flexibility, mass customization, personal fabrication, additive manufacturing concepts, being an example architectural design changes in the 4th Industrial Revolution.
keywords sustainable design; facade system; computational design; environmental analysis; evolutionary algorithm
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

_id caadria2019_080
id caadria2019_080
authors Green, Stephen, King, Geoff, Fabbri, Alessandra, Gardner, Nicole, Haeusler, M. Hank and Zavoleas, Yannis
year 2019
title Designing Out Urban Heat Islands - Optimisation of footpath materials with different albedo value through evolutionary algorithms to address urban heat island effect
doi https://doi.org/10.52842/conf.caadria.2019.2.603
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 603-612
summary The Urban Heat Island (UHI) effect is pronounced in dense urban developments, and particular an issue in the case study city of Parramatta, where temperature increases are impacting use of public space, health, and economic productivity. To mitigate against elevated temperatures in built up areas, this research explores the optimisation of paving material layouts through using an evolutionary algorithm. High albedo (reflective) materials are objectively cooler than low albedo (absorbent) materials yet tend to be more expensive. To reduce the amount of heat absorbent pavement materials whilst keeping in mind material costs, a range of materials of different albedo levels (reflectivity) can be assigned on the same path using an evolutionary algorithm to optimise the coolest materials for the cheapest price. Over the course of this paper, this research aim will be approached using visual scripting software such as Grasshopper to simulate daylight analysis and to generate an optimisation algorithm. Previous research on the topics of UHI have revealed different methods for solving specific problems, all focusing on using software analysis to determine an informed decision on construction. The paper contributes via a computational approach of material selection to battle urban heat island effects.
keywords urban heat island; albedo value; material properties; evolutionary algorithm ; landscape architecture
series CAADRIA
email
last changed 2022/06/07 07:51

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_24073 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002