CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 10 of 10

_id ecaadesigradi2019_605
id ecaadesigradi2019_605
authors Andrade Zandavali, Bárbara and Jiménez García, Manuel
year 2019
title Automated Brick Pattern Generator for Robotic Assembly using Machine Learning and Images
doi https://doi.org/10.52842/conf.ecaade.2019.3.217
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 217-226
summary Brickwork is the oldest construction method still in use. Digital technologies, in turn, enabled new methods of representation and automation for bricklaying. While automation explored different approaches, representation was limited to declarative methods, as parametric filling algorithms. Alternatively, this work proposes a framework for automated brickwork using a machine learning model based on image-to-image translation (Conditional Generative Adversarial Networks). The framework consists of creating a dataset, training a model for each bond, and converting the output images into vectorial data for robotic assembly. Criteria such as: reaching wall boundary accuracy, avoidance of unsupported bricks, and brick's position accuracy were individually evaluated for each bond. The results demonstrate that the proposed framework fulfils boundary filling and respects overall bonding structural rules. Size accuracy demonstrated inferior performance for the scale tested. The association of this method with 'self-calibrating' robots could overcome this problem and be easily implemented for on-site.
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id cf2019_054
id cf2019_054
authors Bae, Jiyoon and Daekwon Park
year 2019
title Weeping Brick The Modular Living Wall System Using 3D Printed Porous Ceramic Materials
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 437
summary The goal of this research is to design and fabricate a modular living wall brick system that purifies and cools air for various indoor environments. The research utilizes ceramic 3d printing techniques for fabrication; and living plants in conjunction with evaporative cooling techniques for indoor air quality control. The brick is made of soil which become porous after firing or drying. Water from the reservoirs slowly weep through the porous brick, creating a layer of water on the surface of the brick. The air movement around the saturated brick creates evaporative cooling and the hydro-seeded plants absorb water from the surface. The shape and texture of the Weeping Brick maximizes the cooling effect via large surface area. As an aggregated wall system, the water circulates from unit to unit by gravity through interconnected reservoirs embedded within each unit. The plants and moss transform the Weeping Brick into a living wall system, purifying and conditioning the indoor air.
keywords Living Wall System, Modular Brick, Ceramic 3D Printing, Evaporative Cooling
series CAAD Futures
email
last changed 2019/07/29 14:18

_id acadia19_222
id acadia19_222
authors Birol, Eda Begum; Lu, Yao; Sekkin, Ege; Johnson, Colby; Moy, David; Islam, Yaseen; Sabin, Jenny
year 2019
title POLYBRICK 2.0
doi https://doi.org/10.52842/conf.acadia.2019.222
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 222-233
summary Natural load bearing structures are characterized by aspects of specialized morphology, lightweight, adaptability, and a regenerative life cycle. PolyBrick 2.0 aims to learn from and apply these characteristics in the pursuit of revitalizing ceramic load bearing structures. For this, algorithmic design processes are employed, whose physical manifestations are realized through available clay/porcelain additive manufacturing technologies (AMTs). By integrating specialized expertise across disciplines of architecture, engineering, and material science, our team proposes an algorithmic toolset to generate PolyBrick geometries that can be applied to various architectural typologies. Additionally, comparative frameworks for digital and physical performance analyses are outlined. Responding to increasing urgencies of material efficiency and environmental sensibility, this project strives to provide for designers a toolset for environmentally responsive, case-specific design, characterized by the embedded control qualities derived from the bone and its adaptability to specific loading conditions. Various approaches to brick tessellation and assembly are proposed and architectural possibilities are presented. As an outcome of this research, PolyBrick 2.0 is effectively established as a Grasshopper plug-in, “PolyBrick” to be further explored by designers.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id caadria2019_478
id caadria2019_478
authors Fingrut, Adam, Crolla, Kristof and Lau, Darwin
year 2019
title Automation Complexity - Brick By Brick
doi https://doi.org/10.52842/conf.caadria.2019.1.093
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 93-102
summary This paper discusses the assembly of brick structures with a Cable Driven Parallel Robot (CDPR). Explored is the impact of using computational design tools and the deployment of robotic equipment for the creation of an expanded architectural design space, based on the limits of material and equipment in place of a skilled labor force.
keywords Cable-Robot; Construction Automation; Digital Fabrication; Construction Complexity; Non-Standard Architecture
series CAADRIA
email
last changed 2022/06/07 07:50

_id ecaadesigradi2019_307
id ecaadesigradi2019_307
authors Kovacs, Adam Tamas, Szoboszlai, Mihaly and Csusz, Istvan
year 2019
title Key for Entering Industry 4.0 in the AEC Sector - BIM Organisation Development
doi https://doi.org/10.52842/conf.ecaade.2019.1.275
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 275-282
summary More and more sectors are entering Industry 4.0 but when we look around in the Architecture, Engineering and Construction industry, we do not see it happening. We wanted to investigate the reason behind this. Therefore, we conducted research among Hungarian design studios to find out what level of development they are at, and what the obstacles could be for implementing the latest technologies. This paper identifies the main problem we uncovered and discusses a possible solution. We explain what BIM Organisation Development is and why it is fundamental for architect studios who would like to enter Industry 4.0. We introduce the so-called Brick+Data Method, specifying its three essential development steps to get BIM technologies implemented and to make architect studios more efficient. Finally, we share our findings according to the feedback of the companies we worked with using this method.
keywords BIM; organisation development; technology implementation; Industry 4.0; design process
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id caadria2019_658
id caadria2019_658
authors Lange, Christian and Holohan, Donn
year 2019
title CeramicINformation Pavilion - Rethinking structural brick specials through an indexical 3D printing method
doi https://doi.org/10.52842/conf.caadria.2019.1.103
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 103-112
summary Complex brick construction is defined by its relationship to labor; it requires skilled workers in planning, manufacturing and assembly. In the modern era, this has been perceived as a significant drawback, and as such has resulted in brick construction being partially superseded by more rapid methods of fabrication, despite its inherent robustness and longevity. This paper describes the second stage of an ongoing research project which attempts to revitalize the material system of the brick special through the development of an intelligent 3d printing method that works in conjunction with a layman assembly procedure for a new class of self-supporting nonstandard brick structures. In this project, an indexed and geometrically informed jointing system, together with a parametric and digital workflow, enables rapid assembly on site without a requirement for complex site setup or skilled labor.
keywords Digital Fabrication; 3D clay printing; Brick Specials; Computational Design
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2024_92
id ecaade2024_92
authors Mayor Luque, Ricardo; Beguin, Nestor; Rizvi Riaz, Sheikh; Dias, Jessica; Pandey, Sneham
year 2024
title Multi-material Gradient Additive Manufacturing: A data-driven performative design approach to multi-materiality through robotic fabrication
doi https://doi.org/10.52842/conf.ecaade.2024.1.381
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 1, pp. 381–390
summary Buildings are responsible for 39% of global energy-related carbon emissions, with operational activities contributing 28% and materials and construction accounting for 11%(World Green Building Council, 2019) It is therefore vital to reconsider our reliance on fossil fuels for building materials and to develop new advanced manufacturing techniques that enable an integrated approach to material-controlled conception and production. The emergence of Multi-material Additive Manufacturing (MM-AM) technology represents a paradigm shift in producing elements with hybrid properties derived from novel and optimized solutions. Through robotic fabrication, MM-AM offers streamlined operations, reduced material usage, and innovative fabrication methods. It encompasses a plethora of methods to address diverse construction needs and integrates material gradients through data-driven analyses, challenging traditional prefabrication practices and emphasizing the current growth of machine learning algorithms in design processes. The research outlined in this paper presents an innovative approach to MM-AM gradient 3D printing through robotic fabrication, employing data-driven performative analyses enabling control over print paths for sustainable applications in both the AM industry and our built environment. The article highlights several designed prototypes from two distinct phases, demonstrating the framework's viability, implications, and constraints: a workshop dedicated to data-driven analyses in facade systems for MM-AM 3D-printed brick components, and a 3D-printed brick facade system utilizing two renewable and bio-materials—Cork sourced from recycled stoppers and Charcoal, with the potential for carbon sequestration.
keywords Data-driven Performative design, Multi-material 3d Printing, Material Research, Fabrication-informed Material Design, Robotic Fabrication
series eCAADe
email
last changed 2024/11/17 22:05

_id caadria2019_275
id caadria2019_275
authors Xu, Weiguo, Luo, Dan and Gao, Yuan
year 2019
title Automatic Brick Masonry System and Its Application in On-site Construction
doi https://doi.org/10.52842/conf.caadria.2019.1.083
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 83-92
summary Although research on robotic brickwork assembly systems has long focused on the automatic assembly of bricks, most studies are conducted in the laboratory with refined environmental and material conditions. This paper presents the development and application of a novel robotic masonry system that directly confronts the challenges and constraints of on-site construction in a generic site in rural China, including low-quality bricks, thick mortar connection, and critical temperatures. The construction process includes site surveys, foundation construction, wall masonry, landscape construction, and ground paving. During the process, the robot's arms are used for making formworks for the foundation and creating a pipeline for brick masonry, including printing mortar and brick tiling. A novel duel function end effector is developed to include the accurate printing of thick mortar, and the design is developed in consideration of the site condition and construction process
keywords Robotic Construction; Brickwork assembly; Digital Design
series CAADRIA
email
last changed 2022/06/07 07:57

_id ecaadesigradi2019_508
id ecaadesigradi2019_508
authors Yenice, Yagmur and Park, Daekwon
year 2019
title V-INCA - Designing a smart geometric configuration for dry masonry wall
doi https://doi.org/10.52842/conf.ecaade.2019.2.515
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 515-520
summary Soil is still used as a building material in many parts of the world, especially in rural areas. Approximately 30% of the world's population is still living in shelters made by soil (Berge 2009). One of the techniques is using soil in mudbrick form, which is sun dried instead of being fired in kilns. However, mud bricks have low compressive and tensile strength. Instead of enhancing the mix formula, we focus on designing the geometry of the brick itself to improve walls' overall compressive and tensile strength. The goal of the research is to explore an innovative way to build masonry walls through geometrical examination together with computer aided design. Unlike traditional horizontal laying of the rectangular brick elements, 3D designed blocks take advantage of gravity and foster an accelerated assembly without mortar. They create a balance point in the middle of the wall during the construction. The geometry of V-INCA blocks allows dry construction which will reduce the amount of time spent on the site. Load distribution and the friction between two surfaces are sufficient to have a dry construction. Thus, a wall built with V-INCA is stronger intrinsically due to its geometry.
keywords Dry masonry construction; smart geometrical design; on-site material; compressed earth blocks; Inca masonry
series eCAADeSIGraDi
email
last changed 2022/06/07 07:57

_id acadia19_246
id acadia19_246
authors Zhang, Viola; Qian, William; Sabin, Jenny
year 2019
title PolyBrickH2.0
doi https://doi.org/10.52842/conf.acadia.2019.246
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 246-257
summary This project emerged from collaborative trans-disciplinary research between architecture, engineering, biology, and materials science to generate novel applications in micro-scale 3D printed ceramics. Specifically, PolyBrick H2.0 adapts internal bone-based hydraulic networks through controlled water flow from 3D printed micro-textures and surface chemistry. Engagement across disciplines produced the PolyBrick series at the Sabin Lab (Sabin, Miller, and Cassab 2014) . The series is a manifestation of novel digital fabrication techniques, bioinspired design, materials inquiry, and contemporary evolutions of building materials. A new purpose for the brick is explored that is not solely focused on the mechanical constraints necessary for built masonry structures. PolyBrick H2.0 interweaves the intricacies of living systems (beings and environments combined) to create a more responsive and interactive material system. The PolyBrick 2.0 series looks at human bone as a design model for foundational research. PolyBrick H2.0 merges the cortical bone hydraulic network with new functionalities as a water filtration and collection system for self-preservation and conservation as well as passive cooling solutions. It also pushes the ability of 3D printing techniques to the microscale. These functionalities are investigated under context for a better construction material, but its use may extend further.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:57

No more hits.

HOMELOGIN (you are user _anon_121794 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002