CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 441

_id caadria2019_396
id caadria2019_396
authors Cao, Rui, Fukuda, Tomohiro and Yabuki, Nobuyoshi
year 2019
title Quantifying Visual Environment by Semantic Segmentation Using Deep Learning - A Prototype for Sky View Factor
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 623-632
doi https://doi.org/10.52842/conf.caadria.2019.2.623
summary Sky view factor (SVF) is the ratio of radiation received by a planar surface from the sky to that received from the entire hemispheric radiating environment, in the past 20 years, it was more applied to urban-climatic areas such as urban air temperature analysis. With the urbanization and the development of cities, SVF has been paid more and more attention on as the important parameter in urban construction and city planning area because of increasing building coverage ratio to promote urban forms and help creating a more comfortable and sustainable urban residential building environment to citizens. Therefore, efficient, low cost, high precision, easy to operate, rapid building-wide SVF estimation method is necessary. In the field of image processing, semantic segmentation based on deep learning have attracted considerable research attention. This study presents a new method to estimate the SVF of residential environment by constructing a deep learning network for segmenting the sky areas from 360-degree camera images. As the result of this research, an easy-to-operate estimation system for SVF based on high efficiency sky label mask images database was developed.
keywords Visual environment; Sky view factor; Semantic segmentation; Deep learning; Landscape simulation
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2023_259
id ecaade2023_259
authors Sonne-Frederiksen, Povl Filip, Larsen, Niels Martin and Buthke, Jan
year 2023
title Point Cloud Segmentation for Building Reuse - Construction of digital twins in early phase building reuse projects
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 327–336
doi https://doi.org/10.52842/conf.ecaade.2023.2.327
summary Point cloud processing has come a long way in the past years. Advances in computer vision (CV) and machine learning (ML) have enabled its automated recognition and processing. However, few of those developments have made it through to the Architecture, Engineering and Construction (AEC) industry. Here, optimizing those workflows can reduce time spent on early-phase projects, which otherwise could be spent on developing innovative design solutions. Simplifying the processing of building point cloud scans makes it more accessible and therefore, usable for design, planning and decision-making. Furthermore, automated processing can also ensure that point clouds are processed consistently and accurately, reducing the potential for human error. This work is part of a larger effort to optimize early-phase design processes to promote the reuse of vacant buildings. It focuses on technical solutions to automate the reconstruction of point clouds into a digital twin as a simplified solid 3D element model. In this paper, various ML approaches, among others KPConv Thomas et al. (2019), ShapeConv Cao et al. (2021) and Mask-RCNN He et al. (2017), are compared in their ability to apply semantic as well as instance segmentation to point clouds. Further it relies on the S3DIS Armeni et al. (2017), NYU v2 Silberman et al. (2012) and Matterport Ramakrishnan et al. (2021) data sets for training. Here, the authors aim to establish a workflow that reduces the effort for users to process their point clouds and obtain object-based models. The findings of this research show that although pure point cloud-based ML models enable a greater degree of flexibility, they incur a high computational cost. We found, that using RGB-D images for classifications and segmentation simplifies the complexity of the ML model but leads to additional requirements for the data set. These can be mitigated in the initial process of capturing the building or by extracting the depth data from the point cloud.
keywords Point Clouds, Machine Learning, Segmentation, Reuse, Digital Twins
series eCAADe
email
last changed 2023/12/10 10:49

_id caadria2019_143
id caadria2019_143
authors Kato, Yuri and Matsukawa, Shohei
year 2019
title Development of Generating System for Architectural Color Icons Using Google Map Platform and Tensorflow-Segmentation
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 81-90
doi https://doi.org/10.52842/conf.caadria.2019.2.081
summary In this research, the goal is to develop a generating system for architectural color icons using Google Map Platform and Tensorflow-Segmentation. There has been no case of developing a system that allows users to visualize the color tendency of buildings as architectural color icons for each building element from images of various regions. It is considered meaningful to be able to create criteria for decision making in architecture and the urban design by developing a system to clarify the current state of the architectural colors. It will contribute a rise in the consciousness of landscape conservation and be essential for the design of architectures and public objects. This paper includes the explanation of development method, use experiments, and consideration of five problems among architectural color icons creation. It is assumed that the accuracy of the present system will be better as the technology improves.
keywords Google street view; machine learning; image segmentation; color palette; color analysis
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2019_223
id caadria2019_223
authors Han, Yunsong, Pan, Yongjie, Zhao, Tianyu, Wang, Chunxing and Sun, Cheng
year 2019
title Use of UAV Photogrammetry to Estimate the Solar Energy Potential of Residential Buildings in Severe Cold Region
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 613-622
doi https://doi.org/10.52842/conf.caadria.2019.2.613
summary In this paper, a method based on UAV photogrammetry is proposed to estimate the solar energy potential of the building surface. This methodology goes from the acquired aerial images captured by the camera mounted on UAV. 3D model of the urban context in study area was extracted from the aerial images using SFM and MVS algorithms, which could be directly applied to the Ladybug plugin as analysis objects. Estimates of solar radiation are expressed by means of data visualization. The results showed that the UAV photogrammetry could demonstrate the geometry and texture of residential buildings precisely and the solar radiation simulation results showed significant spatial and temporal variations in solar radiation on residential buildings.
keywords Residential buildings; UAV photogrammetry; 3D reconstruction; Solar energy potential; Severe cold region
series CAADRIA
email
last changed 2022/06/07 07:50

_id cf2019_004
id cf2019_004
authors Kim, Jinsung; Jaeyeol Song and Jin-Kook Lee
year 2019
title Recognizing and Classifying Unknown Object in BIM using 2D CNN
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 23
summary This paper aims to propose an approach to automated classifying building element instance in BIM using deep learning-based 3D object classification algorithm. Recently, studies related to checking or validating engine of BIM object for ensuring data integrity of BIM instances are getting attention. As a part of this research, this paper train recognition models that are targeted at basic building element and interior element using 3D object recognition technique that uses images of objects as inputs. Object recognition is executed in two stages; 1) class of object (e.g. wall, window, seating furniture, toilet fixture and etc.), 2) sub-type of specific classes (e.g. Toilet or Urinal). Using the trained models, BIM plug-in prototype is developed and the performance of this AI-based approach with test BIM model is checked. We expect this recognition approach to help ensure the integrity of BIM data and contribute to the practical use of BIM.
keywords 3D object classification, Building element, Building information modeling, Data integrity, Interior element
series CAAD Futures
email
last changed 2019/07/29 14:08

_id ecaadesigradi2019_550
id ecaadesigradi2019_550
authors Rhee, Jinmo, Cardoso Llach, Daniel and Krishnamurti, Ramesh
year 2019
title Context-rich Urban Analysis Using Machine Learning - A case study in Pittsburgh, PA
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 343-352
doi https://doi.org/10.52842/conf.ecaade.2019.3.343
summary This paper reports on the analytical potential of machine learning methods for urban analysis. It documents a new method for data-driven urban analysis based on diagrammatic images describing each building in a city in relation to its immediate urban context. By statistically analyzing architectural and contextual features in this new dataset, the method can identify clusters of similar urban conditions and produce a detailed picture of a city's morphological structure. Remapping the clusters from data to 2D space, our method enables a new kind of urban plan that displays gradients of urban similarity. Taking Pittsburgh as a case study we demonstrate this method, and propose "morphological types" as a new category of urban analysis describing a given city's specific set of distinct morphological conditions. The paper concludes with a discussion of the implications of this method and its limitations, as well as its potentials for architecture, urban studies, and computation.
keywords Urban Morphology; Machine Learning; Architectural Contexts; Urban Analysis; GIS
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_459
id ecaadesigradi2019_459
authors Bourdakis, Vassilis and Tsangrassoulis, Aris
year 2019
title Dynamic Façade Design Studio - From sketches to microcontrollers
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 725-730
doi https://doi.org/10.52842/conf.ecaade.2019.2.725
summary The paper presents the outcome of two semesters running a dynamic façade design studio (2014 and 2018) to 3rd and 4th year undergraduates, using computational design, simulation and visualization tools in designing environmentally activated building envelopes. The paper discusses the problems faced by the students and the teaching team throughout the design process and finally suggests ways of integrating microcontrollers as a teaching tool enabling students to comprehend the logic, complexities and overall mechanics of responsive environmental design.
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_407
id ecaadesigradi2019_407
authors Capone, Mara, Lanzara, Emanuela, Marsillo, Laura and Nome Silva, Carlos Alejandro
year 2019
title Responsive complex surfaces manufacturing using origami
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 715-724
doi https://doi.org/10.52842/conf.ecaade.2019.2.715
summary Contemporary architecture is considered a dynamic system, capable of adapting to different needs, from environmental to functional ones. The term 'Adaptable Architecture' describes an architecture from which specific components can be changed in relation to external stimuli. This change could be executed by the building system itself, transformed manually or it could be any other ability to be transformed by external forces (Leliveld et al.2017). Adaptability concept is therefore linked to motion and to recent advances in kinetic architecture. In our research we are studying the rules that we can use to design a kinetic architecture using origami. Parametric design allows us to digitally simulate the movement of origami structures, we are testing algorithmic modeling to generate doubly curvature surfaces starting from a designed surface and not from the process. Our main goal is to study the relationship between geometry, motion and shape. We are interested, in particular, in complex surface manufacture using origami technique to design a kinetic and reactive ceiling.
keywords Origami; complex surface manufacture; responsive architecture; Applied Geometry
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_081
id ecaadesigradi2019_081
authors Costa, Phillipe
year 2019
title Grey Box City - Building cybernetic urban systems for smarter simulations
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 767-774
doi https://doi.org/10.52842/conf.ecaade.2019.1.767
summary In this paper we approach the concept of grey box model to understand the subjectivity and objectivity of urban design. From the beginning of the insertion of computational systems in the systems management, we understand that some simulations and the understanding of the city itself were partial: we do not understand the city and its spatial complexity and we have the pretension to do urban design thinking that we understand the urban life . Here we will address some categories of how we can simulate and create our urban systems using a more tactile cybernetics.
keywords Grey Box; Cybernetics; Smart City; Information Technology
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id ecaade2023_138
id ecaade2023_138
authors Crolla, Kristof and Wong, Nichol
year 2023
title Catenary Wooden Roof Structures: Precedent knowledge for future algorithmic design and construction optimisation
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 611–620
doi https://doi.org/10.52842/conf.ecaade.2023.1.611
summary The timber industry is expanding, including construction wood product applications such as glue-laminated wood products (R. Sikkema et al., 2023). To boost further utilisation of engineered wood products in architecture, further development and optimisation of related tectonic systems is required. Integration of digital design technologies in this endeavour presents opportunities for a more performative and spatially diverse architecture production, even in construction contexts typified by limited means and/or resources. This paper reports on historic precedent case study research that informs an ongoing larger study focussing on novel algorithmic methods for the design and production of lightweight, large-span, catenary glulam roof structures. Given their structural operation in full tension, catenary-based roof structures substantially reduce material needs when compared with those relying on straight beams (Wong and Crolla, 2019). Yet, the manufacture of their non-standard geometries typically requires costly bespoke hardware setups, having resulted in recent projects trending away from the more spatially engaging geometric experiments of the second half of the 20th century. The study hypothesis that the evolutionary design optimisation of this tectonic system has the potential to re-open and expand its practically available design solution space. This paper covers the review of a range of built projects employing catenary glulam roof system, starting from seminal historic precedents like the Festival Hall for the Swiss National Exhibition EXPO 1964 (A. Lozeron, Swiss, 1964) and the Wilkhahn Pavilions (Frei Otto, Germany, 1987), to contemporary examples, including the Grandview Heights Aquatic Centre (HCMA Architecture + Design, Canada, 2016). It analysis their structural concept, geometric and spatial complexity, fabrication and assembly protocols, applied construction detailing solutions, and more, with as aim to identify methods, tools, techniques, and construction details that can be taken forward in future research aimed at minimising construction complexity. Findings from this precedent study form the basis for the evolutionary-algorithmic design and construction method development that is part of the larger study. By expanding the tectonic system’s practically applicable architecture design solution space and facilitating architects’ access to a low-tech producible, spatially versatile, lightweight, eco-friendly, wooden roof structure typology, this study contributes to environmentally sustainable building.
keywords Precedent Studies, Light-weight architecture, Timber shell, Catenary, Algorithmic Optimisation, Glue-laminated timber
series eCAADe
email
last changed 2023/12/10 10:49

_id ecaadesigradi2019_514
id ecaadesigradi2019_514
authors de Miguel, Jaime, Villafa?e, Maria Eugenia, Piškorec, Luka and Sancho-Caparrini, Fernando
year 2019
title Deep Form Finding - Using Variational Autoencoders for deep form finding of structural typologies
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 71-80
doi https://doi.org/10.52842/conf.ecaade.2019.1.071
summary In this paper, we are aiming to present a methodology for generation, manipulation and form finding of structural typologies using variational autoencoders, a machine learning model based on neural networks. We are giving a detailed description of the neural network architecture used as well as the data representation based on the concept of a 3D-canvas with voxelized wireframes. In this 3D-canvas, the input geometry of the building typologies is represented through their connectivity map and subsequently augmented to increase the size of the training set. Our variational autoencoder model then learns a continuous latent distribution of the input data from which we can sample to generate new geometry instances, essentially hybrids of the initial input geometries. Finally, we present the results of these computational experiments and lay out the conclusions as well as outlook for future research in this field.
keywords artificial intelligence; deep neural networks; variational autoencoders; generative design; form finding; structural design
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id cdrf2023_526
id cdrf2023_526
authors Eric Peterson, Bhavleen Kaur
year 2023
title Printing Compound-Curved Sandwich Structures with Robotic Multi-Bias Additive Manufacturing
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_44
summary A research team at Florida International University Robotics and Digital Fabrication Lab has developed a novel method for 3d-printing curved open grid core sandwich structures using a thermoplastic extruder mounted on a robotic arm. This print-on-print additive manufacturing (AM) method relies on the 3d modeling software Rhinoceros and its parametric software plugin Grasshopper with Kuka-Parametric Robotic Control (Kuka-PRC) to convert NURBS surfaces into multi-bias additive manufacturing (MBAM) toolpaths. While several high-profile projects including the University of Stuttgart ICD/ITKE Research Pavilions 2014–15 and 2016–17, ETH-Digital Building Technologies project Levis Ergon Chair 2018, and 3D printed chair using Robotic Hybrid Manufacturing at Institute of Advanced Architecture of Catalonia (IAAC) 2019, have previously demonstrated the feasibility of 3d printing with either MBAM or sandwich structures, this method for printing Compound-Curved Sandwich Structures with Robotic MBAM combines these methods offering the possibility to significantly reduce the weight of spanning or cantilevered surfaces by incorporating the structural logic of open grid-core sandwiches with MBAM toolpath printing. Often built with fiber reinforced plastics (FRP), sandwich structures are a common solution for thin wall construction of compound curved surfaces that require a high strength-to-weight ratio with applications including aerospace, wind energy, marine, automotive, transportation infrastructure, architecture, furniture, and sports equipment manufacturing. Typical practices for producing sandwich structures are labor intensive, involving a multi-stage process including (1) the design and fabrication of a mould, (2) the application of a surface substrate such as FRP, (3) the manual application of a light-weight grid-core material, and (4) application of a second surface substrate to complete the sandwich. There are several shortcomings to this moulded manufacturing method that affect both the formal outcome and the manufacturing process: moulds are often costly and labor intensive to build, formal geometric freedom is limited by the minimum draft angles required for successful removal from the mould, and customization and refinement of product lines can be limited by the need for moulds. While the most common material for this construction method is FRP, our proof-of-concept experiments relied on low-cost thermoplastic using a specially configured pellet extruder. While the method proved feasible for small representative examples there remain significant challenges to the successful deployment of this manufacturing method at larger scales that can only be addressed with additional research. The digital workflow includes the following steps: (1) Create a 3D digital model of the base surface in Rhino, (2) Generate toolpaths for laminar printing in Grasshopper by converting surfaces into lists of oriented points, (3) Generate the structural grid-core using the same process, (4) Orient the robot to align in the direction of the substructure geometric planes, (5) Print the grid core using MBAM toolpaths, (6) Repeat step 1 and 2 for printing the outer surface with appropriate adjustments to the extruder orientation. During the design and printing process, we encountered several challenges including selecting geometry suitable for testing, extruder orientation, calibration of the hot end and extrusion/movement speeds, and deviation between the computer model and the physical object on the build platen. Physical models varied from their digital counterparts by several millimeters due to material deformation in the extrusion and cooling process. Real-time deviation verification studies will likely improve the workflow in future studies.
series cdrf
email
last changed 2024/05/29 14:04

_id cf2019_014
id cf2019_014
authors Ferrando, Cecilia; Niccolo Dalmasso, Jiawei Mai, Daniel Cardoso Llach
year 2019
title Architectural Distant Reading Using Machine Learning to Identify Typological Traits Across Multiple Buildings
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 114-127
summary This paper introduces an approach to architectural “distant reading”: the use of computational methods to analyze architectural data in order to derive spatial insights from—and explore new questions concerning—large collections of architectural work. Through a case study comprising a dataset of religious buildings, we show how we may use machine learning techniques to identify typological and functional traits from building plans. We find that spatial structure, rather than local features, is particularly effective in supporting this type of analysis. Further, we speculate on the potential of this computational method to enrich architectural design, research, and criticism by, for example, enabling new ways of thinking about architectural concepts such as typology in ways that reflect gradual variations, rather than sharp distinctions.
keywords Architectural Analytics, Machine Learning, Classification, Religious buildings, Space Syntax
series CAAD Futures
email
last changed 2019/07/29 14:08

_id caadria2019_406
id caadria2019_406
authors Fitriawijaya, Adam, Hsin-Hsuan, Tsai and Taysheng, jeng
year 2019
title A Blockchain Approach to Supply Chain Management in a BIM-Enabled Environment
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 411-420
doi https://doi.org/10.52842/conf.caadria.2019.2.411
summary The blockchain is a distributed ledger managed by a peer to peer network that stores all transaction records. The distributed ledger technology offers new possibilities, promising to ensure that data is secure, decentralized and incomparable. In the Architecture, Engineering, Construction (AEC) industry, Building Information Modeling (BIM) has quickly become a standard platform where all parties work together on a single and shared model for collaboration. The issues of Supply Chain Management (SCM) within BIM can be identified in BIM maturity level, based on PAS1193 that developed through Common Data Environment (CDE). The research strategy is to make model and simulation of SCM using BIM and create CDE to become decentralized and integrate the blockchain technology. The smart contract system validates every material and configuration of components within the model from the design stage until the operation stage. Traceability and auditability through an immutable historic eventually be more visible and allow real-time tracking of a material to a construction site providing a history from the origin.
keywords Blockchain; BIM; Supply Chain
series CAADRIA
email
last changed 2022/06/07 07:51

_id caadria2019_602
id caadria2019_602
authors Freitas, José and Leitão, António
year 2019
title Back to Reality - Dendritic structures using current construction techniques
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 173-182
doi https://doi.org/10.52842/conf.caadria.2019.1.173
summary Architects throughout time have designed tree-inspired structures, not only to decorate their creations, but also to explore biomimicry to solve mechanical and structural problems. With the predominance of digital simulation tools, these dendritic-shaped structures are now more easily explored. However, these explorations tend to lack the rationalization required to make them applicable to current production means. In this paper, we take a step back and ensure the connection between the creation and the production of the designs generated with these new digital approaches. The present investigation combines design and analysis tools in search for tree-inspired structures that take advantage of the current techniques of building construction.
keywords Biomimicry; Dendritic structures; Algorithmic design; Performative architecture; Structural analysis
series CAADRIA
email
last changed 2022/06/07 07:50

_id acadia19_234
id acadia19_234
authors Grewal, Neil; Escallon, Miguel; Chaudhary, Abhinav; Hramyka, Alina
year 2019
title INFRASONIC
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 234-245
doi https://doi.org/10.52842/conf.acadia.2019.234
summary In 2015, an earthquake of 7.8 magnitude displaced over 6.6 million people in Kathmandu, Nepal. Three years later, the country continues in its struggle to rebuild its capital. The aim of this study is to investigate a construction system, produced from locally sourced materials, that can aggregate and deploy as self-built, habitable infrastructure. The study focused on the relationship between material resonance, earthquake resistant structures, and fabrication strategies. An agent-based form-finding algorithm was developed using knowledge acquired through physical prototyping of mycelium-based composites to generate earthquake resistant geometries, optimize material usage, and enhance spatial performance. The results show compelling evidence for a construction methodology to design and construct a 3-4 story building that holds a higher degree of resistance to earthquakes. The scope of work contributes to advancements in bioengineering, confirming easy-to-grow, light-weight mycelium-composites as viable structural materials for construction.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id lasg_whitepapers_2019_111
id lasg_whitepapers_2019_111
authors Gruber, Petra
year 2019
title Living Wall System (LIWAS)
source Living Architecture Systems Group White Papers 2019 [ISBN 978-1-988366-18-0] Riverside Architectural Press: Toronto, Canada 2019. pp.111 - 122
summary This proposal is about the design and prototyping of a Living Wall System (LIWAS) as a test bed for integrating concepts from biology into architectural design. The "Living Wall” is a new way of interpreting a wall system that we use in architecture and building. We try to integrate characteristics of living organisms into the wall design to harness some of the intriguing qualities of life into our built surroundings. Living Walls may include flows of water; they may move, adapt geometry and change appearance; they may be inhabited by algae, plants and other organisms and in general be “alive.” The framework of the proposal is the overlap between architectural design and biological research, using biomimicry as a methodology for information transfer between the fields (Image 1).
keywords living architecture systems group, organicism, intelligent systems, design methods, engineering and art, new media art, interactive art, dissipative systems, technology, cognition, responsiveness, biomaterials, artificial natures, 4DSOUND, materials, virtual projections,
email
last changed 2019/07/29 14:02

_id ecaadesigradi2019_613
id ecaadesigradi2019_613
authors Guedes, Ítalo and Andrade, Max
year 2019
title Automatic Rule-Based Checking for the Approval of Building Architectural Designs of Airport Passenger Terminals based on BIM
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 333-338
doi https://doi.org/10.52842/conf.ecaade.2019.2.333
summary In Brazil, the evaluation processes of building architectural designs of Airports Passenger Terminal (PT) are carried out manually. It depends on the architects' knowledge, leading to possible errors. On the other hand, the rule checking in BIM-modeled building projects opens up new horizons for this type of activity. Based on Code Checking concepts, this paper presents a method for automating rule checking for building code in building architectural design of PT. Following the aspects of Design Science Research, it is developed in two stages: Construction (theoretical foundation, creating rule checking for the PT, implementation of the rules in BIM softwares for code checking and validation) and Evaluation of artefact. This paper shows a series of problems resulting from the evaluation of PT using traditional methods. It can be concluded that the use of rules for regulatory code checking with BIM allows standardization in the evaluation of architectural design of PT.
keywords Code Checking; Passenger Terminal; Building Information Modeling; Rule checking
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

_id cf2019_039
id cf2019_039
authors Guo, Fei ; Eduardo Castro e Costa, Jose Duarte and Shadi Nazarian
year 2019
title Computational Implementation of a Tool for Generative Design of High-rise Residential Building Facades
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 301-316
summary We propose a computational design tool that aims to provide more variety to the design of high-rise residential building facades. In contemporary cities, the pressure to build many high-rise residential buildings leaves little time to focus on facade design, resulting in repetitive facades that impart a monotonous appearance to cities. We propose a computational tool that can help to improve facade variety, based on shape grammars and parametric modeling. Shape grammars are used to analyze facade composition and to structure design knowledge. Subsequently, the grammars are converted into parametric models, which are implemented using the Python programming language that can be used to generate designs in CAD software. The resulting tool encodes a general parametric model that manipulates the rules of formal composition of building facades. Without limitations from software, the program takes advantage of the high-processing power of the computer to provide many design solutions from which architects can choose.
keywords Variety, Facades, Computational Design, Parametric Modeling, Shape Grammar
series CAAD Futures
email
last changed 2019/07/29 14:15

_id ecaade2022_247
id ecaade2022_247
authors Güntepe, Rahma
year 2022
title Building with Expanded Cork - A novel monolithic building structure
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 29–36
doi https://doi.org/10.52842/conf.ecaade.2022.1.029
summary This research presents the development of a construction system for a solid expanded cork building envelope. The inspiration for this research is the “Cork House” built in 2019 by Matthew Barnett Howland and Oliver Wilton, who developed a Cork Construction Kit for a monolithic dry-jointed cork structure. The goal of this research is to analyze and develop different varieties of construction methods for a dry-joined cork building by combining and applying traditional masonry techniques. The objective is to generate a material-based design for cork construction elements trough prototyping and using a selection of digital tools such as 3D modeling and 3D printing. Expanded cork is a 100% plant-based material which, if applied correctly, has the capacity to be used as a load bearing, insulating and protective structure all at once. It has almost no environmental impact and is completely compostable. To maintain the material's compostable property, this construction system has to be developed without any kind of binders or mortar. Additionally, this more reduced and simplified form of construction will not only make it possible to build without any specific expertise, but at the same time ensure resources to be reused or composted at the end of building life.
keywords Expanded Cork, Cork, Material-Based Design, Masonry, Stereotomy, 3D Modeling, 3D Printing, Sustainable Material, Dry-Joint Construction
series eCAADe
email
last changed 2024/04/22 07:10

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 22HOMELOGIN (you are user _anon_489809 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002