CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 136

_id ecaadesigradi2019_068
id ecaadesigradi2019_068
authors Agirbas, Asli
year 2019
title The Effect of Complex Wall Forms on the Room Acoustics - An experimental case study
doi https://doi.org/10.52842/conf.ecaade.2019.2.097
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 97-102
summary The complexity of the wall form affects the acoustics of the space. In this study, the effect of the complex form walls produced by nCloth dynamic simulation on the acoustics of an office space was investigated. In this research, reverberation time and Speech Transmission Index (STI) values of the pilot office space with one wall having complex form and the office space with all of the walls as flat were measured by acoustic simulation. As a result of the comparison, it has been found that, within speech intelligibility and reverberation time, the acoustics of the space with one wall having complex form is better than the acoustics of the space with all the walls as flat.
keywords nCloth; Acoustics; Complex forms; Modeling & simulation
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id acadia19_458
id acadia19_458
authors Bartosh, Amber; Anzalone, Phillip
year 2019
title Experimental Applications of Virtual Reality in Design Education
doi https://doi.org/10.52842/conf.acadia.2019.458
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 458-467
summary By introducing rapid reproduction, algorithms, and complex formal configurations, the digital era of architecture began a revolution. Architects incorporated the computational capacity of the computer into the design process both as a tool and as a critical component of the theories and practice of architecture as a whole. As we move into what has been coined “the second digital turn,” a period in which digital integration is considered ubiquitous, how can we consider, prepare, and propel towards the next technological innovation to significantly inform design thinking, representation, and manifestation? What tools are available to investigate this speculative design future and how can they be implemented? If the integration of technology in architecture is now a given, perhaps the next digital design era is not just digital but virtual. As new technologies emerge the potential for integrating the virtual design world with our physical senses affords novel possibilities for interactive design, simulation, analysis and construction. Hybrid reality technologies including virtual reality (VR) and augmented reality (AR), embody the potential to supersede conventional representation methodologies such as drawing, rendering, physical modeling, and animation. As they become increasingly pervasive, they will transform how we communicate ideas and data as spatial concepts. Further, they will reform the construct of the built environment when applied to both materiality and fabrication. This paper will describe the incorporation of VR as a tool in various classroom and laboratory settings, recognize the educational outcomes of this incorporation, and identify the potential relationship of these technologies to future academic exploration and application to practice.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_628
id ecaadesigradi2019_628
authors Borunda, Luis, Ladron de Guevara, Manuel and Anaya, Jesus
year 2019
title Design Method for Optimized Infills in Additive Manufacturing Thermoplastic Components
doi https://doi.org/10.52842/conf.ecaade.2019.1.493
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 493-502
summary The following article extends and tests computational methodologies of design to consider Finite Element Analysis in the creation of optimized infill structures based on regular and semi-regular patterns that comply with the geometrical constraints of deposition. The Stress-Deformation relationship manifested in Finite Element Analysis is structured in order to influence the geometrical arrangement of the complex spatial infill. The research presents and discusses a program of performance informed infill design, and validates the generalizability of a method of internalizing and automating Finite Element Method (FEM) processing in Fused Deposition Modeling (FDM) workflows, and tests manufacturability of the methods through its ability to handle the FDM process constraints of FEM influenced intricate geometries.
keywords Additive Manufacturing; Finite Element Analysis; Fused Deposition Modeling; 3D infill
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_407
id ecaadesigradi2019_407
authors Capone, Mara, Lanzara, Emanuela, Marsillo, Laura and Nome Silva, Carlos Alejandro
year 2019
title Responsive complex surfaces manufacturing using origami
doi https://doi.org/10.52842/conf.ecaade.2019.2.715
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 715-724
summary Contemporary architecture is considered a dynamic system, capable of adapting to different needs, from environmental to functional ones. The term 'Adaptable Architecture' describes an architecture from which specific components can be changed in relation to external stimuli. This change could be executed by the building system itself, transformed manually or it could be any other ability to be transformed by external forces (Leliveld et al.2017). Adaptability concept is therefore linked to motion and to recent advances in kinetic architecture. In our research we are studying the rules that we can use to design a kinetic architecture using origami. Parametric design allows us to digitally simulate the movement of origami structures, we are testing algorithmic modeling to generate doubly curvature surfaces starting from a designed surface and not from the process. Our main goal is to study the relationship between geometry, motion and shape. We are interested, in particular, in complex surface manufacture using origami technique to design a kinetic and reactive ceiling.
keywords Origami; complex surface manufacture; responsive architecture; Applied Geometry
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_249
id ecaadesigradi2019_249
authors Chiarella, Mauro, Gronda, Luciana and Veizaga, Martín
year 2019
title RILAB - architectural envelopes - From spatial representation (generative algorithm) to geometric physical optimization (scientific modeling)
doi https://doi.org/10.52842/conf.ecaade.2019.3.017
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 17-24
summary Augmented graphical thinking operates by integrating algorithmic, heuristic, and manufacturing processes. The Representation and Ideation Laboratory (RILAB-2018) exercise begins with the application of a parametric definition developed by the team of teachers, allowing for the construction of structural systems by the means of the combination of segmental shells and bending-active. The main objetive is the construction of a scientific model of simulation for bending-active laminar structures has brought into reality trustworthy previews for architectural envelopes through the interaction of parametrized relational variables. This way we put designers in a strategic role for the building of the pre-analysis models, allowing more preciseness at the time of picking and defining materials, shapes, spaces and technologies and thus minimizing the decisions based solely in the definition of structural typological categories, local tradition or direct experience. The results verify that the strategic integration of models of geometric physical optimization and spatial representation greatly expand the capabilities in the construction of the complex system that operates in the act of projecting architecture.
keywords architectural envelopes; augmented graphic thinking; geometric optimization; bending-active
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id ecaadesigradi2019_414
id ecaadesigradi2019_414
authors Costa Lima, Mariana, Cardoso, Daniel and Freitas, Clarissa
year 2019
title Informal Settlements and City Information Modeling - Producing data to inform land use regulation in Fortaleza-Brazil
doi https://doi.org/10.52842/conf.ecaade.2019.3.323
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 323-332
summary In recent years, several advances have occurred concerning the legitimacy of precarious informal settlements in Brazil. In spite of this progress in the legal dimension, little has been made concerning standards to ensure urban space quality. The difficulties of reversing this exclusionary logic are due to several complex factors. A factor less discussed, especially in the national literature, but that has begun to draw the attention of scholars, is the invisibility of the informal city. This research assumes that it is necessary to regulate the urban form of precarious informal settlements, in order to prevent the deterioration of urban environmental quality. We highlight the importance to compile data about their urban form and their built environment, in order to contribute to a reality-based regulatory policy for these settlements, and this is the primary purpose of this study. To address this question, we propose a method of measuring the settlements' urban form, based on the City Information Modeling's theorical and practical framework, which is applied to a case study in Fortaleza, Brazil.
keywords Informal settlements; City Information Modeling; Urban regulation; ZEIS Bom Jardim
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id acadia19_412
id acadia19_412
authors Del Campo, Matias; Manninger, Sandra; Carlson, Alexandra
year 2019
title Imaginary Plans
doi https://doi.org/10.52842/conf.acadia.2019.412
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 412-418
summary Artificial Neural Networks (NN) have become ubiquitous across disciplines due to their high performance in modeling the real world to execute complex tasks in the wild. This paper presents a computational design approach that uses the internal representations of deep vision neural networks to generate and transfer stylistic form edits to both 2D floor plans and building sections. The main aim of this paper is to demonstrate and interrogate a design technique based on deep learning. The discussion includes aspects of machine learning, 2D to 2D style transfers, and generative adversarial processes. The paper examines the meaning of agency in a world where decision making processes are defined by human/machine collaborations (Figure 1), and their relationship to aspects of a Posthuman design ecology. Taking cues from the language used by experts in AI, such as Hallucinations, Dreaming, Style Transfer, and Vision, the paper strives to clarify the position and role of Artificial Intelligence in the discipline of Architecture.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id acadia19_554
id acadia19_554
authors Farzaneh, Ali; Weinstock, Michael
year 2019
title Mathematical Modeling of Cities as Complex Systems
doi https://doi.org/10.52842/conf.acadia.2019.554
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 554-563
summary Within the domain of computational modelling for cities, the study of complex systems has stimulated a body of research (through mathematical and scientific modelling) that has given greater insight into the characteristic of cities. These characteristics share principles in their hierarchical organisation and formation over time with that of complex living systems. The central focus of the research lies in two parts: the first is the understanding of cities as complex systems that share principles with complex living systems; the second is the computational modelling of cities as complex systems. This paper presents a computational model capable of generating urban tissues of differentiated spatial and morphological patterns that emerge over time. The generative process is driven by simultaneous interaction and exchanges between block and network systems.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id caadria2019_221
id caadria2019_221
authors Ladron de Guevara, Manuel, Borunda, Luis, Ficca, Jeremy, Byrne, Daragh and Krishnamurti, Ramesh
year 2019
title Robotic Free-Oriented Additive Manufacturing Technique for Thermoplastic Lattice and Cellular Structures
doi https://doi.org/10.52842/conf.caadria.2019.2.333
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 333-342
summary This paper presents a novel Additive Manufacturing application of situated Robotic Fused Deposition Modeling (RFDM) for thermoplastic cellular and lattice structures, called Free-Oriented Additive Manufacturing (FOAM), to accommodate variations in spatial conditions, deposition direction, and geometry in order to adapt to complex infrastructure settings, thus, breaking the conventional layer-by-layer stacking principle and the constant constraint of locking the tip of the nozzle to the negative Z direction when fabricating at an architectural scale.
keywords Robotic 3D Printing; Situated Fused Deposition; Thermoplastic Lattice Structures
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2019_165
id caadria2019_165
authors Luo, Chuanwen, Jin, Mingyu and Yin, Lu
year 2019
title Architectural Form Generation Based on the DNA Algorithm
doi https://doi.org/10.52842/conf.caadria.2019.2.471
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 471-480
summary With the development of computer technology, complex patterns in architectural design modeling have become a reality. The core of architectural form generation in the parametric design is the algorithm. The article observes the morphology and structure of DNA and implements the algorithm by the secondary development of Rhinoceros. By comparing the different parameter combinations that generate forms, the affection of each parameter is more intuitively understood. In the end, a prototype design of a landscape bridge has been carried out applied with the Double Helix algorithm.
keywords :DNA algorithm; Double helix structure; Architectural Form Generation; Secondary development;parametric design
series CAADRIA
email
last changed 2022/06/07 07:59

_id cf2019_068
id cf2019_068
authors Md Rian, Iasef
year 2019
title IFS-Based Computational Morphogenesis of a Hierarchical Trussed Beam
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 552-564
summary This paper applies IFS (Iterated Function System) as a rule-based computational modeling process for modeling a hierarchical truss beam inspired by the concept of fractal geometry. IFS is a type of recursive algorithm, which repeatedly uses the outcome as a input for an affine transformation function in generating a fractal shape, i.e., a complex shape which contains the self-similar repetitions of the overall shape in its parts. Hierarchical trusses also follow a similar geometric configuration. IFS-based computational modeling, hence, allows us to parametrically morph a parent model, thus repeat the same morphing to all its self-similar parts automatically. This IFS-based morphogenesis opens a possibility to find an optimal configuration of a hierarchical truss structurally. In this parametric modeling process, the iteration number is a unique geometric parameter. This paper uses two geometric variables (iteration number and angle) to find the most efficient design of a hierarchical truss beam through an optimization process.
keywords hierarchical truss, fractal geometry, IFS, computational design
series CAAD Futures
email
last changed 2019/07/29 14:18

_id acadia20_38
id acadia20_38
authors Mueller, Stephen
year 2020
title Irradiated Shade
doi https://doi.org/10.52842/conf.acadia.2020.1.038
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 38-46.
summary The paper details computational mapping and modeling techniques from an ongoing design research project titled Irradiated Shade, which endeavors to develop and calibrate a computational toolset to uncover, represent, and design for the unseen dangers of ultraviolet radiation, a growing yet underexplored threat to cities, buildings, and the bodies that inhabit them. While increased shade in public spaces has been advocated as a strategy for “mitigation [of] climate change” (Kapelos and Patterson 2014), it is not a panacea to the threat. Even in apparent shade, the body is still exposed to harmful, ambient, or “scattered” UVB radiation. The study region is a binational metroplex, a territory in which significant atmospheric pollution and the effects of climate change (reduced cloud cover and more “still days” of stagnant air) amplify the “scatter” of ultraviolet wavelengths and UV exposure within shade, which exacerbates urban conditions of shade as an “index of inequality” (Bloch 2019) and threatens public health. Exposure to indirect radiation correlates to the amount of sky visible from the position of an observer (Gies and Mackay 2004). The overall size of a shade structure, as well as the design of openings along its sides, can greatly impact the UV protection factor (UPF) (Turnbull and Parisi 2005). Shade, therefore, is more complex than ubiquitous urban and architectural “sun” and “shadow studies” are capable of representing, as such analyses flatten the three-dimensional nature of radiation exposure and are “blind” to the ultraviolet spectrum. “Safe shade” is contingent on the nuances of the surrounding built environment, and designers must be empowered to observe and respond to a wider context than current representational tools allow.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaadesigradi2019_216
id ecaadesigradi2019_216
authors Sammer, Maria Jo?o and Leit?o, António
year 2019
title Visual Input Mechanisms in Textual Programming for Architecture
doi https://doi.org/10.52842/conf.ecaade.2019.3.007
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 7-16
summary Algorithmic Design (AD) is no longer foreign to architecture and its methodology embraces one of the most recent technological revolutions in the field. This approach lays on Programming Languages (PLs) to define rules and constraints within an algorithm that, in return, generates geometry in modeling and analysis tools. PLs can either be visual (VPLs) or textual (TPLs). In architecture, there is a clear propensity to the use of VPLs over TPLs, due to all the visual features and mechanisms they provide that make programming more intuitive for architects. Nevertheless, and even though TPLs are less appealing to learn and use, they offer clear advantages when dealing with complex programs. Therefore, in order to bring TPLs closer to their users, we discuss, explore, and implement Visual Input Mechanisms (VIMs) in Khepri, a new textual programming tool for architecture.
keywords Algorithmic Design; Visual Input Mechanisms; Visual Programming Languages; Textual Programming Languages; Metaprogramming; Khepri
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_123
id ecaadesigradi2019_123
authors Souza, Leonardo Prazeres Veloso de, Ponzio, Angélica Paiva, Bruscato, Underléa Miotto and Cattani, Airton
year 2019
title A-BIM: A New Challenge for Old Paradigms
doi https://doi.org/10.52842/conf.ecaade.2019.1.233
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 233-240
summary This paper is the result of a pedagogic proposal applied to undergraduate students of architecture in order to present new digital design tools and methods. This study aims to connect procedural contents to different design strategies enrolled by students with special focus on complex geometries. The objective was to offer the necessary assistance to an appropriated design development, by reducing the habitual mishaps related to the lack of technical skills with digital tools for both the design reasoning and the subsequent graphic representation of proposals. As an answer, a new design approach called A-BIM (Algorithmic-based Building Information Modeling) was introduced to students, which integrates BIM platforms with algorithmic modelling software allowing, in this way, some formal flexibility allied to an adequate graphic documentation.
keywords A-BIM; algorithmic design; BIM technology ; parametric software
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_393
id ecaadesigradi2019_393
authors Wendell, Augustus, Ozludil, Burcak and López-Salas, Estefanía
year 2019
title Calculating Movement - An Agent Based Modeling System for Historical Studies
doi https://doi.org/10.52842/conf.ecaade.2019.1.541
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 541-550
summary Simulating human movement and actions in historical spaces/landscapes is a complex task. It requires not only the recreation of spaces that no longer exist, but more challenging the recovery of actions performed in the past. These actions can provide insights into important aspects such as how people inhabited, used, perceived, lived, sensed, and shaped these spaces. This research aims to show a framework to approach studying human movement, using an Agent Based Modeling (ABM) system. Our ABM tool has methods for creating, managing, and choreographing the movement of agents through 3D models. A number of iterative tests, both agent-to-agent and agent-to-model, enable the system to produce scholarly quantitative data in historical spaces. We highlight the use of this system through two case studies, one at an architectural scale and the other at landscape scale.
keywords Agent Based Modeling; Art and Architectural History; Simulation
series eCAADeSIGraDi
email
last changed 2022/06/07 07:58

_id cf2019_052
id cf2019_052
authors Abdelmohsen, Sherif ;Passaint Massoud, Rana El-Dabaa, Aly Ibrahim and Tasbeh Mokbel
year 2019
title The Effect of Hygroscopic Design Parameters on the Programmability of Laminated Wood Composites for Adaptive Façades
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 435
summary Typical adaptive façades respond to external conditions to enhance indoor spaces based on complex mechanical actuators and programmable functions. Hygroscopic embedded properties of wood, as low-cost low-tech programmable material, have been utilized to induce passive motion mechanisms. Wood as anisotropic material allows for different passive programmable motion configurations that relies on several hygroscopic design parameters. This paper explores the effect of these parameters on programmability of laminated wood composites through physical experiments in controlled humidity environment. The paper studies variety of laminated configurations involving different grain orientations, and their effect on maximum angle of deflection and its durability. Angle of deflection is measured using image analysis software that is used for continuous tracking of deflection in relation to time. Durability is studied as the number of complete programmable cycles that wood could withstand before reaching point of failure. Results revealed that samples with highest deflection angle have least programmability durability.
keywords Wood, hygroscopic design, lamination, deflection, durability, adaptive façades
series CAAD Futures
email
last changed 2019/07/29 14:18

_id ecaadesigradi2019_061
id ecaadesigradi2019_061
authors Alkadri, Miktha Farid, De Luca, Francesco, Turrin, Michela and Sariyildiz, Sevil
year 2019
title Making use of Point Cloud for Generating Subtractive Solar Envelopes
doi https://doi.org/10.52842/conf.ecaade.2019.1.633
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 633-640
summary As a contextual and passive design strategy, solar envelopes play a great role in determining building mass based on desirable sun access during the predefined period. With the rapid evolution of digital tools, the design method of solar envelopes varies in different computational platforms. However, current approaches still lack in covering the detailed complex geometry and relevant information of the surrounding context. This, consequently, affects missing information during contextual analysis and simulation of solar envelopes. This study proposes a subtractive method of solar envelopes by considering the geometrical attribute contained in the point cloud of TLS (terrestrial laser scanner) dataset. Integration of point cloud into the workflow of solar envelopes not only increases the robustness of final geometry of existing solar envelopes but also enhances awareness of architects during contextual analysis due to consideration of surface properties of the existing environment.
keywords point cloud data; solar envelopes; subtractive method; solar access
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id acadia23_v1_196
id acadia23_v1_196
authors Bao, Ding Wen; Yan, Xin; Min Xie, Yi
year 2023
title Intelligent Form
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 196-201.
summary InterLoop employs previously developed workflows that enable multi-planar robotic bending of metal tubes with high accuracy and repeatability (Huang and Spaw 2022). The scale and complexity is managed by employing augmented reality (AR) technology in two capacities, fabrication and assembly (Jahn et al. 2018; Jahn, Newnham, and Berg 2022). The AR display overlays part numbers, bending sequences, expected geometry, and robot movements in real time as the robot fabrication is occurring. For assembly purposes, part numbers, centerlines, and their expected positional relationships are projected via quick response (QR) codes spatially tracked by the Microsoft Hololens 2 (Microsoft 2019). This is crucial due to the length and self-similarity of complex multi-planar parts that make them difficult to distinguish and orient correctly. Leveraging augmented reality technology and robotic fabrication uncovers a novel material expression in tubular structures with bundles, knots, and interweaving (Figure 1).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id caadria2019_459
id caadria2019_459
authors Behmanesh, Hossein and Brown, André G.P.
year 2019
title Classification and Review of Software Applications in the Context of Urban Design Processes
doi https://doi.org/10.52842/conf.caadria.2019.2.211
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 211-220
summary We have seen increasing expectations from our cities: as we aim to enable them to become smarter, more efficient and more sustainable. Having these goals makes the urban designing process increasingly complex. Undertaking contemporary urban design and analysis requires a rounded and inclusive approach. In the discussion relating to the smart city there has been attention to infrastructure technology solutions. But ways of estimating the success of more comprehensive urban design interventions is also extremely important. In response to these needs, digital urban design simulation and analysis software packages have been developed to help urban designers model and evaluate their designs before they take shape in the real world. We analyse, and reflect on the current aids available, classifying the urban design software packages which were used in the body of knowledge. In addition, more influential urban design software packages have been reviewed to figure out in which stages of the urban design process, they have applied. This review also helpful for software developer to understand which software packages more useful and which ones need to be developed in future.
keywords Smart city; Urban Design Process; software application; classification
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia19_278
id acadia19_278
authors Ca?izares, Galo
year 2019
title Digital Suprematism
doi https://doi.org/10.52842/conf.acadia.2019.278
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 278-287
summary It is widely held that sometime around 2006, the World Wide Web as we knew it mutated into Web 2.0. This colloquial label signaled a shift from an Internet designed for us to an Internet designed by us. Nowhere was this more explicitly stated than in Time Magazine’s 2006 Person of the Year selection: You. More than a decade later, Internet browsers have evolved into ubiquitous interfaces accessible from mobile devices, tablet computers, public kiosks, workstations, laptops, etc. It would, therefore, not be an overstatement to say that the browser is the most widespread content canvas in the world. Designers frequently use web browsers for their ability to exhibit and organize content. They are the sites for portfolios, announcements, magazines, and at times, discussions. But despite its flexibility and rich infrastructure, rarely is the browser used to generate design elements. Thanks to advanced web development languages like JavaScript and open-source code libraries, such as p5.JS, Matter.JS, and Three.JS, browsers now support interactive and spatial content. Typically, these tools are used to generate gimmicks or visual effects, such as the parallax illusion or the infinite scroll. But if we perceive the browser as a timebased picture plane, we can immediately recognize its architectonic potential. This paper puts forth a method for engaging the creative potential of web-based media and Internet browsers. Through example projects, I argue that the Internet browser is a highly complex spatial plane that warrants more architectural analysis and experimentation.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5show page 6HOMELOGIN (you are user _anon_201984 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002