CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 259

_id ecaadesigradi2019_541
id ecaadesigradi2019_541
authors Mesa, Olga, Mhatre, Saurabh, Singh, Malika and Aukes, Dan
year 2019
title CREASE - Synchronized Gait Through Folded Geometry.
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 197-206
doi https://doi.org/10.52842/conf.ecaade.2019.3.197
summary Robotics have expanded exponentially in the last decade. Within the vast examples of ambulatory robots, traditional legged robots necessitate engineering expertise and the use of specialized fabrication technologies. Micro electromechanical (MEM) robots are useful for a wide range of applications yet in most cases, difficult to fabricate and excessively intricate. Advances in pop-up laminate construction have generated a model shift in the development of robot morphologies due to their ease of fabrication and scalability from the millimeter to centimeter scale. This research continues to investigate the link between kinematics and pop-up origami structures in robotics. The objective was to design a robot that exhibited efficient and controlled locomotion minimizing number of motors. "Crease", an origami robot that emerges from a two-dimensional sheet into its three-dimensional configuration was developed. By amplifying a simple rotational motion through the geometry of folds in the robot, a complex gait was achieved with minimal motorized actuation. Variations in gait, control, and steering were studied through physical and computational models. Untethered Creases that sense their environment and steer accordingly were developed. This research contributes not only to the field of robotics but also to design where efficiency, adjustability and ease of fabrication are critical.
keywords Digital Fabrication and Robotics, Smart Geometry, Origami Robotics, Laminate Construction.
series eCAADeSIGraDi
email
last changed 2022/06/07 07:58

_id ecaadesigradi2019_102
id ecaadesigradi2019_102
authors Passsaro, Andres Martin, Henriques, Gonçalo Castro, Sans?o, Adriana and Tebaldi, Isadora
year 2019
title Tornado Pavilion - Simplexity, almost nothing, but human expanded abilities
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 305-314
doi https://doi.org/10.52842/conf.ecaade.2019.1.305
summary In the context of the fourth industrial revolution, not all regions have the same access to technology for project development. These technological limitations do not necessarily result in worst projects and, on the contrary, can stimulate creativity and human intervention to overcome these shortcomings. We report here the design of a small pavilion with scarce budget and an ambitious goal to qualify a space through tactical urbanism. We develop the project in a multidisciplinary partnership between academy and industry, designing, manufacturing and assembling Tornado Pavilion, a complex structure using combined HIGH-LOW technologies, combining visual programming with analog manufacture and assembly. The design strategy uses SIMPLEXITY with ruled surfaces strategy to achieve a complex geometry. Due to the lack of automated mechanical cutting or assembly, we used human expanded abilities for the construction; instead of a swarm of robots, we had a motivated and synchronized swarm of students. The pavilion became a reference for local population that adopted it. This process thus shows that less or almost nothing (Sola-Morales 1995), need not to be boring (Venturi 1966) but less can be much more (Kolarevic 2017).
keywords Simplexity; CAD-CAM; Ruled Surfaces; expanded abilities; pavilion
series eCAADeSIGraDi
email
last changed 2022/06/07 07:59

_id caadria2019_659
id caadria2019_659
authors Wang, Xiang, Guo, Zhe, Zhang, Xiao, Jin, Jinxi and Yuan, Philip F.
year 2019
title Design, Analysis and Robotic Fabrication of a Bending-Active Shell Structure with Thin Sheets Based on Curved-Crease-Folding Technique
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 63-72
doi https://doi.org/10.52842/conf.caadria.2019.1.063
summary This paper shows a design and building application of an innovative structure concept which is developed by the authors. The long-span shell structure (8m*10m*2.5m) built with 1.5mm thin aluminum sheets demonstrates the possibility to apply bending-active structures with flexible thin sheet material in shell structures to enhance the global and local stiffness. The structure is mainly originated from the curved-crease-folding technique which enhances the structural stiffness by introducing curvature to the surfaces. The Y-shape structural elements define the basic geometrical rules and find its global double-curved geometry via the folding of the three lateral ribs. The full-scale prototype and its design and fabrication techniques show a design framework of the structure from its form-finding, surface optimization, robotic simulated fabrication to the final full-scale assembly. As a pioneer pavilion in a research workshop, students' design with diverse forms also show the widely possible application of this structural concept.
keywords shell structure; thin aluminum sheets; bending-active; robotic creased-folding
series CAADRIA
email
last changed 2022/06/07 07:58

_id acadia19_168
id acadia19_168
authors Adilenidou, Yota; Ahmed, Zeeshan Yunus; Freek, Bos; Colletti, Marjan
year 2019
title Unprintable Forms
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp.168-177
doi https://doi.org/10.52842/conf.acadia.2019.168
summary This paper presents a 3D Concrete Printing (3DCP) experiment at the full scale of virtualarchitectural bodies developed through a computational technique based on the use of Cellular Automata (CA). The theoretical concept behind this technique is the decoding of errors in form generation and the invention of a process that would recreate the errors as a response to optimization (Adilenidou 2015). The generative design process established a family of structural and formal elements whose proliferation is guided through sets of differential grids (multi-grids) leading to the build-up of large span structures and edifices, for example, a cathedral. This tooling system is capable of producing, with specific inputs, a large number of outcomes in different scales. However, the resulting virtual surfaces could be considered as "unprintable" either due to their need of extra support or due to the presence of many cavities in the surface topology. The above characteristics could be categorized as errors, malfunctions, or undesired details in the geometry of a form that would need to be eliminated to prepare it for printing. This research project attempts to transform these "fabrication imprecisions" through new 3DCP techniques into factors of robustness of the resulting structure. The process includes the elimination of the detail / "errors" of the surface and their later reinsertion as structural folds that would strengthen the assembly. Through this process, the tangible outputs achieved fulfill design and functional requirements without compromising their structural integrity due to the manufacturing constraints.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ijac201917105
id ijac201917105
authors Agkathidis, Asterios; Yorgos Berdos and André Brown
year 2019
title Active membranes: 3D printing of elastic fibre patterns on pre-stretched textiles
source International Journal of Architectural Computing vol. 17 - no. 1, 74-87
summary There has been a steady growth, over several decades, in the deployment of fabrics in architectural applications; both in terms of quantity and variety of application. More recently, three-dimensional printing and additive manufacturing have added to the palette of technologies that designers in architecture and related disciplines can call upon. Here, we report on research that brings those two technologies together – the development of active membrane elements and structures. We show how these active membranes have been achieved by laminating three-dimensional printed elasto-plastic fibres onto pre-stretched textile membranes. We report on a set of experimentations involving one-, two- and multi-directional geometric arrangements that take TPU 95 and polypropylene filaments and apply them to Lycra textile sheets, to form active composite panels. The process involves a parameterised design, actualised through a fabrication process including stress-line simulation, fibre pattern three-dimensional printing and the lamination of embossed patterns onto a pre-stretched membrane; followed by the release of tension afterwards in order to allow controlled, self-generation of the final geometry. Our findings document the investigation into mapping between the initial two-dimensional geometries and their resulting three-dimensional doubly curved forms. We also reflect on the products of the resulting, partly serendipitous, design process.
keywords Digital fabrication, three-dimensional printing, parametric design, material computation, fabrics
series journal
email
last changed 2019/08/07 14:04

_id ijac201917103
id ijac201917103
authors Bejarano, Andres; and Christoph Hoffmann
year 2019
title A generalized framework for designing topological interlocking configurations
source International Journal of Architectural Computing vol. 17 - no. 1, 53-73
summary A topological interlocking configuration is an arrangement of pieces shaped in such a way that the motion of any piece is blocked by its neighbors. A variety of interlocking configurations have been proposed for convex pieces that are arranged in a planar space. Published algorithms for creating a topological interlocking configuration start from a tessellation of the plane (e.g. squares colored as a checkerboard). For each square S of one color, a plane P through each edge E is considered, tilted by a given angle ? against the tessellated plane. This induces a face F supported by P and limited by other such planes nearby. Note that E is interior to the face. By adjacency, the squares of the other color have similarly delimiting faces. This algorithm generates a topological interlocking configuration of tetrahedra or antiprisms. When checked for correctness (i.e. for no overlap), it rests on the tessellation to be of squares. If the tessellation consists of rectangles, then the algorithm fails. If the tessellation is irregular, then the tilting angle is not uniform for each edge and must be determined, in the worst case, by trial and error. In this article, we propose a method for generating topological interlocking configurations in one single iteration over the tessellation or mesh using a height value and a center point type for each tile as parameters. The required angles are a function of the given height and selected center; therefore, angle choices are not required as an initial input. The configurations generated using our method are compared against the configurations generated using the angle-choice approach. The results show that the proposed method maintains the alignment of the pieces and preserves the co-planarity of the equatorial sections of the pieces. Furthermore, the proposed method opens a path of geometric analysis for topological interlocking configurations based on non-planar tessellations.
keywords Topological interlocking, surface tessellation, irregular geometry, parametric design, convex assembly
series journal
email
last changed 2019/08/07 14:04

_id acadia19_564
id acadia19_564
authors Chai, Hua; Marino, Dario; So, ChunPong; Yuan, Philip F.
year 2019
title Design for Mass-Customization
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 564-572
doi https://doi.org/10.52842/conf.acadia.2019.564
summary Tradition wood tectonics, like interlocking joints, have regained focus against the background of digital design and fabrication technologies. While research on interlocking joints is quite focused on joint geometries, especially for timber plates, there has been less attention on the design and mass customization of interlocking joints for linear timber elements. In this context, this research addresses the challenges of mass customization of interlocking joints for linear elements through the design and realization of a 9-meterhigh timber structure with fully interlocking joints, without the use of any nails or glue. A customized code generation program was developed for the fabrication process, allowing the rapid programming and fabrication for all the 840 elements and 2592 notches. The project demonstrates how innovative structures are allowed through the synthesis of joint geometry, assembly process, and cutting-edge fabrication technology.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id ecaadesigradi2019_514
id ecaadesigradi2019_514
authors de Miguel, Jaime, Villafa?e, Maria Eugenia, Piškorec, Luka and Sancho-Caparrini, Fernando
year 2019
title Deep Form Finding - Using Variational Autoencoders for deep form finding of structural typologies
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 71-80
doi https://doi.org/10.52842/conf.ecaade.2019.1.071
summary In this paper, we are aiming to present a methodology for generation, manipulation and form finding of structural typologies using variational autoencoders, a machine learning model based on neural networks. We are giving a detailed description of the neural network architecture used as well as the data representation based on the concept of a 3D-canvas with voxelized wireframes. In this 3D-canvas, the input geometry of the building typologies is represented through their connectivity map and subsequently augmented to increase the size of the training set. Our variational autoencoder model then learns a continuous latent distribution of the input data from which we can sample to generate new geometry instances, essentially hybrids of the initial input geometries. Finally, we present the results of these computational experiments and lay out the conclusions as well as outlook for future research in this field.
keywords artificial intelligence; deep neural networks; variational autoencoders; generative design; form finding; structural design
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id ecaadesigradi2019_149
id ecaadesigradi2019_149
authors Gonzalez-Quintial, Francisco and Martin-Pastor, Andres
year 2019
title Convolutas - Developable strips and digital fabricated lightweight architecture
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 585-594
doi https://doi.org/10.52842/conf.ecaade.2019.1.585
summary The present research is mainly focused on the development of a system that would be able to offer the potentiality of constructing free-form surfaces by using developable surfaces. Through a deep revision of pre-computational traditional geometric systems based on the classical Descriptive Geometry, after a re-interpretation that design and algorithmic generation tools allow by using computers and digital fabrication hardware as testing ground, a geometric control process has been designed in order to offer the possibility of managing double-curvature complex forms and their adaptation by using developable surfaces. The focal point of this system is proving how developable surfaces are suitable to build architectonical elements at real scale.
keywords Geometry; Developable Surfaces; Algorithmic Approach; Digital Fabrication
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

_id acadia19_266
id acadia19_266
authors MacDonald, Katie; Schumann, Kyle; Hauptman, Jonas
year 2019
title Digital Fabrication of Standardless Materials
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 266-275
doi https://doi.org/10.52842/conf.acadia.2019.266
summary Digital fabrication techniques have long been aimed at creating unique geometries and forms from standardized, often industrially produced or processed material. These materials have predictable, uniform geometries which allow the fabrication process to be aimed at producing variation through Computer Numerically Controlled (CNC) milling of topological surfaces from volumetric stock or profiles from sheet material. More recently, digital fabrication techniques have been expanded and categorized to address the inherent variation in a found material. Digital materiallurgy defines an approach where standard techniques are applied to non-standard materials; in form-searching, non-standard materials such as unmilled timber members or chunks of concrete waste are analyzed for optimization within a digital fabrication process. Processes of photogrammetry, 3D scanning, and parametric analysis have been used to advance these methods and minimize part reduction and material waste. In this paper, we explore how such methods may be applied to materials without traditional standards—allowing for materials that are inherently variable in geometry to be made usable and for such eccentricities to be leveraged within a design. This paper uses bamboo as a case study for standardless material, and proposes an integrated digital fabrication method for using such material: (1) material stock analysis using sensing technology, (2) parametric best-fit part selection that optimizes a given piece of material within an assembly, and (3) parametric feedback between available material and the design of an assembly which allows for the assembly to adjust its geometry to a set of available parts.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:59

_id cf2019_068
id cf2019_068
authors Md Rian, Iasef
year 2019
title IFS-Based Computational Morphogenesis of a Hierarchical Trussed Beam
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 552-564
summary This paper applies IFS (Iterated Function System) as a rule-based computational modeling process for modeling a hierarchical truss beam inspired by the concept of fractal geometry. IFS is a type of recursive algorithm, which repeatedly uses the outcome as a input for an affine transformation function in generating a fractal shape, i.e., a complex shape which contains the self-similar repetitions of the overall shape in its parts. Hierarchical trusses also follow a similar geometric configuration. IFS-based computational modeling, hence, allows us to parametrically morph a parent model, thus repeat the same morphing to all its self-similar parts automatically. This IFS-based morphogenesis opens a possibility to find an optimal configuration of a hierarchical truss structurally. In this parametric modeling process, the iteration number is a unique geometric parameter. This paper uses two geometric variables (iteration number and angle) to find the most efficient design of a hierarchical truss beam through an optimization process.
keywords hierarchical truss, fractal geometry, IFS, computational design
series CAAD Futures
email
last changed 2019/07/29 14:18

_id acadia23_v1_174
id acadia23_v1_174
authors Nejur, Andrei
year 2023
title NoeudAL Pavilion: Ultralight folded nodes for bespoke geometries
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 174-179.
summary This research project, conducted at the University of Montreal School of Architecture, presents an innovative approach to the construction of reticulated structures, focusing on the development and application of a novel, ultralight aluminum node. The node, constructed from a folded, laser-cut, 1-mm aluminum sheet, is designed to accommodate wooden linear members with varied rectangular sections, making it adaptable to bespoke geometries and low valence nodes. This innovative design offers a solution to the long-standing challenge in the construction industry of balancing cost, customization, and weight for reticulated structures through novel node designs (Abdelwahab and Tsavdaridis 2019; Dyvik et al. 2023; Chilton 2007; Rochas 2014; Hassani et al. 2020).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id caadria2019_077
id caadria2019_077
authors Rogers, Jessie, Schnabel, Marc Aurel and Moleta, Tane Jacob
year 2019
title Reimagining Relativity - Transitioning the physical body into a virtual inhabitant
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 727-736
doi https://doi.org/10.52842/conf.caadria.2019.2.727
summary This paper explores the ideas and mechanics through a case study which generated a reimagined means of inhabiting a speculative immersive environment. Currently, many users reside within virtual environments for their own leisure, work, or any other reason desired from short amounts of time to extreme lengths. This paper shows the generation directly relative to the inhabitant, where gravity, orientation, scale, and locomotion is completely dynamic. Details within this paper experiment with the laws and bounds of the virtual space within a real-time game engine where reimagining the way one inhabits space compared to current norms of real-world inhabitation is possible with creativity and applied knowledge. Escher's lithograph of Relativity is the driving concept explored within this paper beginning with creating gravitational pulls in multiple directions within the immersive virtual reality environment to accommodate various sources of gravity. The result of the case study demonstrated the generation of new virtual relativity laws reimagining how the virtual space is inhabited, in short, omnidirectional flying, gravitation defined by the inhabitant to geometry relationship, controlled local scaling, and populating space with multiple inhabitants in a unique manner.
keywords Virtual Reality; Speculative; Relativity; Inhabitant; Architecture
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_037
id ecaadesigradi2019_037
authors Sheth, Urvi
year 2019
title Bridging the Gaps - Computation to Construction in India
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 295-304
doi https://doi.org/10.52842/conf.ecaade.2019.1.295
summary In the era of The Second Digital Turn, designers and engineers have easy and equal access to computational tools across the globe. With the highest development of technology at a global level, design development to construction process is locally contextualised in different parts of the world based on the available technology and resources. The paper presents a craft-based approach to computation and its contribution to support artisans' development in India. It is demonstrated through ongoing research on customising bricks and utilization of computationally generated asymmetrical Catalan vault. The challenge of constructing the computationally generated form by architecture students is completed by the craftsmen and students of crafts school. The research elucidates gaps at various levels. Craft based solutions bridging these gaps establish a methodology which makes complex geometry constructible in present-day India when access to digital fabrication methods are still evolving and expensive.
keywords Digital Crafts India; Customising Bricks; Asymmetrical Catalan Vault; RhinoVAULT
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id cf2019_028
id cf2019_028
authors Sroka, Jeffrey and Kihong Ku
year 2019
title A Geometry Exploration of Flexagons: Designing a Tetrahedron Based Responsive Daylight Control System
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 223-233
summary This project aimed to expand the area of responsive shading systems through the novel application of a volumetric origami geometry – the flexagon. The original contributions of this project come through the design development and prototyping of the kinetics of an octa-flexagon based geometry. Few researchers or designers have investigated the flexagon pattern in architecture and departing from relevant research, this project identified a novel geometric construct of flexagons that allow kinetic actuation with beneficial performative and aesthetic properties. These include surface qualities of the component tetrahedron geometry for daylighting and view control. The aggregation of multiple units resulted in new understanding of the stacking characteristics and the rotational envelope of flexagon geometries.
keywords Architectural Geometry, Prototyping, Origami, Responsive Façade
series CAAD Futures
email
last changed 2019/07/29 14:15

_id cf2019_003
id cf2019_003
authors Steinfeld, Kyle; Katherine Park, Adam Menges and Samantha Walker
year 2019
title Fresh Eyes A framework for the application of machine learning to generative architectural design, and a report of activities at Smartgeometry 2018
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 22
summary This paper presents a framework for the application of Machine Learning (ML) to Generative Architectural Design (GAD), and illustrates this framework through a description of a series of projects completed at the Smart Geometry conference in May of 2018 (SG 2018) in Toronto. Proposed here is a modest modification of a 3-step process that is well-known in generative architectural design, and that proceeds as: generate, evaluate, iterate. In place of the typical approaches to the evaluation step, we propose to employ a machine learning process: a neural net trained to perform image classification. This modified process is different enough from traditional methods as to warrant an adjustment of the terms of GAD. Through the development of this framework, we seek to demonstrate that generative evaluation may be seen as a new locus of subjectivity in design.
keywords Machine Learning, Generative Design, Design Methods
series CAAD Futures
email
last changed 2019/07/29 14:08

_id acadia19_198
id acadia19_198
authors Tessmer, Lavender; Huang, Yijiang; Mueller, Caitlin
year 2019
title Additive Casting of Mass-Customizable Bricks
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 198-207
doi https://doi.org/10.52842/conf.acadia.2019.198
summary The strength of general-purpose fabrication tools is in the ease of repeatability and reconfiguration of geometry. However, there are some material processes that are difficult to directly integrate into fabrication processes with these machines. In particular, the common methods of material configuration through horizontal deposition in 3D printing exclude other types of material processes such as casting. This project demonstrates an additive manufacturing technique paired with a design input process for generating a wall of customized cast bricks. Taking advantage of the precision and adaptability of a robotic arm, the fabrication process pairs this general-purpose tool with a specialized auxiliary device to create variation in concrete casts.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id acadia19_478
id acadia19_478
authors Vercruysse, Emmanuel
year 2019
title Autonomous Architectural Operations
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 478-489
doi https://doi.org/10.52842/conf.acadia.2019.478
summary The research set out in this paper investigates the conception, testing, and implementation of an advanced and bespoke workflow. By hybridizing a diverse set of technologies and processes, an innovative fabrication strategy was developed that combines large scale glue-laminated timber frames with a robotic band-saw application. The design strategy was influenced by a number of key preoccupations: exploring the relationship between drawing and making, evenly distributing analogue and digital technologies, and advancing alternatives modes of architectural practice. The project regards intuitive design processes as an important driver and looked to apply digital tools lightly, aiming to precisely embed them within established timber fabrication processes. This workflow was tested through the design and fabrication of a timber skeleton that provides the structural system for a library building at Hooke Park and acts as an articulated armature supporting the library’s envelope and accommodates its internal workings. Through the production of the sculptural skeleton, the project challenges conventions of existing methodologies and ultimately brings about a morphologic innovation in timber construction through the closed geometry glulam component.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id ecaadesigradi2019_508
id ecaadesigradi2019_508
authors Yenice, Yagmur and Park, Daekwon
year 2019
title V-INCA - Designing a smart geometric configuration for dry masonry wall
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 515-520
doi https://doi.org/10.52842/conf.ecaade.2019.2.515
summary Soil is still used as a building material in many parts of the world, especially in rural areas. Approximately 30% of the world's population is still living in shelters made by soil (Berge 2009). One of the techniques is using soil in mudbrick form, which is sun dried instead of being fired in kilns. However, mud bricks have low compressive and tensile strength. Instead of enhancing the mix formula, we focus on designing the geometry of the brick itself to improve walls' overall compressive and tensile strength. The goal of the research is to explore an innovative way to build masonry walls through geometrical examination together with computer aided design. Unlike traditional horizontal laying of the rectangular brick elements, 3D designed blocks take advantage of gravity and foster an accelerated assembly without mortar. They create a balance point in the middle of the wall during the construction. The geometry of V-INCA blocks allows dry construction which will reduce the amount of time spent on the site. Load distribution and the friction between two surfaces are sufficient to have a dry construction. Thus, a wall built with V-INCA is stronger intrinsically due to its geometry.
keywords Dry masonry construction; smart geometrical design; on-site material; compressed earth blocks; Inca masonry
series eCAADeSIGraDi
email
last changed 2022/06/07 07:57

_id caadria2019_045
id caadria2019_045
authors Zheng, Hao, Darweesh, Barrak, Lee, Heewon and Yang, Li
year 2019
title Caterpillar - A Gcode translator in Grasshopper
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 253-262
doi https://doi.org/10.52842/conf.caadria.2019.2.253
summary Additive manufacturing has widely been spread in the digital fabrication and design fields, allowing designers to rapidly manufacture complex geometry. In the additive process of Fused Deposition Modelling (FDM), machine movements are provided in the form of Gcode - A language of spatial coordinates controlling the position of the 3D printing extruder. Slicing software use closed mesh models to create Gcode from planar contours of the imported mesh, which raises limitations in the geometry types accepted by slicing software as well as machine control freedom. This paper presents a framework that makes full use of three degrees of freedom of Computer Numerically Controlled (CNC) machines through the generation of Gcode in the Rhino and Grasshopper environment. Eliminating the need for slicing software, Gcode files are generated through user-defined toolpaths that allow for higher levels of control over the CNC machine and a wider range of possibilities for non-conventional 3D printing applications. Here, we present Caterpillar, a Grasshopper plug-in providing architects and designers with high degrees of customizability for additive manufacturing. Core codes are revealed, application examples of printing with user-defined toolpaths are shown.
keywords 3D Printing; Gcode; Grasshopper; Modelling; Simulation
series CAADRIA
email
last changed 2022/06/07 07:57

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 12HOMELOGIN (you are user _anon_429540 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002