CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 617

_id ecaadesigradi2019_116
id ecaadesigradi2019_116
authors Fernando, Shayani
year 2019
title Collaborative Crafting of Interlocking Structures in Stereotomic Practice
doi https://doi.org/10.52842/conf.ecaade.2019.2.183
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 183-190
summary Situated within the art of cutting solids (stereotomy) and the evolution of machine tools; this research will investigate subtractive fabrication in relation to robotic carving of stone structures. The advancement of the industrial revolutions in the mid to late 19th century saw the rise of new building techniques and materials which were primarily based on structural steel construction. The modern aesthetic of the time further diminished the place of traditional stonework and ornamentation in modern structures within the building arts. This paper will focus on the design and fabrication of three sculptural dry-stone modular prototypes investigating interlocking self-supporting structures in stone. Examining the value of robotic technologies in the design and construction process in relation to collaborative crafting of the hand and machine. Accommodating for material tolerances which are a major factor in this research. Interrogating the value of robotic crafting with material implications and exploring the role of the artisan in machine crafted architectural components.
keywords Collaborative; Crafting; Interlocking; Structures; Robotic Fabrication; Digital Stone
series eCAADeSIGraDi
email
last changed 2022/06/07 07:50

_id ijac201917201
id ijac201917201
authors Trilsbeck, Matthew; Nicole Gardner, Alessandra Fabbri, Matthias Hank Haeusler, Yannis Zavoleas and Mitchell Page
year 2019
title Meeting in the middle: Hybrid clay three-dimensional fabrication processes for bio-reef structures
source International Journal of Architectural Computing vol. 17 - no. 2, 148-165
summary Despite the relative accessibility of clay, its low cost and reputation as a robust and sustainable building material, clay three-dimensional printing remains an under-utilized digital fabrication technique in the production of architectural artefacts. Given this, numerous research projects have sought to extend the viability of clay three-dimensional digital fabrication by streamlining and automating workflows through computational methods and robotic technologies in ways that afford agency to the digital and machinic processes over human bodily skill. Three-dimensional printed clay has also gained prominence as a resilient material well suited to the design and fabrication of artificial reef and habitat- enhancing seawall structures for coastal marine environments depleted and disrupted by human activity, climate change and pollution. Still, these projects face similar challenges when three-dimensional printing complex forms from the highly plastic and somewhat unpredictable feed material of clay. In response, this article outlines a research project that seeks to improve the translation of complex geometries into physical clay artefacts through additive three- dimensional printing processes by drawing on the notion of digital craft and giving focus to human–machine interaction as a collaborative practice. Through the case study of the 1:1 scale fabrication of a computationally generated bio-reef structure using clay as a feed material and a readily available Delta Potterbot XLS-2 ceramic printer, the research project documents how, by exploiting the human ability to intuitively handle clay and adapt, and the machine’s ability to work efficiently and with precision, humans and machines can fabricate together . With the urgent need to develop more sustainable building practices and materials, this research contributes valuable knowledge of hybrid fabrication processes towards extending the accessibility and viability of clay three-dimensional printing as a resilient material and fabrication system.
keywords Clay three-dimensional printing, digital fabrication, hybrid fabrication, digital craft, human–machine interaction
series journal
email
last changed 2019/08/07 14:04

_id ecaadesigradi2019_498
id ecaadesigradi2019_498
authors Bermek, Mehmet Sinan, Shelden, Dennis and Gentry, T. Russel
year 2019
title A Holistic Approach to Feature-based Structural Mapping in Cross Laminated Timber Buildings
doi https://doi.org/10.52842/conf.ecaade.2019.2.789
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 789-796
summary Mass Engineered Timber products provide a unique opportunity in configuring panelized building systems that are suitable for both prefabrication and onsite customization. The structural nature of these large section elements also brings about the need for a coordinated design-fabrication-assembly workflow. These products can assume different geometric configurations and their behaviour can be approximated globally by simplifying framing schemas. Current BIM Interoperability standards such as STEP or IFC already acknowledge and support the interconnected nature of component properties, yet these Data Models are component focused. Expanding on the relationships between components and using sets to define part to whole, or exteriority relationships could yield a more flexible and agile querying of building information.This would be a framework fit for automated feature derivation and rule based design applications. To this end Graph structures and Graph Databases, alongside existing ontology authoring tools are studied to probe new cognitive possibilities in collaborative AEC workflows
keywords Graph theory; BIM; CLT; IFC
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id ecaadesigradi2019_397
id ecaadesigradi2019_397
authors Cristie, Verina and Joyce, Sam Conrad
year 2019
title 'GHShot': a collaborative and distributed visual version control for Grasshopper parametric programming
doi https://doi.org/10.52842/conf.ecaade.2019.3.035
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 35-44
summary When working with parametric models, architects typically focus on using rather structuring them (Woodbury, 2010). As a result, increasing design complexity typically means a convoluted parametric model, amplifying known problems: 'hard to understand, modify, share and reuse' (Smith 2007; Davis 2011). This practice is in contrast with conventional software-programming where programmers are known to meticulously document and structure their code with versioning tool. In this paper, we argue that versioning tools could help to manage parametric modelling complexity, as it has been showing with software counterparts. Four key features of version control: committing, differentiating, branching, and merging, and how they could be implemented in a parametric design practice are discussed. Initial user test sessions with 5 student designers using GHShot Grasshopper version control plugin (Cristie and Joyce 2018, 2017) revealed that the plugin is useful to record and overview design progression, share model, and provide a fallback mechanism.
keywords Version Control; Parametric Design; Collaborative Design; Design Exploration
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id caadria2019_136
id caadria2019_136
authors Dounas, Theodoros and Lombardi, Davide
year 2019
title Blockchain Grammars - Designing with DAOs - The blockchain as a design platform for shape grammarists' decentralised collaboration
doi https://doi.org/10.52842/conf.caadria.2019.2.293
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 293-302
summary This paper presents an application of Decentralised Autonomous Organisation (DAO) in the field of design and AEC industry. The model is applied in the realm of shape grammar proposing the possibility of allowing multiple grammarists to collaborate in the definition of a new grammar within a Blockchain environment that acts as a distributed ledger. DAOs systems and Blockchain are introduced as well as shape grammar and its fundamental rules. The collaborative nature of a DAO with the inner logic of shape grammar, which bases its principle and rules in multiple variations and combinations of simple initial shapes, brings to the problem of recording and validating changes and improvements in the design chain. For this reason, a voting system to govern the process is introduced, based on both quantitative values, i.e. number of votes, and qualitative power, i.e. the reputation of who votes, applying a factor that scales the vote according to the expertise of the voter. An example is provided showing a possible scenario in a design environment along with validation criteria, and predicting future stages applied in an always more BIM-oriented practice.
keywords Decentralised Autonomous Organisation; Shape Grammar; Intelligent organisms; Distributed Ledger; Blockchain;
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaadesigradi2019_422
id ecaadesigradi2019_422
authors Kepczynska-Walczak, Anetta
year 2019
title Building Information Modelling Implementation in Progress
doi https://doi.org/10.52842/conf.ecaade.2019.2.279
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 279-286
summary The paper presents a critical evaluation of the latest achievements in Building Information Modelling (BIM) implementation in academia, based on its adoption in Architecture curriculum at Lodz University of Technology, Poland. It reflects upon a significant shift in architectural practice which is strongly influencing ongoing modernization of higher education curricula. Furthermore, it undertakes the challenge to answer one of the main eCAADe2019 questions, viz.: "What is the impact of new technologies in architectural education and practice, and, what are the emerging opportunities and main threats to our discipline?" It contributes to the discussion on the place of BIM in academia - the controversial topic that still needs to be explored and debated to receive a comprehensive feedback and wider publicity.
keywords Building Information Modelling; BIM; digital technologies; collaborative design process; architectural curriculum
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id acadia19_510
id acadia19_510
authors Leder, Samuel; Weber, Ramon; Wood, Dylan; Bucklin, Oliver; Menges, Achim
year 2019
title Distributed Robotic Timber Construction
doi https://doi.org/10.52842/conf.acadia.2019.510
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 510-519
summary Advances in computational design and robotic building methods have the potential to enable architects to author more sustainable, efficient, and geometrically varied systems that shape our built environment. To fully harness this potential, the inherent relationship of design and building processes requires a fundamental shift in the way we design and how we build. High degree of customization in architectural projects and constantly changing conditions of construction environments pose significant challenges for the implementation of automated construction machines. Beyond traditional, human-inspired, industrial robotic building methods, we present a distributed robotic system where the robotic builders are designed in direct relationship with the material and architecture they assemble. Modular, collaborative, single axis robots are designed to utilize standardized timber struts as a basic building material, and as a part of their locomotion system, to create large-scale timber structures with high degrees of differentiation. The decentralized, multi-robot system uses a larger number of simple machines that collaborate in teams to work in parallel on varying tasks such as material transport, placement, and fixing. The research explores related architectural and robotic typologies to create timber structures with novel aesthetics and performances.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id caadria2019_290
id caadria2019_290
authors Ma, Chenlong, Zhu, Shuyan and Xiang, Ke
year 2019
title Digital Aided Façade Design Introduced in a Traditional Design Workflow - An experience from one large-scale museum design and construction practice
doi https://doi.org/10.52842/conf.caadria.2019.1.675
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 675-684
summary This paper discusses the opportunities and barriers of adopting parametric tools in discrete elements of the design development documentation processes in parallel with more traditional 2D computer aided architectural design (CAAD). We believe it is a more reasonable way for small to middle sized design companies in China, to introduce parametric design method into the design and construction process, especially when there being a long way from traditional CAAD approach to an all-BIM future in China.
keywords parametric tools; collaborative design; façade design
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaade2023_227
id ecaade2023_227
authors Moorhouse, Jon and Freeman, Tim
year 2023
title Towards a Genome for Zero Carbon Retrofit of UK Housing
doi https://doi.org/10.52842/conf.ecaade.2023.2.197
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 197–206
summary The United Kingdom has some of the worst insulated housing stock in Northern Europe. This is in part due to the age of housing in the UK, with over 90% being built before 1990 [McCrone 2017, Piddington 2020]. Moreover, 85% of current UK housing will still be in use in 2050 by which stage their Government are targeting Net Carbon Zero [Eyre 2019]. Domestic energy use accounts for around 25% of UK carbon emissions. The UK will need to retrofit 20 million dwellings in order to meet this target. If this delivery were evenly spread, it would equate to over 2,000 retrofit completions each day. Government-funded initiatives are stimulating the market, with upwards of 60,000 social housing retrofits planned for 2023, but it is clear that a system must be developed to enable the design and implementation of housing-stock improvement at a large scale.This paper charts the 20-year development of a digital approach to the design for low-carbon domestic retrofit by architects Constructive Thinking Studio Limited and thence documents the emergence of a collaborative approach to retrofit patterns on a National scale. The author has led the Research and Development stream of this practice, developing a Building Information Modelling methodology and integrated Energy Modelling techniques to optimise design for housing retrofit [Georgiadou 2019, Ben 2020], and then inform a growing palette of details and a database of validated solutions [Moorhouse 2013] that can grow and be used to predict options for future projects [D’Angelo 2022]. The data is augmented by monitoring energy and environmental performance, enabling a growing body of knowledge that can be aligned with existing big data to simulate the benefits of nationwide stock improvement. The paper outlines incremental case studies and collaborative methods pivotal in developing this work The proposed outcome of the work is a Retrofit Genome that is available at a national level.
keywords Retrofit, Housing, Zero-Carbon, BIM, Big Data, Design Genome
series eCAADe
email
last changed 2023/12/10 10:49

_id ecaadesigradi2019_488
id ecaadesigradi2019_488
authors Naboni, Roberto and Kunic, Anja
year 2019
title A computational framework for the design and robotic manufacturing of complex wood structures
doi https://doi.org/10.52842/conf.ecaade.2019.3.189
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 189-196
summary The emerging paradigm of Industry 4.0 is rapidly expanding in the AEC sector, where emergent technologies are offering new possibilities. The use of collaborative robots is enabling processes of advanced fabrication, where humans and robots coexist and collaborate towards the co-creation of new building processes. This paper focuses on setting a conceptual framework and a computational workflow for the design and assembly of a novel type of engineered wood structures. The aim is advancing timber construction through complex tectonic configurations, which are informed by logics of robotic assembly, topology and material optimization, and combinatorial design. Starting from the conceptualization of robotic layered manufacturing for timber structures, this work presents the development of a digital twin applied to the voxel-based design of complex timber structures.
keywords Digital Materials; Robotic Assembly; Wood structures; Voxel-based design; Topology Optimization
series eCAADeSIGraDi
email
last changed 2022/06/07 07:59

_id ecaadesigradi2019_327
id ecaadesigradi2019_327
authors Silva, Daniela, Paio, Alexandra and Sousa, José Pedro
year 2019
title Reprogramming Practice - Revising design thinking through digital fabrication
doi https://doi.org/10.52842/conf.ecaade.2019.1.379
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 379-386
summary Questioning the importance and impact of design thinking methodologies in the architectural design studios is a backbone of architectural education in twenty first century. 3D printing and digital manufacturing are disruptive technologies that are changing architects and designers daily lives. These trends require new skills, based on a deep understanding of digital continuum from design to production, from generation to fabrication. This continuity transcends the merely instrumental contributions of a person-machine relationship to praxis, has begun to evolve as a medium that supports a continuous logic of design thinking and making. Design thinking methodologies associated with digital fabrication emerged as a leading technological and design issue of digital research and design. As designers, we are witnessing a no frontier between computational design and digital fabrication. For this paper is taken into consideration the work of two architecture studios that share a unique background on new methodologies by embracing the digital technology in their own practice. Their work reflects on new design methodologies facing the expansion of digital technology in architectural practice. This paper discusses the possibility of new design thinking methods driven by digital fabrication.
keywords Design thinking; Digital Fabrication; AEC; Collaborative Design; Architectural Practice
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_387
id ecaadesigradi2019_387
authors Wibranek, Bastian, Belousov, Boris, Sadybakasov, Alymbek, Peters, Jan and Tessmann, Oliver
year 2019
title Interactive Structure - Robotic Repositioning of Vertical Elements in Man-Machine Collaborative Assembly through Vision-Based Tactile Sensing
doi https://doi.org/10.52842/conf.ecaade.2019.2.705
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 705-713
summary The research presented in this paper explores a novel tactile sensor technology for architectural assembly tasks. In order to enable robots to interact both with humans and building elements, several robot control strategies had to be implemented. Therefore, we developed a communication interface between the architectural design environment, a tactile sensor and robot controllers. In particular, by combining tactile feedback with real-time gripper and robot control algorithms, we demonstrate grasp adaptation, object shape and texture estimation, slip and contact detection, force and torque estimation. We investigated the integration of robotic control strategies for human-robot interaction and developed an assembly task in which the robot had to place vertical elements underneath a deformed slab. Finally, the proposed tactile feedback controllers and learned skills are combined together to demonstrate applicability and utility of tactile sensing in collaborative human-robot architectural assembly tasks. Users were able to hand over building elements to the robot or guide the robot through the interaction with building elements. Ultimately this research aims to offer the possibility for anyone to interact with built structures through robotic augmentation.
keywords Interactive Structure; Robotics; Tactile Sensing; Man-Machine Collaboration
series eCAADeSIGraDi
email
last changed 2022/06/07 07:57

_id acadia19_246
id acadia19_246
authors Zhang, Viola; Qian, William; Sabin, Jenny
year 2019
title PolyBrickH2.0
doi https://doi.org/10.52842/conf.acadia.2019.246
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 246-257
summary This project emerged from collaborative trans-disciplinary research between architecture, engineering, biology, and materials science to generate novel applications in micro-scale 3D printed ceramics. Specifically, PolyBrick H2.0 adapts internal bone-based hydraulic networks through controlled water flow from 3D printed micro-textures and surface chemistry. Engagement across disciplines produced the PolyBrick series at the Sabin Lab (Sabin, Miller, and Cassab 2014) . The series is a manifestation of novel digital fabrication techniques, bioinspired design, materials inquiry, and contemporary evolutions of building materials. A new purpose for the brick is explored that is not solely focused on the mechanical constraints necessary for built masonry structures. PolyBrick H2.0 interweaves the intricacies of living systems (beings and environments combined) to create a more responsive and interactive material system. The PolyBrick 2.0 series looks at human bone as a design model for foundational research. PolyBrick H2.0 merges the cortical bone hydraulic network with new functionalities as a water filtration and collection system for self-preservation and conservation as well as passive cooling solutions. It also pushes the ability of 3D printing techniques to the microscale. These functionalities are investigated under context for a better construction material, but its use may extend further.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:57

_id ecaadesigradi2019_340
id ecaadesigradi2019_340
authors Azambuja Varela, Pedro and Sousa, José Pedro
year 2019
title Digital Expansion of Stereotomy - A semantic classification
doi https://doi.org/10.52842/conf.ecaade.2019.1.387
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 387-396
summary This paper presents a critical analysis and reflection on stereotomy with the purpose of updating its theoretical discourse. Having risen to the apex of architecture technological possibilities in the 17th century, stereotomic construction lost its importance in favour of iron, steel and other materials and construction techniques brought by the Industrial Revolution. More recently, much owing to the possibilities offered by digital technologies, a resurgence of interest in the subject has spawned various researches which bring stereotomy back to the architectural discourse. Although technological applications and design innovations in service of stereotomy have developed in multiple interesting paths, there is a lack of a common theory on the subject which is capable of relating these multiple apparently diverging stereotomic approaches between each other and, maybe even more importantly, to the classical practice which sparked the development this discipline. The research presented in this paper shows how the digital tools were instrumental in bringing this tradition to architecture contemporaneity and how a current stereotomy is largely supported by these technologies, while keeping strong relations to its classic origin.
keywords stereotomy; classification; history; digital
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id acadia19_564
id acadia19_564
authors Chai, Hua; Marino, Dario; So, ChunPong; Yuan, Philip F.
year 2019
title Design for Mass-Customization
doi https://doi.org/10.52842/conf.acadia.2019.564
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 564-572
summary Tradition wood tectonics, like interlocking joints, have regained focus against the background of digital design and fabrication technologies. While research on interlocking joints is quite focused on joint geometries, especially for timber plates, there has been less attention on the design and mass customization of interlocking joints for linear timber elements. In this context, this research addresses the challenges of mass customization of interlocking joints for linear elements through the design and realization of a 9-meterhigh timber structure with fully interlocking joints, without the use of any nails or glue. A customized code generation program was developed for the fabrication process, allowing the rapid programming and fabrication for all the 840 elements and 2592 notches. The project demonstrates how innovative structures are allowed through the synthesis of joint geometry, assembly process, and cutting-edge fabrication technology.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id caadria2019_398
id caadria2019_398
authors Hannouch, Adam
year 2019
title Acoustic Simulation and Conditioning in Vaulted Structures - Faceted Stereotomic Strategies for Multi-listener Spaces
doi https://doi.org/10.52842/conf.caadria.2019.1.403
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 403-412
summary This paper examines faceted tessellations in an acoustic vault ceiling typology for the enhancement of human speech comfort in multi-listener environments. Geometric modelling explores simulated results for various tessellation arrangements within the overall segmentation of a global ceiling geometry. Where pattern-based design for acoustic surfaces often overlooks the optimisation of vault typologies, the tests demonstrated in this research seek a trade-off between acoustic properties and faceted detailing. This involves the performance-based design of micro joint topologies and ruled-surface geometries, and a macro-analysis of the vaulted surface for acoustic studies embedded into this workflow, using Pachyderm software.
keywords Architectural Acoustics; Mutli-listener Environments; Simulation; Faceted Patterns; Vaulted Design
series CAADRIA
email
last changed 2022/06/07 07:50

_id ecaadesigradi2019_425
id ecaadesigradi2019_425
authors Betti, Giovanni, Aziz, Saqib and Ron, Gili
year 2019
title Pop Up Factory : Collaborative Design in Mixed Rality - Interactive live installation for the makeCity festival, 2018 Berlin
doi https://doi.org/10.52842/conf.ecaade.2019.3.115
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 115-124
summary This paper examines a novel, integrated and collaborative approach to design and fabrication, enabled through Mixed Reality. In a bespoke fabrication process, the design is controlled and altered by users in holographic space, through a custom, multi-modal interface. Users input is live-streamed and channeled to 3D modelling environment,on-demand robotic fabrication and AR-guided assembly. The Holographic Interface is aimed at promoting man-machine collaboration. A bespoke pipeline translates hand gestures and audio into CAD and numeric fabrication. This enables non-professional participants engage with a plethora of novel technology. The feasibility of Mixed Reality for architectural workflow was tested through an interactive installation for the makeCity Berlin 2018 festival. Participants experienced with on-demand design, fabrication an AR-guided assembly. This article will discuss the technical measures taken as well as the potential in using Holographic Interfaces for collaborative design and on-site fabrication.Please write your abstract here by clicking this paragraph.
keywords Holographic Interface; Augmented Reality; Multimodal Interface; Collaborative Design; Robotic Fabrication; On-Site Fabrication
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id caadria2021_089
id caadria2021_089
authors Cristie, Verina, Ibrahim, Nazim and Joyce, Sam Conrad
year 2021
title Capturing and Evaluating Parametric Design Exploration in a Collaborative Environment - A study case of versioning for parametric design
doi https://doi.org/10.52842/conf.caadria.2021.2.131
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 131-140
summary Although parametric modelling and digital design tools have become ubiquitous in digital design, there is a limited understanding of how designers apply them in their design processes (Yu et al., 2014). This paper looks at the use of GHShot versioning tool developed by the authors (Cristie & Joyce, 2018; 2019) used to capture and track changes and progression of parametric models to understand early-stage design exploration and collaboration empirically. We introduce both development history graph-based metrics (macro-process) and parametric model and geometry change metric (micro-process) as frameworks to explore and understand the captured progression data. These metrics, applied to data collected from three cohorts of classroom collaborative design exercises, exhibited students' distinct modification patterns such as major and complex creation processes or minor parameter explorations. Finally, with the metrics' applicability as an objective language to describe the (collaborative) design process, we recommend using versioning for more data-driven insight into parametric design exploration processes.
keywords Design exploration; parametric design; history recording; version control; collaborative design
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_376
id ecaadesigradi2019_376
authors Das, Avishek, Worre Foged, Isak, Jensen, Mads Brath and Hansson, Michael Natapon
year 2019
title Collaborative Robotic Masonry and Early Stage Fatigue Prediction
doi https://doi.org/10.52842/conf.ecaade.2019.3.171
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 171-178
summary The nature of craft has often been dictated by the type and nature of the tool. The authors intend to establish a new relationship between a mechanically articulated tool and a human through the development a symbiotic relationship between them. This study attempts to develop and deploy a framework for collaborative robotic masonry involving one mason and one industrial robotic arm. This study aims to study the harmful posture and muscular stress developed during the construction work and involve a robotic arm to aid the mason to reduce the cumulative damage to one's body. Through utilization of RGBD sensors and surface electromyography procedure the study develops a framework that distributes the task between the mason and robot. The kinematics and electromyography detects the fatigue and harmful postures and activates the robot to collaborate with the mason in the process.
keywords interactive robotic fabrication; human robot collaboration; fatigue and pose estimation; masonry
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_334
id ecaadesigradi2019_334
authors Dembski, Fabian, Wössner, Uwe and Letzgus, Mike
year 2019
title The Digital Twin - Tackling Urban Challenges with Models, Spatial Analysis and Numerical Simulations in Immersive Virtual Environments.
doi https://doi.org/10.52842/conf.ecaade.2019.1.795
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 795-804
summary For the built environment's transformation we are confronted with complex dynamics connected to economic, ecologic and demographic change (Czerkauer-Yamu et al., 2013; Yamu, 2014). In general, cities are complex systems being a "heterogeneous mosaic" of a variety of cultures and functions, characterised by diverging perceptions and interests (ibid). The juxtaposed perceptions and interests in relation to ongoing spatial processes of change create a particularly complex situation. Thus, for planning processes we are in need of approaches that are able to cope not only with the urban complexity but also allow for participatory processes to empower citizens. This paper presents the approach of using Digital Twins in virtual reality (VR) for civic engagement in urban planning, enriched with quantitative and qualitative empirical data as one promising approach to tackle not only the complexity of cities but also involve citizens in the planning process.
keywords Digital Twin; Collaborative Planning; Planning and Decision Support; Participation; Virtual Reality; Global System Science
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_366921 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002