CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 520

_id caadria2019_388
id caadria2019_388
authors Beattie, Hamish, Brown, Daniel and Kindon, Sara
year 2019
title Functional Fiction to Collective Action - Values-Based Participatory Urban Design Gaming
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 737-746
doi https://doi.org/10.52842/conf.caadria.2019.1.737
summary This paper discusses the methodology and results of the Maslow's Palace workshops project, which engages with current debates surrounding the democratisation of digital urban design technology and stakeholder decision making, through the implementation of a speculative oriented approach to serious gaming. The research explores how serious games might be used to help marginalised communities consider past, future and present community experiences, reconcile dissimilar assumptions, generate social capital building and design responses and prime participants for further long term design engagement processes. Empirical material for this research was gathered from a range of case study workshops prepared with three landfill-based communities and external partners throughout 2017. Results show the approach helped participants develop shared norms, values and understandings of sensitive topics and develop ideas for future action through "collective tinkering".
keywords Participatory design; urban design; social capital; serious games; slum upgrading
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_312
id ecaadesigradi2019_312
authors Veraldo da Costa Pita, Juliano and Tramontano, Marcelo Cláudio
year 2019
title Building Information Modeling for Participatory Decision-making Processes
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 283-292
doi https://doi.org/10.52842/conf.ecaade.2019.1.283
summary This paper presents and discusses the partial results of ongoing research on the development of computer applications connected to Building Information Modeling (BIM) software, aiming at the participation of non-technical actors in decision-making processes for public facilities projects. The research proposes the construction of a web-based application in which remote collaboration between technicians and non-technicians can be carried out in architectural design processes. The article points to the relevance of such cooperation in newly industrialised countries, reviews the key features of BIM, and presents the application currently under development. The paper focuses the theoretical discussion and characterisation of relationships between the involved parties and the practical implications of these reflections on the structure and design of the application. This research work is underway at the research group Nomads.usp of the University of S?o Paulo (USP), Brazil, and expects to contribute to the formulation and implementation of public policies in the sectors involved.
keywords BIM; Participation; Public facilities
series eCAADeSIGraDi
email
last changed 2022/06/07 07:58

_id acadia20_136p
id acadia20_136p
authors López Lobato, Déborah; Charbel, Hadin
year 2020
title Foll(i)cle
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 136-141
summary In the early months of 2019, air pollution in Bangkok reached a record high, bringing national and international attention to the air quality in the South East Asian cosmopolitan. Although applications such as real-time pollution maps provide an environmental reading from the exterior, such information reveals the ‘here and now,’ where its record is inevitably lost through the ‘refreshing’ process of the live update and does not take increment and accumulation as factors to consider. The project was conceived around understanding the human body as precisely that medium that resists classification as either an interior or exterior environment that inherently performs as an impressionable record of its surroundings. Can a city’s toxicity be read through its living constituents? Can the living bodies that dwell, navigate, breathe, and process habitable environments be accessed? Can architecture retain a degree of independence while also performing as a beacon for the collective? Along this line of questioning, it was found that human hair can be transformed from a material that is effortlessly and continuously grown, cut, stylized, and discarded, and instead be intercepted and used in the production of public information gathering. Foll(i)cle is a collective being made of discarded human hair. Performing as a parliament for collectivity embedded with a protocol; the hairy pavilion invites the public in and presents them with a device at the center that hosts all the necessary equipment and information for anonymously and voluntarily providing hair samples for heavy metal analysis, the data of which is used in making a publically accessible toxi-cartography. Although humans are the primary subject for this study, the results suggest that extending the methodology to non-humans could prove useful in reading urban toxicity through various life forms.
series ACADIA
type project
email
last changed 2021/10/26 08:03

_id caadria2019_005
id caadria2019_005
authors Alva, Pradeep, Janssen, Patrick and Stouffs, Rudi
year 2019
title A Spatial Decision Support Framework For Planning - Creating Tool-Chains for Organisational Teams
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 11-20
doi https://doi.org/10.52842/conf.caadria.2019.2.011
summary In practice, most planners do not make significant use of planning support systems. Although significant research has been conducted, the focus tends to be on supporting individual tasks, and the outcomes are often the development of new stand-alone tools that are difficult to integrate into existing workflows. The knowledge contribution in this paper focuses on developing a novel spatial decision support framework focusing on the workflows and tool-chains that span across different teams within an organisation, with varying skill sets and objectives. In the proposed framework, the core decision-making process uses set decision parameters that are combined using a weighted decision tree. The framework is evaluated by developing and testing tool-chains for a real-world land suitability case study. The tool-chain was implemented on top of a GIS platform.
keywords GIS SDSS PSS; Planning Automation; Geoprocessing; Data Analytics; Geoinformatics
series CAADRIA
email
last changed 2022/06/07 07:54

_id ijac201917403
id ijac201917403
authors Alva, Pradeep; Patrick Janssen and Rudi Stouffs
year 2019
title Geospatial tool-chains: Planning support systems for organisational teams
source International Journal of Architectural Computing vol. 17 - no. 4, 336-356
summary In practice, most planners do not make significant use of planning support systems. Although extensive research has been conducted, the focus tends to be on supporting individual tasks, and the outcomes are often the development of new stand-alone tools that are difficult to integrate into existing workflows. The knowledge contribution in this article focuses on developing a novel spatial decision support framework focusing on the workflows and tool-chains that span across different teams with varying skill sets and objectives, within an organisation. In the proposed framework, the core decision-making process uses a set of decision parameters that are combined using a weighted decision tree. The framework is evaluated by developing and testing a workflow and GIS tool-chain for a real-world case study of land suitability and mixed-use potentiality analysis.
keywords GIS, SDSS, PSS, planning automation, TOD, raster geoprocessing, data analytics, geoinformatics
series journal
email
last changed 2020/11/02 13:34

_id caadria2019_211
id caadria2019_211
authors Globa, Anastasia, Wang, Rui and Beza, Beau B.
year 2019
title Sensory Urbanism and Placemaking - Exploring Virtual Reality and the Creation of Place
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 737-746
doi https://doi.org/10.52842/conf.caadria.2019.2.737
summary Sensory Urbanism is an experimental prototyping project exploring the potential of immersive Virtual Reality (VR) environments to support the incorporation of sensory and intangible aspects of place. The study investigates how sensory exploration of urban places can be integrated into decision making regarding the future of cities. In the past, numerous studies reported various sophisticated 'livability' measures, deeming to determine what makes a city a great place to live in. While a part of these measures can be quantified and be represented as text, graphs or images, most of the qualitative aspects of place are inherently abstract and sensory. These aspects have to be experienced to be understood and therefore they are extremely difficult to communicate using conventional representation means. The proposition explored in this study is that the increasing ubiquity of VR and Augmented Reality (AR) technologies can provide new opportunities to engage with the multi-sensory and temporal aspects of urban place. A mixed media approach was adopted, tapping into a temporal dimension as well as visual, aural and kinesthetic range of human senses. The paper reports on the development of the VR sensory urbanism prototype and the initial pilot study that demonstrated the proof-of-concept.
keywords Sensory Urbanism; Immersive Environments; Virtual Reality; Design Evaluation; Placemaking
series CAADRIA
email
last changed 2022/06/07 07:51

_id ecaadesigradi2019_567
id ecaadesigradi2019_567
authors Konieva, Kateryna, Joos, Michael Roberto, Herthogs, Pieter and Tunçer, Bige
year 2019
title Facilitating Communication in a Design Process using a Web Interface for Real-time Interaction with Grasshopper Scripts
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 731-738
doi https://doi.org/10.52842/conf.ecaade.2019.2.731
summary Urban design project development encompasses a wide range of disciplines and approaches, which often have separate goals, frameworks, and software tools. Lack of timely alignment of the disconnected expert inputs to the common vision leads to an increasing number of revisions and decreases chances for finding a compromise solution. We developed an intuitive browser-supported interface in order to incorporate various types of expert inputs and ways of representing the information to take a first step towards facilitating collaborative decision-making processes. The current paper describes the application of the developed tool on three exemplary case studies, where the expert and non-expert users' inputs are combined and analysed using Grasshopper scripts at the back-end. Pilot user studies conducted with professionals have shown that the tool has potential to facilitate collaboration across disciplines and compromise decisions, while most of the participants were still more likely to use it for communication with customers rather than the design team. It suggests that the interaction scheme of different actors with the tool needs to correspond better to the interaction of different actors during common negotiation processes. The findings suggest that the type of involvement of different stakeholders should be explored further in order to find the balance in functionality suitable for different parties.
keywords computational design; design exploration; collaborative design
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

_id sigradi2023_416
id sigradi2023_416
authors Machado Fagundes, Cristian Vinicius, Miotto Bruscato, Léia, Paiva Ponzio, Angelica and Chornobai, Sara Regiane
year 2023
title Parametric environment for internalization and classification of models generated by the Shap-E tool
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 1689–1698
summary Computing has been increasingly employed in design environments, primarily to perform calculations and logical decisions faster than humans could, enabling tasks that would be impossible or too time-consuming to execute manually. Various studies highlight the use of digital tools and technologies in diverse methods, such as parametric modeling and evolutionary algorithms, for exploring and optimizing alternatives in architecture, design, and engineering (Martino, 2015; Fagundes, 2019). Currently, there is a growing emergence of intelligent models that increasingly integrate computers into the design process. Demonstrating great potential for initial ideation, artificial intelligence (AI) models like Shap-E (Nichol et al., 2023) by OpenAI stand out. Although this model falls short of state-of-the-art sample quality, it is among the most efficient orders of magnitude for generating three-dimensional models through AI interfaces, offering practical balance for certain use cases. Thus, aiming to explore this gap, the presented study proposes an innovative design agency framework by employing Shap-E connected with parametric modeling in the design process. The generation tool has shown promising results; through generations of synthetic views conditioned by text captions, its final output is a mesh. However, due to the lack of topological information in models generated by Shap-E, we propose to fill this gap by transferring data to a parametric three-dimensional surface modeling environment. Consequently, this interaction's use aims to enable the transformation of the mesh into quantifiable surfaces, subject to collection and optimization of dimensional data of objects. Moreover, this work seeks to enable the creation of artificial databases through formal categorization of parameterized outputs using the K-means algorithm. For this purpose, the study methodologically orients itself in a four-step exploratory experimental process: (1) creation of models generated by Shap-E in a pressing manner; (2) use of parametric modeling to internalize models into the Grasshopper environment; (3) generation of optimized alternatives using the evolutionary algorithm (Biomorpher); (4) and classification of models using the K-means algorithm. Thus, the presented study proposes, through an environment of internalization and classification of models generated by the Shap-E tool, to contribute to the construction of a new design agency methodology in the decision-making process of design. So far, this research has resulted in the generation and classification of a diverse set of three-dimensional shapes. These shapes are grouped for potential applications in machine learning, in addition to providing insights for the refinement and detailed exploration of forms.
keywords Shap-E, Parametric Design, Evolutionary Algorithm, Synthetic Database, Artificial Intelligence
series SIGraDi
email
last changed 2024/03/08 14:09

_id ecaadesigradi2019_557
id ecaadesigradi2019_557
authors Manríquez, Carla and Sills, Pablo
year 2019
title Evaluation of the energy performance of stilt houses (palafitos) of the Chiloé Island. The role of dynamic thermal simulation on heritage architecture.
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 159-168
doi https://doi.org/10.52842/conf.ecaade.2019.3.159
summary The stilt houses on Chiloé Island, Chile, traditionally built in local timber, are currently in poor conditions and lack of maintenance that contributes on a very poor thermal performance.To carry out interventions and inform decision making to intervene on such unique pieces of cultural heritage in fragile conditions, a computerized dynamic thermal simulation tool (software DesignBuilder®) is used to understand and assess the energy performance of these typology of houses, identifying their annual energy losses, and determining their current annual heating demand of ten case studies.The current annual heating demand of the stilt houses is high, due to the thermal transmittance values of the building envelopes. They exceed in five times the value recommended by Chilean Building Code for the climatic zone under study. Especially critical are heat losses through the ventilated floor (external floor under DesignBuilder® template) and air infiltration, which on average contributed to 30.5% and 28.85% of all energy loss, respectively. According to simulations for ventilated floor, walls, and roofs, the obtained performance could be improved to 65% with thermal reconditioning and measures to enhance airtightness, although the feasibility of such interventions without damaging the heritage houses needs to be carefully considered.
keywords Vernacular Dwellings; Stilt Houses; Energy Simulation; Thermal Envelope
series eCAADeSIGraDi
email
last changed 2022/06/07 07:59

_id ecaadesigradi2019_330
id ecaadesigradi2019_330
authors Markkanen, Piia, van Berkel, Niels, Visuri, Aku, LeSaint, Arthur, Ferreira, Denzil and Herneoja, Aulikki
year 2019
title Exploring Work Environment Usage Behaviour through Context-Aware Mobile Methods
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 837-846
doi https://doi.org/10.52842/conf.ecaade.2019.2.837
summary This paper presents our findings on knowledge work environment usage behaviour through a combined automated mobile indoor positioning system and self-reports collected from the environment's inhabitants. Contemporary work environments are increasingly flexible multi-occupant environments as opposed to cellular offices. Understanding persons' task-related and situation-related environmental needs is critical to improve the design of future knowledge work environments. This study is conducted in a team office environment prior to and following an intervention in which the office layout was re-organized. The combined methodological approach described in this paper provides a new tool for architecture researchers aiming to understand the use of workspaces. Importantly, combining self-reports with context-aware location data collection provides researchers an efficient in situ tool to access participants experiences and decision-making process in choosing their workstation or workspace.
keywords knowledge work environment; team office; activity-based work environment; experience sampling method; research-by-design
series eCAADeSIGraDi
email
last changed 2022/06/07 07:59

_id ecaadesigradi2019_462
id ecaadesigradi2019_462
authors Perelli Soto, Bruno and Soza Ruiz, Pedro
year 2019
title CoDesign Spaces - Experiences of EBD research at an industrial design makerspace
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 417-422
doi https://doi.org/10.52842/conf.ecaade.2019.1.417
summary During the last years, insertion of technology accelerates its incursion both in the design process and in the teaching-learning process. Design education has gone through different visions: Some hold the vision of education in design with a look at professional training. Others, have chosen to study the roots and problems of the training process, the ultimate goal is to generate experts in future designers. An element that - consistently - is often absent from such discussions is the role played by prototypes in the teaching-learning process. This research reviews the role that the prototype has played, as a central element, in the process of collecting evidence, with a view to informing the decision making during the development of Project Design. The paper discusses the role that prototypes - from the standpoint of CoDesign, Evidence Design, and evolutionary design - have played in the teaching experiences of the last four semesters within a Computer Lab for students of Industrial Design. The systematization of information extracted from the research experiences has evolved from the Lab model to the Maker-space experience.
keywords Prototype; FSB Framework; Makerspace; Industrial Design
series eCAADeSIGraDi
email
last changed 2022/06/07 08:00

_id caadria2019_093
id caadria2019_093
authors Shahsavari, Fatemeh, Koosha, Rasool and Yan, Wei
year 2019
title Uncertainty and Sensitivity Analysis Using Building Information Modeling - (An Energy Analysis Test Case)
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 615-624
doi https://doi.org/10.52842/conf.caadria.2019.1.615
summary Building design decision-making is associated with uncertainties due to variations over time and unpredictable parameters. There is a growing demand for probabilistic methods, i.e., uncertainty and sensitivity analyses to handle the uncertainties in building design. This research intends to encourage the application of Building Information Modeling (BIM) for addressing design uncertainties affecting building energy performance. The mapping between BIM (Revit and Dynamo) and a customized model-based energy analysis tool in Excel is investigated to translate architectural models to energy models and conduct the probabilistic analyses. The application of this method is demonstrated with a test case of a hypothetical residential unit in College Station, Texas, USA. Input variables in this example are the thermal properties of building elements, and the two simulation outputs are annual heating and cooling energy consumption, and deviation from comfort temperature. The results indicate the probability distribution of simulation outputs and the importance factor of each design input. This method deals with uncertainties and provides a more reliable and robust basis for design decision-making.
keywords building design decision-making ; Building Information Modeling (BIM); Parametric design; Uncertainty and sensitivity analysis; Building performance analysis
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_308
id ecaadesigradi2019_308
authors Yetkin, Ozan and Gönenç Sorguç, Arzu
year 2019
title Design Space Exploration of Initial Structural Design Alternatives via Artificial Neural Networks
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 55-60
doi https://doi.org/10.52842/conf.ecaade.2019.1.055
summary Increasing implementation of digital tools within a design process generates exponentially growing data in each phase, and inevitably, decision making within a design space with increasing complexity will be a great challenge for the designers in the future. Hence, this research aimed to seek potentials of captured data within a design space and solution space of a truss design problem for proposing an initial novel approach to augment capabilities of digital tools by artificial intelligence where designers are allowed to make a wise guess within the initial design space via performance feedbacks from the objective space. Initial structural design and modelling phase of a truss section was selected as a material of this study since decisions within this stage affect the whole process and performance of the end product. As a method, a generic framework was proposed that can help designers to understand the trade-offs between initial structural design alternatives to make informed decisions and optimizations during the initial stage. Finally, the proposed framework was presented in a case study, and future potentials of the research were discussed.
keywords design space; objective space; structural design; artificial intelligence; machine learning; optimization
series eCAADeSIGraDi
email
last changed 2022/06/07 07:57

_id caadria2019_326
id caadria2019_326
authors Lai, Po Yan, Kim, Meereh, Choi, Minkyu, Lee, Chae-Seok, Porcellini, Valentin, Yi, Taeha and Lee, Ji-Hyun
year 2019
title Framework of Judgment System for Smart Home Assistant Utilizing Collective Intelligence Case-Based Reasoning
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 695-704
doi https://doi.org/10.52842/conf.caadria.2019.1.695
summary This paper proposes a framework of judgment system for smart home assistant that utilizes Collective Intelligence Case Based Reasoning (CI-CBR). CBR is suitable for the smart home environment with its system adaptability to the changeful user scenarios. However, existing CBR solutions have shown relatively low accuracy in service recommendation. This research therefore aims at enhancing the accuracy by introducing collective intelligence into the recommendation system. Assuming that multiple agents will make better decision than single agent, we adopted a multi-agent approach to generate the most similar case, which represents the optimal recommendation from the case base. This paper describes how our system enables agents adopting different similarity measures come to an agreement about the most similar case by the means of majority voting in the judging process. Our framework of a collective judgment system demonstrates its potentials to improve recommendation accuracy, and further enhance the performance of existing smart home assistants.
keywords Collective Intelligence; Case Based Reasoning; Smart home; Service recommendation; Multi-agent system
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaadesigradi2019_358
id ecaadesigradi2019_358
authors Cocho-Bermejo, Ana and Navarro-Mateu, Diego
year 2019
title User-centered Responsive Sunlight Reorientation System based on Multiagent Decision-making, UDaMaS
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 695-704
doi https://doi.org/10.52842/conf.ecaade.2019.2.695
summary UDaMaS (Universal Daylight Managing System), is a user-centered responsive system for built scenarios that can reorient sunlight to improve light conditions in specific urban environments.This on-going research is based on developing more efficient energy/light supply methods through IoT (internet of things) and data mining based on the improved relationship with technology.A user centered responsive multi-agent system using norm emergence is proposed for controlling the efficiency of sunlight reoriented society of mirror robots. Society of robots will make decisions about which users to serve, depending on the users' requests through the UdaMas app.
keywords responsive; lighting; user-centric; multi-agent system; artificial intelligence; ambient intelligence
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_369
id ecaadesigradi2019_369
authors Contreras, Camilo Hernán
year 2019
title Surfaces Plot - A data visualization system to support design space exploration
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 145-152
doi https://doi.org/10.52842/conf.ecaade.2019.2.145
summary The notion of design spaces (DS) can be understood as the potential of a parametric model, it is basically the number of possible combinations for its input parameters. When combining tools that produce these alternatives automatically with different simulation softwares, the concept of parametric analysis (PA) emerges. This implies a simultaneous evaluation of the alternatives as they are constructed by the parametric model, producing large amounts of information. This article describes a sectional approach to the management of this information and a visualization technique to represent it looking for correlations between the input parameters and their performance. Correlations that are fundamental to making decisions with confidence when design problems challenge traditional methods of decision-making based on heuristics and design expertise.
keywords Design Space ; Performance-Based Design; Parametric Analysis; Generative Design; Data Visualization
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id caadria2019_080
id caadria2019_080
authors Green, Stephen, King, Geoff, Fabbri, Alessandra, Gardner, Nicole, Haeusler, M. Hank and Zavoleas, Yannis
year 2019
title Designing Out Urban Heat Islands - Optimisation of footpath materials with different albedo value through evolutionary algorithms to address urban heat island effect
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 603-612
doi https://doi.org/10.52842/conf.caadria.2019.2.603
summary The Urban Heat Island (UHI) effect is pronounced in dense urban developments, and particular an issue in the case study city of Parramatta, where temperature increases are impacting use of public space, health, and economic productivity. To mitigate against elevated temperatures in built up areas, this research explores the optimisation of paving material layouts through using an evolutionary algorithm. High albedo (reflective) materials are objectively cooler than low albedo (absorbent) materials yet tend to be more expensive. To reduce the amount of heat absorbent pavement materials whilst keeping in mind material costs, a range of materials of different albedo levels (reflectivity) can be assigned on the same path using an evolutionary algorithm to optimise the coolest materials for the cheapest price. Over the course of this paper, this research aim will be approached using visual scripting software such as Grasshopper to simulate daylight analysis and to generate an optimisation algorithm. Previous research on the topics of UHI have revealed different methods for solving specific problems, all focusing on using software analysis to determine an informed decision on construction. The paper contributes via a computational approach of material selection to battle urban heat island effects.
keywords urban heat island; albedo value; material properties; evolutionary algorithm ; landscape architecture
series CAADRIA
email
last changed 2022/06/07 07:51

_id caadria2019_104
id caadria2019_104
authors Johan, Ryan, Chernyavsky, Michael, Fabbri, Alessandra, Gardner, Nicole, Haeusler, M. Hank and Zavoleas, Yannis
year 2019
title Building Intelligence Through Generative Design - Structural analysis and optimisation informed by material performance
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 371-380
doi https://doi.org/10.52842/conf.caadria.2019.1.371
summary Generative design (GD) is the process of defining high-level goals and constraints and then using computation to automatically explore a range of solutions that meet the desired requirements. Generative processes are intelligent ways to fast-track early design stages. The outcomes are analyzed simultaneously to inform decisions for architects and engineers. Whilst material properties have been defined as a driving agent within generative systems to calculate structure, material performance or structural capacity are not linked with early decision-making. In response, this paper sets a constrained approach upon traditional and non-traditional materials to validate the feasibility of structures. A GD tool is developed within Grasshopper using C-sharp, Karamaba3D, Galapagos and various engineering formulas. The result is a script, which prioritizes the structural qualities of material as a driving factor within generative systems and facilitates communication across different expertise.
keywords Intelligent systems; generative design; material properties; structural analysis; evolutionary algorithms
series CAADRIA
email
last changed 2022/06/07 07:52

_id ijac201917203
id ijac201917203
authors Krietemeyer, Bess; Amber Bartosh and Lorne Covington
year 2019
title A shared realities workflow for interactive design using virtual reality and three-dimensional depth sensing
source International Journal of Architectural Computing vol. 17 - no. 2, 220-235
summary This article presents the ongoing development and testing of a “shared realities” computational workflow to support iterative user-centered design with an interactive system. The broader aim is to address the challenges associated with observing and recording user interactions within the context of use for improving the performance of an interactive system. A museum installation is used as an initial test bed to validate the following hypothesis: by integrating three- dimensional depth sensing and virtual reality for interaction design and user behavior observations, the shared realities workflow provides an iterative feedback loop that allows for remote observations and recordings for faster and effective decision-making. The methods presented focus on the software development for gestural interaction and user point cloud observations, as well as the integration of virtual reality tools for iterative design of the interface and system performance assessment. Experimental testing demonstrates viability of the shared realities workflow for observing and recording user interaction behaviors and evaluating system performance. Contributions to computational design, technical challenges, and ethical considerations are discussed, as well as directions for future work.
keywords Interactive architecture, user-centered design, virtual reality, three-dimensional depth sensing, user interactions
series journal
email
last changed 2019/08/07 14:04

_id caadria2019_318
id caadria2019_318
authors Martinho, Helena, Belém, Catarina, Leitão, António, Loonen, Roel and Gomes, M. Glória
year 2019
title Algorithmic Design and Performance Analysis of Adaptive Façades
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 685-694
doi https://doi.org/10.52842/conf.caadria.2019.1.685
summary Building performance simulation tools have the potential for aiding the decision-making process in early design stages of an architectural project. As traditional simulation tools are based on a static design and adaptive façades encompass an envisioned movement of construction elements, there is a lack of supporting tools and workflows that can correctly evaluate the performance of such building envelopes at an early stage. The presented ongoing research focuses on developing efficient parametric performance-based approaches for assessing the energy consumption in buildings with adaptive façades, combining generative architectural design and performance analysis in a seamless workflow. To this end, we combine a new algorithmic design research tool with the well-established whole-building simulation engine EnergyPlus. The purpose of linking both tools lies in the possibility of generating and simulating models with adaptive façade mechanisms through a single script, evaluating and using the simulation results to adjust the model's parameters and develop optimized control strategies.
keywords Building performance simulation; Adaptive façades; Algorithmic design; Energy analysis
series CAADRIA
email
last changed 2022/06/07 07:59

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 25HOMELOGIN (you are user _anon_826289 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002