CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 610

_id caadria2019_530
id caadria2019_530
authors Lu, Siliang, Wang, Shihan, Cochran Hameen, Erica, Shi, Jie and Zou, Yue
year 2019
title Comfort-Based Integrative HVAC System with Non-Intrusive Sensing in Office Buildings
doi https://doi.org/10.52842/conf.caadria.2019.1.785
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 785-794
summary Heating, ventilation and air-conditioning system plays a key role in shaping the built environment. The effective and efficient HVAC operations not only achieve energy savings but also create a more comfortable environment for occupant indoors. Since current HVAC systems with fixed schedules cannot guarantee the operation with high energy efficiency and provision of comfortable thermal environment for occupants, it is of great importance to develop new paradigm of HVAC system framework, especially in the open-plan office environment so that everyone could work under their preferred thermal environment. Moreover, compared to environment-related factors to thermal comfort, sensing systems for occupant-related factors such as clothing insulation, metabolic rate, skin temperature have not had standardized yet and most of sensing systems for occupant-related factors may either result in privacy issue or are too intrusive. Hence, it is necessary to develop a new non-intrusive and less private sensing framework for monitoring individual thermal comfort in real-time. Therefore, this paper proposes an integrative comfort-based personalized cooling system with the operation of the centralized systems in office buildings. The results show that such integrative and interactive HVAC system for workplaces has advantages over thermal comfort improvements and energy savings.
keywords Adaptive thermal comfort; Non-intrusive personalized cooling system; Occupant-responsive HVAC control; Intelligent workplace
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaadesigradi2019_176
id ecaadesigradi2019_176
authors Giantini, Guilherme, Negris de Souza, Larissa, Turczyn, Daniel and Celani, Gabriela
year 2019
title Environmental Ceramics - Merging the digital and the physical in the design of a performance -based facade system
doi https://doi.org/10.52842/conf.ecaade.2019.2.749
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 749-758
summary Environmental comfort and space occupancy are essential considerations in architectural design process. Façade systems deeply impact both aspects but are usually standardized. However, performance-based facade systems tackle these issues through computational design to devise non-homogeneous elements. This work proposes a ceramic facade system designed according to a performance-based process grounded on environmental analysis and parametric design to allow adaptation and geometric variation according to specific building demands on environmental comfort and functionality. In this process, the Design Science Research method guided the exploration of both design and evaluation, bridging the gap between theory and practice. Positive facade environmental performance were found from digital and physical models assessment in terms of radiation, illuminance, dampness (with ventilation) and temperature. Computational processes minimized radiation inside the building while maximized illuminance. Their association influenced on operative temperature, which dropped according to local dampness and material absorption. Accordingly, this design process associates not only environmental comfort and functionality concepts but also adaptability, flexibility, mass customization, personal fabrication, additive manufacturing concepts, being an example architectural design changes in the 4th Industrial Revolution.
keywords sustainable design; facade system; computational design; environmental analysis; evolutionary algorithm
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

_id caadria2019_365
id caadria2019_365
authors Natephra, Worawan and Motamedi, Ali
year 2019
title BIM-based Live Sensor Data Visualization using Virtual Reality for Monitoring Indoor Conditions
doi https://doi.org/10.52842/conf.caadria.2019.2.191
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 191-200
summary This paper proposes a method for an automated live sensor data visualization of building indoor environment conditions using a VR system. The proposed method is based on the integration of environmental sensors, BIM, and VR technology. Such integration provides an opportunity to utilize an immersive and live sensing technology for improving data visualization. In our case study, the environmental data, such as indoor air temperature, humidity, and light level are captured by sensors connected to Arduino microcontrollers. The data output of sensors obtained from Arduino units are stored onto the BIM model and transferred to the developed VR system. The developed system simultaneously visualizes numerical values of sensors' reading together with the virtual model of the building in a VR headset. The result of the case study showed that the developed system is capable of visualizing various indoor environmental information of the building with the VR technology. It can provide users with useful information to help monitoring indoor thermal comfort conditions of the building in real-time, while performing the walkthrough in the virtual environment.
keywords Building Information Modeling (BIM); environmental sensor; thermal comfort; Virtual Reality (VR); Arduino; IoT
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaadesigradi2019_138
id ecaadesigradi2019_138
authors Kim, Yujin
year 2019
title Bioinspired Modularity in Evolutionary Computation and a Rule-Based Logic - Design Solutions for Shared Office Space
doi https://doi.org/10.52842/conf.ecaade.2019.2.341
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 341-348
summary Evolutionary computation is a population-based problem solver that is characterized by a stochastic optimization in order to solve both a single objective and multiple objectives. Previous evolutionary computational researches provided various design options and improved optimization through being evolved with fitness criteria, especially when multiple design objectives conflict with one another. In this paper, a rule-based algorithm was combined with the evolutionary computational process to propose an assembly logic of the modules and to improve an architectural building design in order to adapt to environmental changes. Two algorithms - a rule based and generative algorithm- proceeded simultaneously and provided various options as well as optimization in real time. For the experiment set-up, existing buildings were divided into each module; the modules were reinterpreted and reassembled with the logic driven by Evolutionary Developmental Biology. The conclusion is that when a rule based logic is combined with a developmental algorithm with a modular system, it is more efficient for the design process to be analyzed, evaluated, and optimized. The ultimate outcome provides various options in a short amount of time.
keywords Evolutionary computation; rule-based algorithm; modularity; reassembly
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id caadria2019_307
id caadria2019_307
authors Nguyen, Binh Vinh Duc, Peng, Chengzhi and Wang, Tsung-Hsien
year 2019
title KOALA - Developing a generative house design system with agent-based modelling of social spatial processes
doi https://doi.org/10.52842/conf.caadria.2019.1.235
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 235-244
summary The paper presents the development of an agent-based approach to modelling the interaction of human emotion and behaviour with built spaces. The study addresses how human behaviour and social relation can be represented and modelled to interact with a virtual built environment composed in parametric architectural geometry. KOALA, a prototype of agent-based modelling of social spatial dynamics at the core of a parametric architectural design environment is proposed. In building KOALA's system architecture, we adapted the PECS (Physical, Emotional, Cognitive, Social) reference model of human behaviour (Schmidt 2002) and introduced the concept of Social Spatial Comfort as a measurement of three key factors influencing human spatial experiences. KOALA was evaluated by a comparative modelling of two contrasting Vietnamese dwellings known to us. As expected, KOALA returns very different temporal characteristics of spatial modifications of the two dwellings over a simulated timeframe of one year. We discuss the lessons learned and further research required.
keywords Parametricism; generative house design system; architectural parametric geometry; human behaviour; social-spatial dynamics
series CAADRIA
email
last changed 2022/06/07 07:58

_id ijac201917402
id ijac201917402
authors Worre Foged, Isak ; and Anke Pasold
year 2019
title Development of a hybrid behavioural and thermal adaptive building envelope
source International Journal of Architectural Computing vol. 17 - no. 4, 323-335
summary This study focuses on the design of behavioural mechanisms for a hybrid informed adaptive envelope. Based on a full-scale experimental demonstrator, including a material responsive and a sensor–processing–actuation adaptive system, quantitative and qualitative methods are applied to identify, describe and study behavioural modes of the adaptive envelope. Through sensor data values and observations, the study finds that the adaptive response patterns are best based on subjective, human-mapped sensations, rather than prescribed environmental comfort, numeric-based sensor values. Those adaptive response patterns should account for change in tempi of the environment, occupier and envelope to establish advanced cause and effect relations, beyond generic thermal comfort performance metrics.
keywords Adaptive envelope, behavioural logics, material composites, environmental sensing, hybrid systems
series journal
email
last changed 2020/11/02 13:34

_id caadria2019_132
id caadria2019_132
authors Zhu, Yuehan, Fukuda, Tomohiro and Yabuki, Nobuyoshi
year 2019
title Synthesizing 360-Degree Live Streaming for an Erased Background to Study Renovation using Mixed Reality
doi https://doi.org/10.52842/conf.caadria.2019.2.071
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 71-80
summary In a modern society, people spend more time indoors. Indoor Environmental Quality (IEQ) and its effect on occupants' health and comfort has become an important area of study. Many existing building stocks still have huge social, economic, and environmental value. There is a high demand for stock renovation, which gives existing buildings new lives, rather than building new ones. In the early stage of the renovation design, it is essential to achieve a timely feedback process as bring together stakeholders. Introducing Mixed Reality (MR) with Diminished Reality (DR) provides users with an indirect view of the world where some objects have been made invisible which makes it easier to display indoor renovation plans. This paper describes the development of an MR system for architectural designers that integrates DR results into the MR system. Aiming to provide a stable, realistic and real-time DR results for enhancing feedback efficiency during renovation design which can help stakeholders better understand or evaluate the renovation plan.
keywords building stock renovation; mixed reality (MR); diminished reality (DR); real-time background update
series CAADRIA
email
last changed 2022/06/07 07:57

_id ecaade2023_138
id ecaade2023_138
authors Crolla, Kristof and Wong, Nichol
year 2023
title Catenary Wooden Roof Structures: Precedent knowledge for future algorithmic design and construction optimisation
doi https://doi.org/10.52842/conf.ecaade.2023.1.611
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 611–620
summary The timber industry is expanding, including construction wood product applications such as glue-laminated wood products (R. Sikkema et al., 2023). To boost further utilisation of engineered wood products in architecture, further development and optimisation of related tectonic systems is required. Integration of digital design technologies in this endeavour presents opportunities for a more performative and spatially diverse architecture production, even in construction contexts typified by limited means and/or resources. This paper reports on historic precedent case study research that informs an ongoing larger study focussing on novel algorithmic methods for the design and production of lightweight, large-span, catenary glulam roof structures. Given their structural operation in full tension, catenary-based roof structures substantially reduce material needs when compared with those relying on straight beams (Wong and Crolla, 2019). Yet, the manufacture of their non-standard geometries typically requires costly bespoke hardware setups, having resulted in recent projects trending away from the more spatially engaging geometric experiments of the second half of the 20th century. The study hypothesis that the evolutionary design optimisation of this tectonic system has the potential to re-open and expand its practically available design solution space. This paper covers the review of a range of built projects employing catenary glulam roof system, starting from seminal historic precedents like the Festival Hall for the Swiss National Exhibition EXPO 1964 (A. Lozeron, Swiss, 1964) and the Wilkhahn Pavilions (Frei Otto, Germany, 1987), to contemporary examples, including the Grandview Heights Aquatic Centre (HCMA Architecture + Design, Canada, 2016). It analysis their structural concept, geometric and spatial complexity, fabrication and assembly protocols, applied construction detailing solutions, and more, with as aim to identify methods, tools, techniques, and construction details that can be taken forward in future research aimed at minimising construction complexity. Findings from this precedent study form the basis for the evolutionary-algorithmic design and construction method development that is part of the larger study. By expanding the tectonic system’s practically applicable architecture design solution space and facilitating architects’ access to a low-tech producible, spatially versatile, lightweight, eco-friendly, wooden roof structure typology, this study contributes to environmentally sustainable building.
keywords Precedent Studies, Light-weight architecture, Timber shell, Catenary, Algorithmic Optimisation, Glue-laminated timber
series eCAADe
email
last changed 2023/12/10 10:49

_id ecaade2024_4
id ecaade2024_4
authors Irodotou, Louiza; Gkatzogiannis, Stefanos; Phocas, Marios C.; Tryfonos, George; Christoforou, Eftychios G.
year 2024
title Application of a Vertical Effective Crank–Slider Approach in Reconfigurable Buildings through Computer-Aided Algorithmic Modelling
doi https://doi.org/10.52842/conf.ecaade.2024.1.421
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 1, pp. 421–430
summary Elementary robotics mechanisms based on the effective crank–slider and four–bar kinematics methods have been applied in the past to develop architectural concepts of reconfigurable structures of planar rigid-bar linkages (Phocas et al., 2020; Phocas et al., 2019). The applications referred to planar structural systems interconnected in parallel to provide reconfigurable buildings with rectangular plan section. In enabling structural reconfigurability attributes within the spatial circular section buildings domain, a vertical setup of the basic crank–slider mechanism is proposed in the current paper. The kinematics mechanism is integrated on a column placed at the middle of an axisymmetric circular shaped spatial linkage structure. The definition of target case shapes of the structure is based on a series of numerical geometric analyses that consider certain architectural and construction criteria (i.e., number of structural members, length, system height, span, erectability etc.), as well as structural objectives (i.e., structural behavior improvement against predominant environmental actions) aiming to meet diverse operational requirements and lightweight construction. Computer-aided algorithmic modelling is used to analyze the system's kinematics, in order to provide a solid foundation and enable rapid adaptation for mechanisms that exhibit controlled reconfigurations. The analysis demonstrates the implementation of digital parametric design tools for the investigation of the kinematics of the system at a preliminary design stage, in avoiding thus time-demanding numerical analysis processes. The design process may further provide enhanced interdisciplinary performance-based design outcomes.
keywords Reconfigurable Structures, Spatial Linkage Structures, Kinematics, Parametric Associative Design
series eCAADe
email
last changed 2024/11/17 22:05

_id ijac201917401
id ijac201917401
authors Kabošová, Lenka; Isak Foged, Stanislav Kmet’ and Dušan Katunský
year 2019
title Hybrid design method for wind-adaptive architecture
source International Journal of Architectural Computing vol. 17 - no. 4, 307-322
summary The linkage of individual design skills and computer-based capabilities in the design process offers yet unexplored environment-adaptive architectural solutions. The conventional perception of architecture is changing, creating a space for reconfigurable, “living” buildings responding, for instance, to climatic influences. Integrating the element of wind to the architectural morphogenesis process can lead toward wind-adaptive designs that in turn can enhance the wind microclimate in their vicinity. Geometric relations coupled with material properties enable to create a tensegrity- membrane structural element, bending in the wind. First, the properties of such elements are investigated by a hybrid method, that is, computer simulations are coupled with physical prototyping. Second, the system is applied to basic- geometry building envelopes and investigated using computational fluid dynamics simulations. Third, the findings are transmitted to a case study design of a streamlined building envelope. The results suggest that a wind-adaptive building envelope plays a great role in reducing the surface wind suction and enhancing the wind microclimate.
keywords Wind, computational fluid dynamics, tensegrity structure, responsive envelope, computational design
series journal
email
last changed 2020/11/02 13:34

_id ecaadesigradi2019_506
id ecaadesigradi2019_506
authors Kontovourkis, Odysseas, Georgiou, Christos, Stroumpoulis, Andreas, Kounnis, Constantinos, Dionyses, Christos and Bagdati, Styliana
year 2019
title Implementing Augmented Reality for the Holographic Assembly of a Modular Shading Device
doi https://doi.org/10.52842/conf.ecaade.2019.3.149
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 149-158
summary The development of innovative digital design and fabrication tools for material processing and manufacturing of complex and non-standard forms, apart from their advantages, have brought a number of challenges. These might be related to the effectiveness and sustainable potential of implementation associated with environmental, cost and time-related parameters, particularly in cases of large number of elements construction and complex assembly. Augmented Reality (AR) is an emerging technology with great potential for implementation in the construction industry, since it can enhance the real world with additional digital information, and thus, can assist towards manufacture and assemble of these particular systems. This study presents an AR methodology for assembling a modular shading device and discusses the advantages and disadvantages that this application can bring to the Architecture, Engineering and Construction (AEC) industry by taking into account precision and construction time issues based on the handling of the process by skilled and unskilled users/workers. Our aim is to investigate the potential implementation of AR in the assembly, and consequently, in the construction process as a whole. Also, this study aims at exploring existing constraints of the technology and suggests ways of improvement.
keywords Augmented Reality; Holographic assembly; Modular system; Shading device
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

_id acadia19_664
id acadia19_664
authors Koshelyuk, Daniil; Talaei, Ardeshir; Garivani, Soroush; Markopoulou, Areti; Chronis, Angelo; Leon, David Andres; Krenmuller, Raimund
year 2019
title Alive
doi https://doi.org/10.52842/conf.acadia.2019.664
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 664-673
summary In the context of data-driven culture, built space still maintains low responsiveness and adaptability. Part of this reality lies in the low resolution of live information we have about the behavior and condition of surfaces and materials. This research addresses this issue by exploring the development of a deformation-sensing composite membrane material system following a bottom-up approach and combining various technologies toward solving related technical issues—exploring conductivity properties of graphene and maximizing utilization within an architecture-related proof-of-concept scenario and a workflow including design, fabrication, and application methodology. Introduced simulation of intended deformation helps optimize the pattern of graphene nanoplatelets (GNP) to maximize membrane sensitivity to a specific deformation type while minimizing material usage. Research explores various substrate materials and graphene incorporation methods with initial geometric exploration. Finally, research introduces data collection and machine learning techniques to train recognition of certain types of deformation (single point touch) on resistance changes. The final prototype demonstrates stable and symmetric readings of resistance in a static state and, after training, exhibits an 88% prediction accuracy of membrane shape on a labeled sample data-set through a pre-trained neural network. The proposed framework consisting of a simulation based, graphene-capturing fabrication method on stretchable surfaces, and includes initial exploration in neural network training shape detection, which combined, demonstrate an advanced approach to embedding intelligence.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id cf2019_025
id cf2019_025
authors Lin, Yuqiong; Chenyu Huang ,Yuqiong Lin and Philip F. Yuan
year 2019
title High-rise Building Group Morphology Generation Approach based on Wind Environmental Performance
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 185
summary In the urbanization process, high-rise is favored and popularized? while results to the high-density urban space which aggravated the deterioration of urban wind environment. Using quantifiable environmental factors to control the building, is promoting a more meaningful group formation of the sustainable high-rise buildings. Thus, taking wind performance into account in high-rise design infancy is essential. According to the achievement of CAADRIA2018 “SELF-FORM-FINDING WIND TUNNEL TO ENVIRONMENTAL-PERFORMANCE URBAN AND BUILDING DESIGN” workshop, a preliminary set related to the environmental performance urban morphology generation system and method was constructed. In this study, various of high-rise building forms that might be conducive to urban ventilation were selected, such as “hollow-out”, “twisting”, “façade retracting” and “liftup”, to design the Dynamic Model System with multi-dimensional motion.
keywords High-rise, group morphology, wind tunnel, dynamic models, environmental performance
series CAAD Futures
email
last changed 2019/07/29 14:15

_id acadia19_654
id acadia19_654
authors Maierhofer, Mathias; Soana, Valentina; Yablonina, Maria; Erazo, Seiichi Suzuki; Körner, Axel; Knippers, Jan; Menges, Achim
year 2019
title Self-Choreographing Network
doi https://doi.org/10.52842/conf.acadia.2019.654
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 654-663
summary The aim of this research is to challenge the prevalent separation between (digital) design and (physical) operation processes of adaptive and interactive architectural systems. The linearity of these processes implies predetermined material or kinetic behaviors, limiting performances to those that are predictable and safe. This is particularly restricting with regard to compliant or flexible material systems, which exhibit significant kinetic and thus adaptive potential, but behave in ways that are difficult to fully predict in advance. In this paper we present a hybrid approach: a real-time, interactive design and operation process that enables the (material) system to be self-aware, fully utilizing and exploring its kinetic design space for adaptive purposes. The proposed approach is based on the interaction of compliant materials with embedded robotic agents, at the interface between digital and physical. This is demonstrated in the form of a room-scale spatial architectural robot, comprising networks of linear elastic components augmented with robotic joints capable of sensing and two axis actuation. The system features both a physical instance and a corresponding digital twin that continuously augments physical performances based on simulation feedback informed by sensor data from the robotic joints. With this setup, spatial adaptation and reconfiguration can be designed in real-time, based on an openended and cyber-physical negotiation between numerical, robotic, material, and human behaviors, in the context of a physically deployed structure and its occupants.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:59

_id ecaadesigradi2019_330
id ecaadesigradi2019_330
authors Markkanen, Piia, van Berkel, Niels, Visuri, Aku, LeSaint, Arthur, Ferreira, Denzil and Herneoja, Aulikki
year 2019
title Exploring Work Environment Usage Behaviour through Context-Aware Mobile Methods
doi https://doi.org/10.52842/conf.ecaade.2019.2.837
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 837-846
summary This paper presents our findings on knowledge work environment usage behaviour through a combined automated mobile indoor positioning system and self-reports collected from the environment's inhabitants. Contemporary work environments are increasingly flexible multi-occupant environments as opposed to cellular offices. Understanding persons' task-related and situation-related environmental needs is critical to improve the design of future knowledge work environments. This study is conducted in a team office environment prior to and following an intervention in which the office layout was re-organized. The combined methodological approach described in this paper provides a new tool for architecture researchers aiming to understand the use of workspaces. Importantly, combining self-reports with context-aware location data collection provides researchers an efficient in situ tool to access participants experiences and decision-making process in choosing their workstation or workspace.
keywords knowledge work environment; team office; activity-based work environment; experience sampling method; research-by-design
series eCAADeSIGraDi
email
last changed 2022/06/07 07:59

_id cf2019_034
id cf2019_034
authors Usman, Muhammad; Davide Schaumann, Brandon Haworth, Mubbasir Kapadia and Petros Faloutsos
year 2019
title Joint Parametric Modeling of Buildings and Crowds for Human-Centric Simulation and Analysis
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 256
summary Simulating groups of virtual humans (crowd simulation) affords the analysis and data-driven design of interactions between buildings and their occupants. For this to be useful in practice however, crowd simulators must be well coupled with modeling tools in a way that allows users to iteratively use simulation feedback to adjust their designs. This is a non-trivial research and engineering task as designers often use parametric exploration tools early in their design pipelines. To address this issue, we propose a platform that provides a joint parametric representation of (a) a building and the bounds of its permissible alterations, (b) a crowd that populates the environment, and (c) the activities that the crowd engages in. Based on this input, users can systematically run simulations and analyze the results in the form of data-maps, spatialized representations of human-centric analyses. The platform combines Dynamo with SteerSuite, two established tools for parametric design and crowd simulations, to create a familiar node-based workow. We systematically evaluate the approach by tuning spatial, social, and behavioral parameters to generate human-centric analyses for the design of a generic exhibition space.
keywords Human-centric analytics, crowd simulation, parametric modeling, building occupancy, multi-agent systems
series CAAD Futures
email
last changed 2019/07/29 14:15

_id caadria2019_422
id caadria2019_422
authors Wang, Xiao, Tang, Peng and Shi, Xing
year 2019
title Analysis and Conservation Methods of Traditional Architecture and Settlement Based on Knowledge Discovery and Digital Generation - A Case Study of Gunanjie Street in China
doi https://doi.org/10.52842/conf.caadria.2019.1.757
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 757-766
summary In the conservation plan of traditional architecture and settlement, the mismatch between design and construction is an inevitable problem. The mismatch commonly shows as the variations in the cognition of the traditionality of architecture feature. In most cases, the evaluation of historical feature is made based on designers' subjective perception, experience, and understanding of the traditional style. Also, without an appropriate guide and unified control, it could make the conservation plan less efficient in practice. Therefore, a quantitative method for conservation plan is needed, which is expected to be effective especially for massive non-key but traditional ordinary buildings. In this study on Gunanjie Street, in Yixing, China, a new method of feature analysis and generative design was developed to regenerate the district. The proposed method first adapted new data acquisition and processing techniques to gather information and build the database. Cognition investigation and morphology analysis were then implemented to quantify and evaluate the features of historical characteristics, as well as the knowledge discovery tools, were further used to abstract the rules of the traditional facade. With these phases, the proposed method was able to generate the referable design schemes quantitatively and establish generally accepted conservation plans and guidelines.
keywords Traditional architecture and settlement; historical feature; Knowledge Discovery; digital generation; conservation
series CAADRIA
email
last changed 2022/06/07 07:58

_id ecaadesigradi2019_667
id ecaadesigradi2019_667
authors Werner, Liss C.
year 2019
title Form and Data - from linear Calculus to cybernetic Computation and Interaction
doi https://doi.org/10.52842/conf.ecaade.2019.2.675
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 675-682
summary Digital architecture developed in the 1960s and, supported by CAAD the 1990s, has created the path towards an architecture produced by computer and architect in a mutual relationship. The evolution of architecture since the 1970s led to the beginning of the first digital turn in the 1990s, and subsequently to the emergence of new typologies of buildings, architects and design tools; atom-based, bit-based (virtual) [1], and cyber-physical as a combination of both. The paper provides an insight into historical foundations of CAAD insofar as it engages with complexity in mechanics, geometry, and space between the 1600s and 1950s. I will address a selection of principles discovered, and mechanisms invented before computer-aided-architectural-design; those include the typewriter, the Cartesian grid and a pre-cyber-physical system by Hermann von Helmholtz. The paper concludes with a summary and an outlook to the future of CAAD challenged by the variety of correlations of disparate data sets.
keywords HCI; cyber-physical systems; cybernetics; digital history; computational architecture; Helmholtz
series eCAADeSIGraDi
email
last changed 2022/06/07 07:57

_id caadria2019_551
id caadria2019_551
authors Zheliazkova, Maia, Kummamuru, Bhargava Ram and Paoletti, Ingrid
year 2019
title A Computational Workflow for Understanding Acoustic Performance in Existing Buildings
doi https://doi.org/10.52842/conf.caadria.2019.1.443
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 443-452
summary Designing the acoustic conditions of the built environment we live in is fundamental to improving our daily life. However, architects and designers still know very little about the way buildings perform in terms of sound. In order to facilitate the comprehension, and therefore the design of acoustic solutions, it is here proposed a methodology for the investigation of existing architectural spaces. The paper discusses a low-cost setup and computational methodology to create an advanced mapping of spaces with the goal of supporting custom design solutions. A case study is used to apply and compare the sensitivity of the proposed approach with professional equipment. The results show that portable systems can be a viable way to understand how our spaces perform in terms of sound, and encourage the diffusion of performance-driven acoustics design.
keywords Performance-based design; User-space interaction; Architectural acoustics; Sound measurements and sensing
series CAADRIA
email
last changed 2022/06/07 07:57

_id ecaadesigradi2019_671
id ecaadesigradi2019_671
authors Jabi, Wassim, Chatzivasileiadi, Aikaterini, Wardhana, Nicholas Mario, Lannon, Simon and Aish, Robert
year 2019
title The synergy of non-manifold topology and reinforcement learning for fire egress
doi https://doi.org/10.52842/conf.ecaade.2019.2.085
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 85-94
summary This paper illustrates the synergy of non-manifold topology (NMT) and a branch of artificial intelligence and machine learning (ML) called reinforcement learning (RL) in the context of evaluating fire egress in the early design stages. One of the important tasks in building design is to provide a reliable system for the evacuation of the users in emergency situations. Therefore, one of the motivations of this research is to provide a framework for architects and engineers to better design buildings at the conceptual design stage, regarding the necessary provisions in emergency situations. This paper presents two experiments using different state models within a simplified game-like environment for fire egress with each experiment investigating using one vs. three fire exits. The experiments provide a proof-of-concept of the effectiveness of integrating RL, graphs, and non-manifold topology within a visual data flow programming environment. The results indicate that artificial intelligence, machine learning, and RL show promise in simulating dynamic situations as in fire evacuations without the need for advanced and time-consuming simulations.
keywords Non-manifold topology; Topologic; Reinforcement Learning; Fire egress
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_448762 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002