CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 615

_id cf2019_056
id cf2019_056
authors Erdine, Elif ; Asli Aydin, Cemal Koray Bingol, Gamze Gunduz, Alvaro Lopez Rodriguez and Milad Showkatbakhsh
year 2019
title Robot-Aided Fabrication of Materially Efficient Complex Concrete Assemblies
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 454-472
summary This paper presents a novel approach for the materially efficient production of doubly-curved Expanded Polystyrene (EPS) form-work for insitu concrete construction and a novel application of a patented Glass Reinforced Concrete (GRC) technology. Research objectives focus on the development of complex form-work generation and concrete application via advanced computational and robotic methods. While it is viable to produce form-work with complex geometries with advanced digital and robotic fabrication tools, a key consideration area is the reduction of form-work waste material. The research agenda explores methods of associating architectural, spatial, and structural criteria with a material-informed holistic approach. The digital and physical investigations are founded on Robotic Hot-Wire Cutting (RHWC). The geometrical and physical principles of RHWC are transformed into design inputs, whereby digital and physical tests inform each other simultaneously. Correlations are set between form-work waste optimization with the geometrical freedom and constraints of hot-wire cutting via computational methods.
keywords Robotic fabrication, Robotic hot-wire cutting (RHWC), Glassreinforced concrete (GRC), Waste optimization, EPS form-work
series CAAD Futures
email
last changed 2019/07/29 14:18

_id acadia19_16
id acadia19_16
authors Hosmer, Tyson; Tigas, Panagiotis
year 2019
title Deep Reinforcement Learning for Autonomous Robotic Tensegrity (ART)
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 16-29
doi https://doi.org/10.52842/conf.acadia.2019.016
summary The research presented in this paper is part of a larger body of emerging research into embedding autonomy in the built environment. We develop a framework for designing and implementing effective autonomous architecture defined by three key properties: situated and embodied agency, facilitated variation, and intelligence.We present a novel application of Deep Reinforcement Learning to learn adaptable behaviours related to autonomous mobility, self-structuring, self-balancing, and spatial reconfiguration. Architectural robotic prototypes are physically developed with principles of embodied agency and facilitated variation. Physical properties and degrees of freedom are applied as constraints in a simulated physics-based environment where our simulation models are trained to achieve multiple objectives in changing environments. This holistic and generalizable approach to aligning deep reinforcement learning with physically reconfigurable robotic assembly systems takes into account both computational design and physical fabrication. Autonomous Robotic Tensegrity (ART) is presented as an extended case study project for developing our methodology. Our computational design system is developed in Unity3D with simulated multi-physics and deep reinforcement learning using Unity’s ML-agents framework. Topological rules of tensegrity are applied to develop assemblies with actuated tensile members. Single units and assemblies are trained for a series of policies using reinforcement learning in single-agent and multi-agent setups. Physical robotic prototypes are built and actuated to test simulated results.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:50

_id acadia19_438
id acadia19_438
authors Jahn, Gwyllim; Wit, Andrew John; Pazzi, James
year 2019
title [BENT]
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 438-447
doi https://doi.org/10.52842/conf.acadia.2019.438
summary Over the past two decades, advances in computation, digital fabrication, and robotics have opened up new avenues for the design and production of complex forms, emergent processes, as well as new levels of efficiency. Many of these methods, however, tend to focus on a specific tool, such as the industrial robotic arm. Due to their initial costs and space/power/safety requirements, difficulties associated in creating automated workflows and custom tooling, as well as the need for reliable/repeatable procedures, these tools are often out of reach for the average designer or design institution. Additionally, these tools are typically treated as methods of production rather than collaborators, leaving outcomes that can feel void of craft, with the appearance of a typical CNC-machined object. Rather than focusing on a specific production tool for manufacturing, this paper investigates a novel method for holographic handcraft-based production. This holographic augmentation—of simple and easily attainable analog tool sets—allows for the creation of extremely complex forms with high levels of precision in extremely short time frames. Through the lens of the recently completed steam-bent timber installation [BENT] produced at the Tyler School of Art, this paper discusses how Microsoft HoloLens in conjunction with the Fologram software plug-in can be integrated into the entirety of design and production processes as a means of producing a new typology of digital craft.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id acadia20_176p
id acadia20_176p
authors Lok, Leslie; Zivkovic, Sasa
year 2020
title Ashen Cabin
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 176-181
summary Ashen Cabin, designed by HANNAH, is a small building 3D-printed from concrete and clothed in a robotically fabricated envelope made of irregular ash wood logs. From the ground up, digital design and fabrication technologies are intrinsic to the making of this architectural prototype, facilitating fundamentally new material methods, tectonic articulations, forms of construction, and architectural design languages. Ashen Cabin challenges preconceived notions about material standards in wood. The cabin utilizes wood infested by the Emerald Ash Borer (EAB) for its envelope, which, unfortunately, is widely considered as ‘waste’. At present, the invasive EAB threatens to eradicate most of the 8.7 billion ash trees in North America (USDA, 2019). Due to their challenging geometries, most infested ash trees cannot be processed by regular sawmills and are therefore regarded as unsuitable for construction. Infested and dying ash trees form an enormous and untapped material resource for sustainable wood construction. By implementing high precision 3D scanning and robotic fabrication, the project upcycles Emerald-Ash-Borer-infested ‘waste wood’ into an abundantly available, affordable, and morbidly sustainable building material for the Anthropocene. Using a KUKA KR200/2 with a custom 5hp band saw end effector at the Cornell Robotic Construction Laboratory (RCL), the research team can saw irregular tree logs into naturally curved boards of various and varying thicknesses. The boards are arrayed into interlocking SIP façade panels, and by adjusting the thickness of the bandsaw cut, the robotically carved timber boards can be assembled as complex single curvature surfaces or double-curvature surfaces. The undulating wooden surfaces accentuate the building’s program and yet remain reminiscent of the natural log geometry which they are derived from. The curvature of the wood is strategically deployed to highlight moments of architectural importance such as windows, entrances, roofs, canopies, or provide additional programmatic opportunities such as integrated shelving, desk space, or storage.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id ecaadesigradi2019_488
id ecaadesigradi2019_488
authors Naboni, Roberto and Kunic, Anja
year 2019
title A computational framework for the design and robotic manufacturing of complex wood structures
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 189-196
doi https://doi.org/10.52842/conf.ecaade.2019.3.189
summary The emerging paradigm of Industry 4.0 is rapidly expanding in the AEC sector, where emergent technologies are offering new possibilities. The use of collaborative robots is enabling processes of advanced fabrication, where humans and robots coexist and collaborate towards the co-creation of new building processes. This paper focuses on setting a conceptual framework and a computational workflow for the design and assembly of a novel type of engineered wood structures. The aim is advancing timber construction through complex tectonic configurations, which are informed by logics of robotic assembly, topology and material optimization, and combinatorial design. Starting from the conceptualization of robotic layered manufacturing for timber structures, this work presents the development of a digital twin applied to the voxel-based design of complex timber structures.
keywords Digital Materials; Robotic Assembly; Wood structures; Voxel-based design; Topology Optimization
series eCAADeSIGraDi
email
last changed 2022/06/07 07:59

_id caadria2019_173
id caadria2019_173
authors Ng, Jonathan Ming-En, Ho, Samuel Yu De, Ng, Truman Wei Cheng, Soh, Jia Ying and Dritsas, Stylianos
year 2019
title Fabrication of Ultra-Lightweight Parametric Glass Fiber Reinforced Shell Assemblies
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 13-22
doi https://doi.org/10.52842/conf.caadria.2019.1.013
summary We present an experimental form-finding technique for ultra-thin glass fiber reinforced concrete components and assemblies. The objective is to challenge conventional concrete use in construction, often perceived as a massive and compressive structural material. Instead, we targeted production of fine shell assemblies principally operating in tension. To achieve thin profile components, we use a compliant molding technique where premixed GFRC is cast in polyethylene bags. Subsequently, a robotic arm system pins the bags on a substrate plate and the setup is inverted whereby gravity induces a curvature to components while concrete cures. Use of parametric modeling, computer simulation and statistical experimental methods allowed us to understand the behavior of the material process and translate computationally modeled designs into physical artifacts. We discuss the opportunity for digital fabrication methods to fuse with traditional form-finding techniques, contrast the use of computational modeling techniques and present a series of prototypes created through our process.
keywords Digital Fabrication; Glass Fibre Reinforced Concrete; Form-Finding
series CAADRIA
email
last changed 2022/06/07 07:58

_id acadia19_478
id acadia19_478
authors Vercruysse, Emmanuel
year 2019
title Autonomous Architectural Operations
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 478-489
doi https://doi.org/10.52842/conf.acadia.2019.478
summary The research set out in this paper investigates the conception, testing, and implementation of an advanced and bespoke workflow. By hybridizing a diverse set of technologies and processes, an innovative fabrication strategy was developed that combines large scale glue-laminated timber frames with a robotic band-saw application. The design strategy was influenced by a number of key preoccupations: exploring the relationship between drawing and making, evenly distributing analogue and digital technologies, and advancing alternatives modes of architectural practice. The project regards intuitive design processes as an important driver and looked to apply digital tools lightly, aiming to precisely embed them within established timber fabrication processes. This workflow was tested through the design and fabrication of a timber skeleton that provides the structural system for a library building at Hooke Park and acts as an articulated armature supporting the library’s envelope and accommodates its internal workings. Through the production of the sculptural skeleton, the project challenges conventions of existing methodologies and ultimately brings about a morphologic innovation in timber construction through the closed geometry glulam component.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id cf2019_026
id cf2019_026
authors Wibranek, Bastian; Oliver Tessmann, Boris Belousov and Alymbek Sadybakasov
year 2019
title Interactive Assemblies: Man-Machine Collaborations for a Material-Based Modeling Environment
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 186
summary This paper presents our concept, named Interactive Assemblies, which facilitates interaction between man and machine in construction process in which specially designed building components are used as a design interface. In our setup, users physically manipulate and reposition building components. The components, digitized by means of machine sensing, become a part of the design interface. Each of the three experiments included in this paper examines a different robotic sensor approach that helps transfer of data, including the position and shape of each component, back into the digital model. We investigate combinations of material systems (material computation, selfcorrecting assembly) and matching sensors. The accumulated data serves as input for design algorithms and generates robot tool paths for collaborative fabrication. Using real-world geometry to move from virtual design tools directly to physical interaction and back, our research proposes enhanced participation of human actors in robotic construction processes in architecture.
keywords Man-Machine Collaboration, Robotics, Machine Sensing, As-Built Modelling, Interactive Assemblies
series CAAD Futures
email
last changed 2019/07/29 14:15

_id ecaadesigradi2019_319
id ecaadesigradi2019_319
authors Hemmerling, Marco
year 2019
title TransDigital - A cooperative educational project between architecture and crafts
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 341-348
doi https://doi.org/10.52842/conf.ecaade.2019.1.341
summary Even though the computer acts as an effective interface for the cooperation of various actors involved in the construction, the success of a project depends crucially on the socio-cultural characteristics and disciplinary boundary conditions of the people involved. In addition to the technological challenges of digitisation, different working methods, requirements and objectives often represent an obstacle to the successful cooperation and execution of architectural projects. This is where we as a university are challenged to point out new ways that are geared to the future requirements of our professions and, as it were, integrate individual professional profiles. Against this background, the cooperative education project brought together architecture students and trainees in the carpentry trade in order to help them gain an understanding for their respective differing approaches and for their own expertise at an early stage in training, and thus experience the added value of a cooperative working method. The teaching of digital design and planning methods as well as the use of computer-aided production technologies were the vehicles for networked cooperation and integrative learning.
keywords cooperative learning; interdisciplinary collaboration; architecture curriculum; digital design and fabrication
series eCAADeSIGraDi
email
last changed 2022/06/07 07:49

_id artificial_intellicence2019_15
id artificial_intellicence2019_15
authors Antoine Picon
year 2020
title What About Humans? Artificial Intelligence in Architecture
source Architectural Intelligence Selected Papers from the 1st International Conference on Computational Design and Robotic Fabrication (CDRF 2019)
doi https://doi.org/https://doi.org/10.1007/978-981-15-6568-7_2
summary Artificial intelligence is about to reshape the architectural discipline. After discussing the relations between artificial intelligence and the broader question of automation in architecture, this article focuses on the future of the interaction between humans and intelligent machines. The way machines will understand architecture may be very different from the reading of humans. Since the Renaissance, the architectural discipline has defined itself as a conversation between different stakeholders, the designer, but also the clients and the artisans in charge of the realization of projects. How can this conversation be adapted to the rise of intelligent machines? Such a question is not only a matter of design effectiveness. It is inseparable from expressive and artistic issues. Just like the fascination of modernist architecture for industrialization was intimately linked to the quest for a new poetics of the discipline, our contemporary interest for artificial intelligence has to do with questions regarding the creative core of the architectural discipline.
series Architectural Intelligence
email
last changed 2022/09/29 07:28

_id acadia23_v1_196
id acadia23_v1_196
authors Bao, Ding Wen; Yan, Xin; Min Xie, Yi
year 2023
title Intelligent Form
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 196-201.
summary InterLoop employs previously developed workflows that enable multi-planar robotic bending of metal tubes with high accuracy and repeatability (Huang and Spaw 2022). The scale and complexity is managed by employing augmented reality (AR) technology in two capacities, fabrication and assembly (Jahn et al. 2018; Jahn, Newnham, and Berg 2022). The AR display overlays part numbers, bending sequences, expected geometry, and robot movements in real time as the robot fabrication is occurring. For assembly purposes, part numbers, centerlines, and their expected positional relationships are projected via quick response (QR) codes spatially tracked by the Microsoft Hololens 2 (Microsoft 2019). This is crucial due to the length and self-similarity of complex multi-planar parts that make them difficult to distinguish and orient correctly. Leveraging augmented reality technology and robotic fabrication uncovers a novel material expression in tubular structures with bundles, knots, and interweaving (Figure 1).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id acadia19_258
id acadia19_258
authors Bar-Sinai, Karen Lee; Shaked, Tom; Sprecher, Aaron
year 2019
title Informing Grounds
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 258-265
doi https://doi.org/10.52842/conf.acadia.2019.258
summary Advancements in robotic fabrication are enabling on-site construction in increasingly larger scales. In this paper, we argue that as autonomous tools encounter the territorial scale, they open new ways to embed information into it. To define the new practice, this paper introduces a protocol combining a theoretical framework and an iterative process titled Informing Grounds. This protocol mediates and supports the exchange of knowledge between a digital and a physical environment and is applicable to a variety of materials with uncertain characteristics in a robotic manufacturing scenario. The process is applied on soil and demonstrated through a recent design-to-fabrication workshop that focused on simulating digital groundscaping of distant lunar grounds employing robotic sand-forming. The first stage is ‘sampling’—observing the physical domain both as an initial step as well as a step between the forming cycles to update the virtual model. The second stage is ‘streaming’—the generation of information derived from the digital model and its projection onto the physical realm. The third stage is ‘transforming’—the shaping of the sand medium through a physical gesture. The workshop outcomes serve as the basis for discussion regarding the challenges posed by applying autonomous robotic tools on materials with uncertain behavior at a large-scale.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia20_202p
id acadia20_202p
authors Battaglia, Christopher A.; Verian, Kho; Miller, Martin F.
year 2020
title DE:Stress Pavilion
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 202-207
summary Print-Cast Concrete investigates concrete 3D printing utilizing robotically fabricated recyclable green sand molds for the fabrication of thin shell architecture. The presented process expedites the production of doubly curved concrete geometries by replacing traditional formwork casting or horizontal corbeling with spatial concrete arching by developing a three-dimensional extrusion path for deposition. Creating robust non-zero Gaussian curvature in concrete, this method increases fabrication speed for mass customized elements eliminating two-part mold casting by combining robotic 3D printing and extrusion casting. Through the casting component of this method, concrete 3D prints have greater resolution along the edge condition resulting in tighter assembly tolerances between multiple aggregated components. Print-Cast Concrete was developed to produce a full-scale architectural installation commissioned for Exhibit Columbus 2019. The concrete 3D printed compression shell spanned 12 meters in length, 5 meters in width, and 3 meters in height and consisted of 110 bespoke panels ranging in weight of 45 kg to 160 kg per panel. Geometrical constraints were determined by the bounding box of compressed sand mold blanks and tooling parameters of both CNC milling and concrete extrusion. Using this construction method, the project was able to be assembled and disassembled within the timeframe of the temporary outdoor exhibit, produce <1% of waste mortar material in fabrication, and utilize 60% less material to construct than cast-in-place construction. Using the sand mold to contain geometric edge conditions, the Print-Cast technique allows for precise aggregation tolerances. To increase the pavilions resistance to shear forces, interlocking nesting geometries are integrated into each edge condition of the panels with .785 radians of the undercut. Over extruding strategically during the printing process casts the undulating surface with accuracy. When nested together, the edge condition informs both the construction logic of the panel’s placement and orientation for the concrete panelized shell.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id ecaadesigradi2019_425
id ecaadesigradi2019_425
authors Betti, Giovanni, Aziz, Saqib and Ron, Gili
year 2019
title Pop Up Factory : Collaborative Design in Mixed Rality - Interactive live installation for the makeCity festival, 2018 Berlin
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 115-124
doi https://doi.org/10.52842/conf.ecaade.2019.3.115
summary This paper examines a novel, integrated and collaborative approach to design and fabrication, enabled through Mixed Reality. In a bespoke fabrication process, the design is controlled and altered by users in holographic space, through a custom, multi-modal interface. Users input is live-streamed and channeled to 3D modelling environment,on-demand robotic fabrication and AR-guided assembly. The Holographic Interface is aimed at promoting man-machine collaboration. A bespoke pipeline translates hand gestures and audio into CAD and numeric fabrication. This enables non-professional participants engage with a plethora of novel technology. The feasibility of Mixed Reality for architectural workflow was tested through an interactive installation for the makeCity Berlin 2018 festival. Participants experienced with on-demand design, fabrication an AR-guided assembly. This article will discuss the technical measures taken as well as the potential in using Holographic Interfaces for collaborative design and on-site fabrication.Please write your abstract here by clicking this paragraph.
keywords Holographic Interface; Augmented Reality; Multimodal Interface; Collaborative Design; Robotic Fabrication; On-Site Fabrication
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id caadria2019_190
id caadria2019_190
authors Chan, Zion and Crolla, Kristof
year 2019
title Simplifying Doubly Curved Concrete - Post-Digital Expansion of Concrete's Construction Solution Space
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 23-32
doi https://doi.org/10.52842/conf.caadria.2019.1.023
summary This action research project develops a novel conceptual method for non-standardised concrete construction component fabrication and tests its validity through a speculative design project. The paper questions the practical, procedural and economic drivers behind the design and construction of geometrically complex concrete architecture. It proposes an alternative, simple and economical fabrication method for doubly curved concrete centred on the robotic manufacturing of casting moulds through 5-axis hotwire foam cutting for the making of doubly-curved fiber-reinforced concrete (FRC) panels. These panels are used as light-weight sacrificial formwork for in-situ concrete casting. The methodology's opportunity space is tested, evaluated and discussed through a conceptual architectural design project proposal that operates as demonstrator. The paper concludes by addressing the advantages of a design-and-build architecture delivery setup, the potential from using computational technology to adapt conventional design and construction procedures and the expanded role within the design and construction process this gives to architects.
keywords Doubly Curved Concrete; Robotic Manufacture; Post-Digital Architecture; Design and Build; Casting Mould Making
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2019_657
id caadria2019_657
authors Chen, Zhewen, Zhang, Liming and Yuan, Philip F.
year 2019
title Innovative Design Approach to Optimized Performance on Large-Scale Robotic 3D-Printed Spatial Structure
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 451-460
doi https://doi.org/10.52842/conf.caadria.2019.2.451
summary This paper presents an innovative approach on designing large-scale spatial structure with automated robotic 3D-printing. The incipient design approach mainly focused on optimizing structural efficiency at an early design stage by transform the object into a discrete system, and the elements in this system contains unique structural parameters that corresponding to its topology results of stiffness distribution. Back in 2017, the design team already implemented this concept into an experimental project of Cloud Pavilion in Shanghai, China, and the 3D-printed spatial structure was partitioned into five zones represent different level of structure stiffness and filled with five kinds of unit toolpath accordingly. Through further research, an upgrade version, the project of Cloud Pavilion 2.0 is underway and will be completed in January 2019. A detailed description on innovative printing toolpath design in this project is conducted in this paper and explains how the toolpath shape effects its overall structural stiffness. This paper contributes knowledge on integrated design in the field of robotic 3D-printing and provides an alternative approach on robotic toolpath design combines with the optimized topological results.
keywords 3D-Printing; Robotic Fabrication; Structural Optimization; Discrete System; Toolpath Design
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2019_447
id caadria2019_447
authors Cheng, Chi-Li and Hou, June-Hao
year 2019
title Robotic Glass Crafting by Dip Forming
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 193-202
doi https://doi.org/10.52842/conf.caadria.2019.1.193
summary This research is to develop a robotic glass crafting dip-forming process by dip forming. Instead of employing molds, we utilize repetitive dip coating and gravity to shape the glass. In addition, its morphogenesis process is similar to the certain growth mechanisms in nature, such as geotropism and branching. During the forming process, melted glass is accumulated layer by layer gradually until the target geometry is completed. The process takes advantage of the precision of the industrial robotic arm and the viscosity property of the material. This process requires the custom-made tool to operate in high temperature and controlling the timing of heating and annealing to eliminate Z artifacts caused by layered deposition, achieving the crystal-clear effect of the glass craft without the post cure process after printing. In addition, the robotic arm provides a higher degree of freedom for forming. This research demonstrates glassworks in the organic form including variations in thickness and branching to test the proposed method.
keywords robotic arm; glass craft; Digital Fabrication; additive manufacturing; dipping forming
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaadesigradi2019_288
id ecaadesigradi2019_288
authors da Silva Lopes Vieira, Thomaz and Schulz, Jens-Uwe
year 2019
title Design Method Aided by MABS and Cloud Computing - Framework integrating: construction techniques, materials, and fabrication
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 195-205
doi https://doi.org/10.52842/conf.ecaade.2019.1.195
summary This paper presents a novel method based in Multi-Agent Based Simulation (MABS), Cloud Computing, and the combination of big data analytics and IoT. The method performs in two layers: it assists designers with information coming from previews of projects and surroundings, and, it automates some procedures according to parameters and interactions between agents. The first part of this paper briefly describes the state of the art and challenges of the real estate market. The second chapter highlight gaps and future challenges in design practice, and in the third chapter, it introduces the method. To conclude, in the last part, this concept is analyzed through a pilot project under development in our institution.
keywords Computational design; Multi-Agent-Based system; Robotic fabrication; Cyber-Physical Systems; Big Data; Internet of Things
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id caadria2019_453
id caadria2019_453
authors Dai, Rushi, Kerber, Ethan and Brell-Cokcan, Sigrid
year 2019
title Robot Assisted Assembly of Steel Structures - Optimization and Automation of Plasma Cutting and Assembly
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 163-172
doi https://doi.org/10.52842/conf.caadria.2019.1.163
summary The digitization of the construction industry integrates innovations in design and fabrication to achieve increased efficiency and performance. This paper details the development of a process for optimizing and automating the design and production of branching steel structures including the use of robotic construction, evolutionary optimization of path planning and the creation of an automatic height control robotic end effector.
keywords digitalization; optimization; automation; steel structures; plasma cutting
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_376
id ecaadesigradi2019_376
authors Das, Avishek, Worre Foged, Isak, Jensen, Mads Brath and Hansson, Michael Natapon
year 2019
title Collaborative Robotic Masonry and Early Stage Fatigue Prediction
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 171-178
doi https://doi.org/10.52842/conf.ecaade.2019.3.171
summary The nature of craft has often been dictated by the type and nature of the tool. The authors intend to establish a new relationship between a mechanically articulated tool and a human through the development a symbiotic relationship between them. This study attempts to develop and deploy a framework for collaborative robotic masonry involving one mason and one industrial robotic arm. This study aims to study the harmful posture and muscular stress developed during the construction work and involve a robotic arm to aid the mason to reduce the cumulative damage to one's body. Through utilization of RGBD sensors and surface electromyography procedure the study develops a framework that distributes the task between the mason and robot. The kinematics and electromyography detects the fatigue and harmful postures and activates the robot to collaborate with the mason in the process.
keywords interactive robotic fabrication; human robot collaboration; fatigue and pose estimation; masonry
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_521155 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002