CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 612

_id ecaadesigradi2019_568
id ecaadesigradi2019_568
authors Rubinowicz, Paweł
year 2019
title Protection of the waterfront panoramas based on computational 3D-analysis
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 325-332
doi https://doi.org/10.52842/conf.ecaade.2019.2.325
summary The article presents the application of the Visual Protection Surface (VPS) method in protecting waterfront panoramas. The digital analysis of visual impact, which is most frequently used in urban planning, assesses the impact of new investment on the cityscape. The study presented in the article is based on a reverse approach -determining the maximum height of buildings so new facilities do not distort protected vistas in a city, vistas which are crucial for the preservation of the city's cultural identity and spatial identification. The assessment of the application is based on a case study of Gdańsk, Poland, where a 3D LiDAR model was used. The study involved the use of software developed by the author (C++). It also analyzed VPS input parameters. Conclusions can be used to assess and verify analysis findings with different software (GIS/CAD). The article shows the potential application of the VPS method in urban planning.
keywords computational urban analyses; urban landscape protection; strategic views; tall buildings; 3D city models; VPS method
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_100
id ecaadesigradi2019_100
authors Henriques, Gonçalo Castro, Bueno, Ernesto, Lenz, Daniel and Sardenberg, Victor
year 2019
title Generative Systems:Intertwining Physical, Digital and Biological Processes, a case study
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 25-34
doi https://doi.org/10.52842/conf.ecaade.2019.1.025
summary The fourth Industrial Revolution is characterised by the computational fusion of physical, digital and biological systems. Increasing information in terms of size, speed and scope exponentially. This fusion requires improved, if not new, tools and methods to deal with complexity and information processing. By opening Generative Systems to interact with the context, we believe that they can develop solutions that are more adequate for our time. This research began with a literature review about generative systems and their application to solve problems. We then selected the tools, Cellular Automata, L-Systems, Genetic Algorithms and Shape Grammar, and thought about how to translate these original mathematical tools to specific design situations. We tested the application of these tools and methods in a workshop, implementing recursive loops to open these techniques to interference. Analysing the empirical results made us revise our design thinking, relying on the study of complexity to understand how these techniques can be more context-aware, so we can make design evolve. Finally, we present a comparative framework analyses that interlaces techniques and methods, so in the future we can merge physical, digital and biological information.
keywords generative systems; design thinking; complexity; context interaction; recursion
series eCAADeSIGraDi
email
last changed 2022/06/07 07:49

_id ecaadesigradi2019_305
id ecaadesigradi2019_305
authors Kabošová, Lenka, Worre Foged, Isak, Kme, Stanislav and Katunskę, Dušan
year 2019
title Building envelope adapting from and to the wind flow
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 131-138
doi https://doi.org/10.52842/conf.ecaade.2019.2.131
summary The paper presents research for wind-responsive architecture. The main objective is the digital design methodology incorporating the dynamic, fluctuating wind flow into the shape-generating process of architectural envelopes. These computational studies are advanced and informed through physical prototyping models, allowing a hybrid method approach. The negative impacts of the wind at the building scale (wind loads), as well as urban scale (wind discomfort), can be avoided and even transformed into an advantage by incorporating the local wind conditions to the process of creating architectural envelopes with adaptive structures. The paper proposes a tensegrity-membrane system which, when exposed to the dynamic wind flow, enables a local passive shape adaptation. Thus, the action of the wind pressure transforms the shape of the building envelope to an unsmoothed, dimpled surface. As a consequence, the aerodynamic properties of the building are modified, which contributes to reducing wind suction and drag force. Moreover, the slight shape change materializes and articulates the immaterial wind phenomena. For a better understanding of the dynamic geometric properties, one unit of the wind-responsive envelope is tested through simulations, and through physical prototypes. The idea and material-geometric studies are subsequently applied in a specific case study, including a designed building envelope in an industrial silo cluster in Stockholm.
keywords adaptive envelope; tensegrity; wind flow; digital designing; shape-change
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id ecaadesigradi2019_408
id ecaadesigradi2019_408
authors Lohse, Theresa and Werner, Liss C.
year 2019
title Semi-flexible Additive Manufacturing Materials for Modularization Purposes - A modular assembly proposal for a foam edge-based spatial framework
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 463-470
doi https://doi.org/10.52842/conf.ecaade.2019.1.463
summary This paper introduces a series of design and fabrication tests directed towards the use of bendable 3D printing materials in order to simplify a foam bubble-based geometry as a frame structure for modular assembly. The aspiration to reference a spittlebug's bubble cocoon in nature for a light installation in the urban context was integrated into a computational workflow conditioning light-weight, material-, and cost savings along with assembly-simplicity. Firstly, before elaborating on the project motivation and background in foam structures and applications of 3D-printed thermoplastic polyurethane (TPU) material, this paper describes the physical nature of bubble foams in its relevant aspects. Subsequently this is implemented into the parametric design process for an optimized foam structure with Grasshopper clarifying the need for flexible materials to enhance modular feasibility. Following, the additive manufacturing iterations of the digitally designed node components with TPU are presented and evaluated. Finally, after the test assembly of both components is depicted, this paper assesses the divergence between natural foams and the case study structure with respect to self-organizing behavior.
keywords digital fabrication; 3D Printing; TPU flexibility ; modularity; optimization
series eCAADeSIGraDi
email
last changed 2022/06/07 07:59

_id cf2019_043
id cf2019_043
authors Steenblik, Ralph and Will Wang
year 2019
title Bespoke Tools as Solutions for Contemporary Problems
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 367-377
summary This paper explores the process and importance of designing and implementing bespoke toolkit solutions within the architectural design discipline. Along with the need for bespoke design solutions comes the need for fluency in architectural principles, digital tool facility, and computational development skill sets (the combination are, today, are still an uncommon skill set). This skill set combination, quite possibly, will become increasingly necessary for design teams to incorporate. This paper argues, through a series of case study projects produced by an internal platform; that the way forward for the architectural design discipline is through bespoke tool-sets geared toward meeting the needs of architectural designers. Design teams are pursuing increasing levels of sophistication and intelligent solutions that meet the demands of problems faced in the building industry today.
keywords BIM; Data in design; Custom workflow; Facade, Paneling; Design computation
series CAAD Futures
email
last changed 2019/07/29 14:15

_id caadria2019_199
id caadria2019_199
authors Wang, Will and Steenblik, Ralph Spencer
year 2019
title Bespoke Tools Providing Solutions for Contemporary Problems - Novel BIM practice for architects
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 111-120
doi https://doi.org/10.52842/conf.caadria.2019.2.111
summary This paper examines the process and the importance of designing and implementing intelligent, informed and bespoke information modeling solutions within the architectural design discipline. Along with the need for such tools comes the need for fluency in architectural principles, digital tool facility, and computational development skill sets (the combination are, still uncommon). This skill set combination are becoming more and more necessary for design teams to incorporate. This paper argues (through a series of case study projects produced by an internal platform) a way forward for the architectural design discipline through intelligent, informed and bespoke tool sets tailored to the needs of architectural designers.
keywords BIM; Data in design; Custom workflow; Facade paneling; Design computation
series CAADRIA
email
last changed 2022/06/07 07:58

_id ijac201917301
id ijac201917301
authors Webb, Nicholas and Alexandrina Buchanan
year 2019
title Digitally aided analysis of medieval vaults in an English cathedral, using generative design tools
source International Journal of Architectural Computing vol. 17 - no. 3, 241-259
summary Medieval masons relied on a ruler and compass to generate designs of increasing complexity in both two and three dimensions. They understood that arcs and lines could be used for proportioning, working with halves, thirds, fifths and so on, rather than specific dimensions. Geometric rules enabled them to create vaulted bays, high up in church and cathedral interiors. In recent years, the influence of digital generative design tools can be seen in our built environment. We will explore generative design to reverse engineer and better understand the design and computational processes that the medieval masons might have employed at our case study site of Exeter Cathedral, England. Our focus is on a run of bays along the nave, which at first appear consistent in their design, yet in reality are subtly different. We will investigate the capacity for changes in the generative process while preserving the overall medieval design concept.
keywords Reverse engineering, generative design, algorithms-aided design, laser scanning, Exeter Cathedral, medieval design, pre-digital computing
series journal
email
last changed 2020/11/02 13:34

_id caadria2019_640
id caadria2019_640
authors Zhang, Ruocheng, Tong, Hanshuang, Huang, Weixin and Zhang, Runzhou
year 2019
title A Generative Design Method for the Functional Layout of Town Planning based on Multi-Agent System
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 231-240
doi https://doi.org/10.52842/conf.caadria.2019.2.231
summary In recent years, with the development of artificial intelligence and digital architecture, more architects begin to wonder how to generate urban planning and urban design through computational method. For the purpose of generating urban planning digitally using computational algorithms, we design a series of algorithms to develop a system that evaluates initial features of the site such as the strength of sunlight, water, landscape. These parameters related to the function zoning of the town were determined based on the data extracted from case studies. These data were integrated into a Markov chain mathematical model for the sake of analyzing the function of grid points. Finally, an algorithm of a multi-agent system was used to optimize the function that could evaluate the grade of each raster point of the town, which could be used to decide the function of a specific region.
keywords Generative design, Town planning,Multi-agent system, Data analysis
series CAADRIA
email
last changed 2022/06/07 07:57

_id cf2019_048
id cf2019_048
authors Argota Sanchez-Vaquerizo, Javier and Daniel Cardoso Llach
year 2019
title The Social Life of Small Urban Spaces 2.0 Three Experiments in Computational Urban Studies
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 430
summary This paper introduces a novel framework for urban analysis that leverages computational techniques, along with established urban research methods, to study how people use urban public space. Through three case studies in different urban locations in Europe and the US, it demonstrates how recent machine learning and computer vision techniques may assist us in producing unprecedently detailed portraits of the relative influence of urban and environmental variables on people’s use of public space. The paper further discusses the potential of this framework to enable empirically-enriched forms of urban and social analysis with applications in urban planning, design, research, and policy.
keywords Data Analytics, Urban Design, Machine Learning, Artificial Intelligence, Big Data, Space Syntax
series CAAD Futures
email
last changed 2019/07/29 14:18

_id ecaadesigradi2019_195
id ecaadesigradi2019_195
authors Knecht, Katja, Stefanescu, Dimitrie A. and Koenig, Reinhard
year 2019
title Citizen Engagement through Design Space Exploration - Integrating citizen knowledge and expert design in computational urban planning
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 785-794
doi https://doi.org/10.52842/conf.ecaade.2019.1.785
summary A common understanding exists that citizens should become more involved in the design, planning, and governance of the city. Due to a lack of common platforms and difficulties in the meaningful integration of the participatory input, however, the tools and methods currently employed in citizen engagement are often ill connected to the design and governance tools and processes used by experts. In this paper we describe a Grasshopper and Rhino based approach, which allows designers to share a subset of the design space formed by parametric design variants with citizens via the online interface Beta.Speckle. In a user study we evaluated the usability of the tool as well as studied the design choices of participants, which were found to be influenced by preferences for visual order and underlying economic, social, and environmental values. For the future design of participatory exercises, it was concluded that indicators relating to citizens' values and preferences will allow for a more effective exploration of the design space and increase the meaningfulness of results.
keywords design space exploration; citizen engagement; parametric urban design; computational urban planning; space matrix
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

_id ecaadesigradi2019_061
id ecaadesigradi2019_061
authors Alkadri, Miktha Farid, De Luca, Francesco, Turrin, Michela and Sariyildiz, Sevil
year 2019
title Making use of Point Cloud for Generating Subtractive Solar Envelopes
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 633-640
doi https://doi.org/10.52842/conf.ecaade.2019.1.633
summary As a contextual and passive design strategy, solar envelopes play a great role in determining building mass based on desirable sun access during the predefined period. With the rapid evolution of digital tools, the design method of solar envelopes varies in different computational platforms. However, current approaches still lack in covering the detailed complex geometry and relevant information of the surrounding context. This, consequently, affects missing information during contextual analysis and simulation of solar envelopes. This study proposes a subtractive method of solar envelopes by considering the geometrical attribute contained in the point cloud of TLS (terrestrial laser scanner) dataset. Integration of point cloud into the workflow of solar envelopes not only increases the robustness of final geometry of existing solar envelopes but also enhances awareness of architects during contextual analysis due to consideration of surface properties of the existing environment.
keywords point cloud data; solar envelopes; subtractive method; solar access
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id caadria2019_388
id caadria2019_388
authors Beattie, Hamish, Brown, Daniel and Kindon, Sara
year 2019
title Functional Fiction to Collective Action - Values-Based Participatory Urban Design Gaming
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 737-746
doi https://doi.org/10.52842/conf.caadria.2019.1.737
summary This paper discusses the methodology and results of the Maslow's Palace workshops project, which engages with current debates surrounding the democratisation of digital urban design technology and stakeholder decision making, through the implementation of a speculative oriented approach to serious gaming. The research explores how serious games might be used to help marginalised communities consider past, future and present community experiences, reconcile dissimilar assumptions, generate social capital building and design responses and prime participants for further long term design engagement processes. Empirical material for this research was gathered from a range of case study workshops prepared with three landfill-based communities and external partners throughout 2017. Results show the approach helped participants develop shared norms, values and understandings of sensitive topics and develop ideas for future action through "collective tinkering".
keywords Participatory design; urban design; social capital; serious games; slum upgrading
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2024_222
id ecaade2024_222
authors Bindreiter, Stefan; Sisman, Yosun; Forster, Julia
year 2024
title Visualise Energy Saving Potentials in Settlement Development: By linking transport and energy simulation models for municipal planning
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 2, pp. 79–88
doi https://doi.org/10.52842/conf.ecaade.2024.2.079
summary To achieve Sustainable Development Goals, in addition to the switch to sustainable energy sources and energy-efficient buildings, transport offers a major lever for reducing energy consumption and greenhouse gases. The increasing demand for emission-free mobility (e.g. through electromobility) but also heat pumps has a direct impact on the electricity consumption of buildings and settlements. It is still difficult to simulate the effects and interactions of different measures as sector coupling concepts require comprehensible tools for ex ante evaluation of planning measures at the community level and the linking of domain-specific models (energy, transport). Using the municipality of Bruck an der Leitha (Austria) as an example, a digital twin based on an open data model (Bednar et al., 2020) is created for the development of methods, which can be used to simulate measures to improve the settlement structure within the municipality. Forecast models for mobility (Schmaus, 2019; Ritz, 2019) and the building stock are developed or applied and linked via the open data model to be able to run through development scenarios and variants. The forecasting and visualisation options created in the project form the basis for the ex-ante evaluation of measures and policies on the way to a Positive-Energy-District. By identifying and collecting missing data, data gaps are filled for the simulation of precise models in the specific study area. A digital, interactive 3D model is created to examine the forecast results and the different scenarios.
keywords visualisation, decision support, sector coupling, holistic spatial energy models for municipal planning, (energy) saving potentials in settlement development
series eCAADe
email
last changed 2024/11/17 22:05

_id acadia19_80
id acadia19_80
authors Bouayad, Ghali
year 2019
title Three-Dimensional Translation of Japanese Katagami Patterns
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 80-89
doi https://doi.org/10.52842/conf.acadia.2019.080
summary The aim of this ongoing doctoral research is to rely on the incommensurable potential held in Japanese Katagami patterns in order to translate them into three-dimensional speculative architectures and architectural components that afford architects other design approaches differentiated from systemic and typical space configurations. While many designers are diving in the generative and computational design world by developing new personal methods, we would like to recycle the existing production of Katagami patterns into three-dimensional architectural elements that will perpetuate work of Katagami artists beyond time, borders, and scope of applicability. Given that the current digital shift has given us more computation power, we are broadening Katagami with new fabrication strategies and new methods to explore, produce, and stock geometry and data. In this paper, we rely on the Processing library IGeo (developed by Satoru Sugihara) to build bottom-up agent-based algorithms to study the architectural potential of Katagami patterns as a top-down clean and simple initial topology that avoids imitation of standard templates applied during the process of configuring and planning architectural space.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id caadria2021_089
id caadria2021_089
authors Cristie, Verina, Ibrahim, Nazim and Joyce, Sam Conrad
year 2021
title Capturing and Evaluating Parametric Design Exploration in a Collaborative Environment - A study case of versioning for parametric design
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 131-140
doi https://doi.org/10.52842/conf.caadria.2021.2.131
summary Although parametric modelling and digital design tools have become ubiquitous in digital design, there is a limited understanding of how designers apply them in their design processes (Yu et al., 2014). This paper looks at the use of GHShot versioning tool developed by the authors (Cristie & Joyce, 2018; 2019) used to capture and track changes and progression of parametric models to understand early-stage design exploration and collaboration empirically. We introduce both development history graph-based metrics (macro-process) and parametric model and geometry change metric (micro-process) as frameworks to explore and understand the captured progression data. These metrics, applied to data collected from three cohorts of classroom collaborative design exercises, exhibited students' distinct modification patterns such as major and complex creation processes or minor parameter explorations. Finally, with the metrics' applicability as an objective language to describe the (collaborative) design process, we recommend using versioning for more data-driven insight into parametric design exploration processes.
keywords Design exploration; parametric design; history recording; version control; collaborative design
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2023_138
id ecaade2023_138
authors Crolla, Kristof and Wong, Nichol
year 2023
title Catenary Wooden Roof Structures: Precedent knowledge for future algorithmic design and construction optimisation
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 611–620
doi https://doi.org/10.52842/conf.ecaade.2023.1.611
summary The timber industry is expanding, including construction wood product applications such as glue-laminated wood products (R. Sikkema et al., 2023). To boost further utilisation of engineered wood products in architecture, further development and optimisation of related tectonic systems is required. Integration of digital design technologies in this endeavour presents opportunities for a more performative and spatially diverse architecture production, even in construction contexts typified by limited means and/or resources. This paper reports on historic precedent case study research that informs an ongoing larger study focussing on novel algorithmic methods for the design and production of lightweight, large-span, catenary glulam roof structures. Given their structural operation in full tension, catenary-based roof structures substantially reduce material needs when compared with those relying on straight beams (Wong and Crolla, 2019). Yet, the manufacture of their non-standard geometries typically requires costly bespoke hardware setups, having resulted in recent projects trending away from the more spatially engaging geometric experiments of the second half of the 20th century. The study hypothesis that the evolutionary design optimisation of this tectonic system has the potential to re-open and expand its practically available design solution space. This paper covers the review of a range of built projects employing catenary glulam roof system, starting from seminal historic precedents like the Festival Hall for the Swiss National Exhibition EXPO 1964 (A. Lozeron, Swiss, 1964) and the Wilkhahn Pavilions (Frei Otto, Germany, 1987), to contemporary examples, including the Grandview Heights Aquatic Centre (HCMA Architecture + Design, Canada, 2016). It analysis their structural concept, geometric and spatial complexity, fabrication and assembly protocols, applied construction detailing solutions, and more, with as aim to identify methods, tools, techniques, and construction details that can be taken forward in future research aimed at minimising construction complexity. Findings from this precedent study form the basis for the evolutionary-algorithmic design and construction method development that is part of the larger study. By expanding the tectonic system’s practically applicable architecture design solution space and facilitating architects’ access to a low-tech producible, spatially versatile, lightweight, eco-friendly, wooden roof structure typology, this study contributes to environmentally sustainable building.
keywords Precedent Studies, Light-weight architecture, Timber shell, Catenary, Algorithmic Optimisation, Glue-laminated timber
series eCAADe
email
last changed 2023/12/10 10:49

_id ecaadesigradi2019_250
id ecaadesigradi2019_250
authors Czyńska, Klara
year 2019
title Visual Impact Analysis of Large Urban Investments on the Cityscape
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 297-304
doi https://doi.org/10.52842/conf.ecaade.2019.3.297
summary The article presents the assessment method for large (horizontally spread) urban investment and its visual impact on the cityscape using digital analyses. The visual impact assessment is often used in relation to facilities which dominate in the cityscape, mainly tall buildings. Various studies, however, examine the impact of wide but relatively low-rising buildings and their impact on the cityscape. The article presents a methodology for the assessment of the visual impact and a case study for a building facility comprising several tightly developed and medium height blocks of buildings in a city center of a significant historical value in Gdańsk, Poland. The research has been based on the Visual Impact Size method (VIS) and a city model consisting of a regular cloud of points (Digital Surface Model). The simulation has been developed using a dedicated C++ software (developed by author). The study aimed at assessing the following: a) to what degree such an urban investment can influence the cityscape; b) how the impact can be analyzed using digital techniques, and c) what input parameters of the analysis are crucial for satisfactory accuracy of its results.
keywords digital cityscape analysis; urban skyline; large urban investments; visual impact; VIS method
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_405
id ecaadesigradi2019_405
authors da Cunha Teixeira, Luísa and Cury Paraizo, Rodrigo
year 2019
title Caronae - ridesharing and first steps into commuting opportunitie of academic exchange
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 805-816
doi https://doi.org/10.52842/conf.ecaade.2019.1.805
summary Location-based mobile applications have been a rising theme for academics in the field of urbanism and in urban and transportation, because of the potential of transformation they might bring to the urban landscape (De Souza e Silva, 2013). One of the possibilities we study here is to observe social encounters fostered by commuting rides. In this paper, we try to examine the practice from the broad perspective of estimating the environmental benefits, in a context where digital information technology is wielded to address problems old and new (Townsend, 2014). This paper aims to analyze the potential of transformations that new ICTs bring to urban mobility, using as case study the official ridesharing system of the Federal University of Rio de Janeiro, the Carona? project. The system was developed focusing on the reduction of the number of motorized trips to the University, as well as the amount of CO2 generated by them. Here we analyze the dynamics of ridesharing, using the system data, and also try to observe the role it may play towards the promotion of integration in the UFRJ community.
keywords mobile apps; urban mobility; ridesharing; caronae ufrj
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_398
id ecaadesigradi2019_398
authors Fink, Theresa and Koenig, Reinhard
year 2019
title Integrated Parametric Urban Design in Grasshopper / Rhinoceros 3D - Demonstrated on a Master Plan in Vienna
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 313-322
doi https://doi.org/10.52842/conf.ecaade.2019.3.313
summary By 2050 an estimated 70 percent of the world's population will live in megacities with more than 10 million citizens (Renner 2018). This growth calls for new target-oriented, interdisciplinary methods in urban planning and design in cities to meet sustainable development targets. In response, this paper exemplifies an integrated urban design process on a master plan project in Vienna. The objective is to investigate the potential towards a holistic, digital, urban design process aimed at the development of a practical methodology for future designs. The presented urban design process includes analyses and simulation tools within Rhinoceros 3D and its plug-in Grasshopper as quality-enhancing mediums that facilitate the creative approaches in the course of the project. The increase in efficiency and variety of design variants shows a promising future for the practical suitability of this approach.
keywords urban design; parametric modeling; urban simulation; design evaluation; environmental performance
series eCAADeSIGraDi
email
last changed 2022/06/07 07:50

_id acadia19_40
id acadia19_40
authors Garcia del Castillo y López, Jose Luis
year 2019
title Robot Ex Machina
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 40-49
doi https://doi.org/10.52842/conf.acadia.2019.040
summary Industrial robotic arms are increasingly present in digital fabrication workflows due to their robustness, degrees of freedom, and potentially large scale. However, the range of possibilities they provide is limited by their typical software control paradigms, specifically offline programming. This model requires all the robotic instructions to be pre-defined before execution, a possibility only affordable in highly predictable environments. But in the context of architecture, design and art, it can hardly accommodate more complex forms of control, such as responding to material feedback, adapting to changing conditions on a construction site, or on-the-fly decision-making. We present Robot Ex Machina, an open-source computational framework of software tools for real-time robot programming and control. The contribution of this framework is a paradigm shift in robot programming models, systematically providing a platform to enable real-time interaction and control of mechanical actuators. Furthermore, it fosters programming styles that are reactive to, rather than prescriptive about, the state of the robot. We argue that this model is, compared to traditional offline programming, beneficial for creative individuals, as its concurrent nature and immediate feedback provide a deeper and richer set of possibilities, facilitates experimentation, flow of thought, and creative inquiry. In this paper, we introduce the framework, and discuss the unifying model around which all its tools are designed. Three case studies are presented, showcasing how the framework provides richer interaction models and novel outcomes in digital making. We conclude by discussing current limitations of the model and future work.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_425278 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002