CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 359

_id acadia20_382
id acadia20_382
authors Hosmer, Tyson; Tigas, Panagiotis; Reeves, David; He, Ziming
year 2020
title Spatial Assembly with Self-Play Reinforcement Learning
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 382-393.
doi https://doi.org/10.52842/conf.acadia.2020.1.382
summary We present a framework to generate intelligent spatial assemblies from sets of digitally encoded spatial parts designed by the architect with embedded principles of prefabrication, assembly awareness, and reconfigurability. The methodology includes a bespoke constraint-solving algorithm for autonomously assembling 3D geometries into larger spatial compositions for the built environment. A series of graph-based analysis methods are applied to each assembly to extract performance metrics related to architectural space-making goals, including structural stability, material density, spatial segmentation, connectivity, and spatial distribution. Together with the constraint-based assembly algorithm and analysis methods, we have integrated a novel application of deep reinforcement (RL) learning for training the models to improve at matching the multiperformance goals established by the user through self-play. RL is applied to improve the selection and sequencing of parts while considering local and global objectives. The user’s design intent is embedded through the design of partial units of 3D space with embedded fabrication principles and their relational constraints over how they connect to each other and the quantifiable goals to drive the distribution of effective features. The methodology has been developed over three years through three case study projects called ArchiGo (2017–2018), NoMAS (2018–2019), and IRSILA (2019-2020). Each demonstrates the potential for buildings with reconfigurable and adaptive life cycles.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2019_632
id caadria2019_632
authors Raspall, Felix, Banon, Carlos and Tay, Jenn Chong
year 2019
title AirTable - Stainless steel printing for functional space frames
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 113-122
doi https://doi.org/10.52842/conf.caadria.2019.1.113
summary In architecture, the use of Additive Manufacturing (AM) technologies has been typically undermined by the long production time, elevated cost to manufacture parts and the low mechanical properties of 3D printed components. As AM becomes faster cheaper and stronger, opportunities for architectures that make creative use of AM to produce functional architectural pieces are emerging. In this paper, we propose and discuss the application of metal AM in complex space frames and the theoretical and practical implications. A functional lightweight metal table by the authors support our hypothesis that AM has a clear application in architecture and furniture design, and that space frames constitutes a promising structural typology. Specifically, we investigate how AM using metal as a material can be used in the application of fabrication of complex space frame structure components and connection details. The paper presents background research and our contribution to the digital design tools, the manufacturing and assembly processes, and the analysis of the performances of a parametrically designed and digitally fabricated large meeting table. Insights from this paper are deployed in an architectural scale project, AIRMesh, a metal 3D-printed pavilion set in the greenery of Gardens by the Bay, Singapore.
keywords Metal Additive Manufacturing; Space Frame; 3D Printing; Furniture Design
series CAADRIA
email
last changed 2022/06/07 08:00

_id caadria2019_666
id caadria2019_666
authors Yang, Lijing, Cheng, Bingyu, Deng, Nachuan, Zhou, Zhi and Huang, Weixin
year 2019
title The Influence of Supermarket Spatial Layout on Shopping Behavior and Product Sales - An application of the Ultra-wideband Indoor Positioning System
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 301-310
doi https://doi.org/10.52842/conf.caadria.2019.1.301
summary Companies and researchers had explored many methods to record people's shopping behavior, in order to explore a more favorable spatial layout. However, few research has been done from the architectural perspective using fine data. This research aims to set forth a clear relationship between the layout of the shelves and shopping behavior, as well as product sales, thus achieving a balance between customers shopping experience improvement and supermarket sales promotion. To achieve the goal, we designed experiments to track the shopping trajectory of many shoppers and set up questionnaires to get their personal and shopping information. Regarding the equipment for tracking the trajectory, we adopted the Ultra-Wideband indoor positioning system, which provides high positioning accuracy and stable performance. Based on the location data, we found spaces that appealed to shoppers and spaces where shoppers stayed longer. In addition, by comparing with the products they ultimately purchased, we found that buying behavior are highly related with the shoppers' movements in the supermarket. Based on the existing analysis, we assume that the spatial layout of the supermarket will affect people's impulse purchasing behavior. The UWB approach turns out to be feasible and can be applied to other supermarket behavior studies.
keywords Shopping behavior; Ultra-Wideband; Supermarket layout; Trajectory; Quantitative Analysis
series CAADRIA
email
last changed 2022/06/07 07:57

_id ecaadesigradi2019_407
id ecaadesigradi2019_407
authors Capone, Mara, Lanzara, Emanuela, Marsillo, Laura and Nome Silva, Carlos Alejandro
year 2019
title Responsive complex surfaces manufacturing using origami
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 715-724
doi https://doi.org/10.52842/conf.ecaade.2019.2.715
summary Contemporary architecture is considered a dynamic system, capable of adapting to different needs, from environmental to functional ones. The term 'Adaptable Architecture' describes an architecture from which specific components can be changed in relation to external stimuli. This change could be executed by the building system itself, transformed manually or it could be any other ability to be transformed by external forces (Leliveld et al.2017). Adaptability concept is therefore linked to motion and to recent advances in kinetic architecture. In our research we are studying the rules that we can use to design a kinetic architecture using origami. Parametric design allows us to digitally simulate the movement of origami structures, we are testing algorithmic modeling to generate doubly curvature surfaces starting from a designed surface and not from the process. Our main goal is to study the relationship between geometry, motion and shape. We are interested, in particular, in complex surface manufacture using origami technique to design a kinetic and reactive ceiling.
keywords Origami; complex surface manufacture; responsive architecture; Applied Geometry
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id cf2019_006
id cf2019_006
authors Di Mascio, Danilo
year 2019
title Visualizing Mackintosh’s alternative design proposal for Scotland Street School
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 25
summary This paper describes the process of creation of a set of visualizations (elevations, perspective views and a short animation) of C.R. Mackintosh’s original but unrealized first design proposal for Scotland Street School (dated January 1904). Moreover, the piece of writing reflects upon some key aspects of the project such as how architectural historians were involved and how ambiguities due to the discrepancies between the drawings and missing details were resolved by studying multiple drawings and transferring clues from other Mackintosh’s built works. The contributions of this research are important for several reasons: it proposes a methodology that can be applied to similar research projects; it explains the educational value of the development work, which can be defined as digitally handcrafted, behind the visualisations; it contributes to studies of buildings designed by C.R. Mackintosh by using digital technologies that open up new insights to aspects still overlooked of his architectural production.
keywords digital handcrafter, digital heritage, 3D digital reconstruction, visualisation, Charles Rennie Mackintosh
series CAAD Futures
email
last changed 2019/07/29 14:08

_id caadria2019_648
id caadria2019_648
authors Schumann, Kyle and Johns, Ryan Luke
year 2019
title Airforming - Adaptive Robotic Molding of Freeform Surfaces through Incremental Heat and Variable Pressure
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 33-42
doi https://doi.org/10.52842/conf.caadria.2019.1.033
summary Advances in computational modelling and digital fabrication have created both the need and ability for novel strategies of bringing digitally modeled doubly curved surfaces into reality. In this paper, we introduce airforming as a non-contact and formwork-free method for fabricating digitally designed surfaces through the iterative robotic application of heat and air pressure, coupled with sensory feedback. The process lies somewhere between incremental metal fabrication and traditional vacuum forming of plastics. Airforming does not add or subtract material or use any mold or formwork materials that would typically be discarded as waste. Instead, airforming shapes a plastic sheet through the controlled spatial application of heat and the control of pressure and vacuum within an airtight chamber beneath the material. Through our research, we develop and test a method for airforming through 3D scanning and point cloud analysis, evolutionary physics simulation solvers, and robotic-aided actuation and control of heating and pressure systems. Different variations and analysis and workflow methods are explored. We demonstrate and posit potential future applications for the airforming method.
keywords Robotic Production; Digital Fabrication; Incremental Forming; Thermoforming; Freeform Surface
series CAADRIA
email
last changed 2022/06/07 07:56

_id ijac201917301
id ijac201917301
authors Webb, Nicholas and Alexandrina Buchanan
year 2019
title Digitally aided analysis of medieval vaults in an English cathedral, using generative design tools
source International Journal of Architectural Computing vol. 17 - no. 3, 241-259
summary Medieval masons relied on a ruler and compass to generate designs of increasing complexity in both two and three dimensions. They understood that arcs and lines could be used for proportioning, working with halves, thirds, fifths and so on, rather than specific dimensions. Geometric rules enabled them to create vaulted bays, high up in church and cathedral interiors. In recent years, the influence of digital generative design tools can be seen in our built environment. We will explore generative design to reverse engineer and better understand the design and computational processes that the medieval masons might have employed at our case study site of Exeter Cathedral, England. Our focus is on a run of bays along the nave, which at first appear consistent in their design, yet in reality are subtly different. We will investigate the capacity for changes in the generative process while preserving the overall medieval design concept.
keywords Reverse engineering, generative design, algorithms-aided design, laser scanning, Exeter Cathedral, medieval design, pre-digital computing
series journal
email
last changed 2020/11/02 13:34

_id caadria2019_640
id caadria2019_640
authors Zhang, Ruocheng, Tong, Hanshuang, Huang, Weixin and Zhang, Runzhou
year 2019
title A Generative Design Method for the Functional Layout of Town Planning based on Multi-Agent System
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 231-240
doi https://doi.org/10.52842/conf.caadria.2019.2.231
summary In recent years, with the development of artificial intelligence and digital architecture, more architects begin to wonder how to generate urban planning and urban design through computational method. For the purpose of generating urban planning digitally using computational algorithms, we design a series of algorithms to develop a system that evaluates initial features of the site such as the strength of sunlight, water, landscape. These parameters related to the function zoning of the town were determined based on the data extracted from case studies. These data were integrated into a Markov chain mathematical model for the sake of analyzing the function of grid points. Finally, an algorithm of a multi-agent system was used to optimize the function that could evaluate the grade of each raster point of the town, which could be used to decide the function of a specific region.
keywords Generative design, Town planning,Multi-agent system, Data analysis
series CAADRIA
email
last changed 2022/06/07 07:57

_id caadria2019_602
id caadria2019_602
authors Freitas, José and Leitão, António
year 2019
title Back to Reality - Dendritic structures using current construction techniques
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 173-182
doi https://doi.org/10.52842/conf.caadria.2019.1.173
summary Architects throughout time have designed tree-inspired structures, not only to decorate their creations, but also to explore biomimicry to solve mechanical and structural problems. With the predominance of digital simulation tools, these dendritic-shaped structures are now more easily explored. However, these explorations tend to lack the rationalization required to make them applicable to current production means. In this paper, we take a step back and ensure the connection between the creation and the production of the designs generated with these new digital approaches. The present investigation combines design and analysis tools in search for tree-inspired structures that take advantage of the current techniques of building construction.
keywords Biomimicry; Dendritic structures; Algorithmic design; Performative architecture; Structural analysis
series CAADRIA
email
last changed 2022/06/07 07:50

_id ecaadesigradi2019_176
id ecaadesigradi2019_176
authors Giantini, Guilherme, Negris de Souza, Larissa, Turczyn, Daniel and Celani, Gabriela
year 2019
title Environmental Ceramics - Merging the digital and the physical in the design of a performance -based facade system
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 749-758
doi https://doi.org/10.52842/conf.ecaade.2019.2.749
summary Environmental comfort and space occupancy are essential considerations in architectural design process. Façade systems deeply impact both aspects but are usually standardized. However, performance-based facade systems tackle these issues through computational design to devise non-homogeneous elements. This work proposes a ceramic facade system designed according to a performance-based process grounded on environmental analysis and parametric design to allow adaptation and geometric variation according to specific building demands on environmental comfort and functionality. In this process, the Design Science Research method guided the exploration of both design and evaluation, bridging the gap between theory and practice. Positive facade environmental performance were found from digital and physical models assessment in terms of radiation, illuminance, dampness (with ventilation) and temperature. Computational processes minimized radiation inside the building while maximized illuminance. Their association influenced on operative temperature, which dropped according to local dampness and material absorption. Accordingly, this design process associates not only environmental comfort and functionality concepts but also adaptability, flexibility, mass customization, personal fabrication, additive manufacturing concepts, being an example architectural design changes in the 4th Industrial Revolution.
keywords sustainable design; facade system; computational design; environmental analysis; evolutionary algorithm
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

_id caadria2019_624
id caadria2019_624
authors Gupta, Sachin Sean, Jayashankar, Dhileep Kumar, Sanandiya, Naresh D, Fernandez, Javier G. and Tracy, Kenneth
year 2019
title Prototyping of Chitosan-Based Shape-Changing Structures
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 441-450
doi https://doi.org/10.52842/conf.caadria.2019.2.441
summary In the built environment, the typical means of achieving responsive changes in the physical features of a structure is through energy-intensive actuation mechanisms that contradict the intended goal of energy-efficient performance. Nature offers several alternative energy-free examples of achieving large-scale shape change through passive actuation mechanisms, such as the intrinsic response of water-absorbing (hygroscopic) materials to humidity fluctuations. We utilize this principle of passive actuation in the context of chitosan biopolymer, a material demonstrating a combination of mechanical strength and hygroscopic potential that enables it to serve for both load-bearing and actuation purposes. By inserting biocomposite films of chitosan as dynamic tensile members into a space truss, a structural system is constructed whose variable structural performance is manipulated and expressed as a large-scale, programmable, and fast-acting shape change. We present a method for rationalizing this responsive structural system as an assembly using a combination of materials engineering and digital design and fabrication. As a proof-of-concept, a two-meter-long fiber-reinforced cantilevering truss prototype was designed and fabricated. The truss transforms in minutes from one shape that shelters the interior from rain to another shape that acts as an air foil to increase ventilation.
keywords Passive Actuation; Chitosan; Structural Assembly; Digital Fabrication
series CAADRIA
email
last changed 2022/06/07 07:50

_id ecaadesigradi2019_402
id ecaadesigradi2019_402
authors Karali, Penelopi F., Grisiute, Ayda and Werner, Liss C.
year 2019
title Bio-Modules - Cyber-physical modular responsive variations for dark urban areas using bio-degradable materials
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 495-504
doi https://doi.org/10.52842/conf.ecaade.2019.2.495
summary This paper documents the design and fabrication process of modular responsive lighting installation. The design and research led to a modular and transformable urban lighting concept, combining unique material behaviour and cyber-physical system. The main goal was to investigate how material characteristics, composition and performance could be programmed in order to generate a range of modular components. Modular tiles and joints combination designed of sustainable materials - bioplastics and cork sheets - were created and used together with number of sensors and micro-controllers. Furthermore, the installation concept links technical and psychological aspects that potentially could be used for the benefits of city dwellers. Paper consists of two parts. First part is the introduction of a broader urban night lighting design context to which the project belongs. This includes covering existing social issues related to urban darkness, as well as the need to increase biodiversity within built environment, through introducing new materials. The second part of the paper describes the design and fabrication process, that employs the conclusions discovered in the first part through set of material experimentations, design project and the reflections on the results.
keywords modularity; material behavior; lighting installation; cyber-physical systems; perception
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id ecaadesigradi2019_613
id ecaadesigradi2019_613
authors Guedes, Ítalo and Andrade, Max
year 2019
title Automatic Rule-Based Checking for the Approval of Building Architectural Designs of Airport Passenger Terminals based on BIM
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 333-338
doi https://doi.org/10.52842/conf.ecaade.2019.2.333
summary In Brazil, the evaluation processes of building architectural designs of Airports Passenger Terminal (PT) are carried out manually. It depends on the architects' knowledge, leading to possible errors. On the other hand, the rule checking in BIM-modeled building projects opens up new horizons for this type of activity. Based on Code Checking concepts, this paper presents a method for automating rule checking for building code in building architectural design of PT. Following the aspects of Design Science Research, it is developed in two stages: Construction (theoretical foundation, creating rule checking for the PT, implementation of the rules in BIM softwares for code checking and validation) and Evaluation of artefact. This paper shows a series of problems resulting from the evaluation of PT using traditional methods. It can be concluded that the use of rules for regulatory code checking with BIM allows standardization in the evaluation of architectural design of PT.
keywords Code Checking; Passenger Terminal; Building Information Modeling; Rule checking
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

_id caadria2019_452
id caadria2019_452
authors Choi, Minkyu, Yi, Taeha, Kim, Meereh and Lee, Ji-Hyun
year 2019
title Land Price Prediction System Using Case-based Reasoning
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 767-774
doi https://doi.org/10.52842/conf.caadria.2019.1.767
summary Real estate price prediction is very complex process. Big data and machine learning technology have been introduced in many research areas, and they are also making such an attempt in the real estate market. Although real estate price forecasting studies is actively conducted, using support vector machine, machine learning algorithm, AHP method, and so on, validity and accuracy are still not reliable.In this research, we propose a Case-Based Reasoning system using regression analysis to allocate weight of attributes. This proposed system can support to predict the real estate price based on collecting public data and easily update the knowledge about real estate. Since the result shows error rate less than 30% through the experiment, this algorithm gives better performance than previous one. By this research, it is possible for help decision-makers to expect the real estate price of interested area.
keywords Artificial intelligence; Case-based reasoning; Land price prediction; Regression
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_296
id ecaadesigradi2019_296
authors Dounas, Theodoros, Lombardi, Davide and Jabi, Wassim
year 2019
title Towards Blockchains for architectural design - Consensus mechanisms for collaboration in BIM
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 267-274
doi https://doi.org/10.52842/conf.ecaade.2019.1.267
summary We present a Blockchain collaboration mechanism on optimisation problems between distributed participants who work with building information modelling tools. The blockchain mechanism is capable of executing smart contracts, acting as a reward mechanism of independent designers attempting to collaborate or compete on optimising a design performance problem. Earlier work has described the potential integration through different levels of Computer Aided Design and Blockchain. We present an expanded version of that integration and we showcase how a team can collaboratively and competitively work, using BIM tools, through the blockchain. The original contribution of the paper is the use of the design optimisation performance as a consensus mechanism for block writing in blockchains. To accomplish that we introduce mechanisms for BIM to Blockchain Integration but also describe a special category of blockchains for architectural design and the built environment. The paper concludes with an analysis of the relationship between trust and values as encapsulated in the blockchain and how these could affect the design collaboration.
keywords Blockchain; BIM; agent; collaboration; competition
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id caadria2019_398
id caadria2019_398
authors Hannouch, Adam
year 2019
title Acoustic Simulation and Conditioning in Vaulted Structures - Faceted Stereotomic Strategies for Multi-listener Spaces
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 403-412
doi https://doi.org/10.52842/conf.caadria.2019.1.403
summary This paper examines faceted tessellations in an acoustic vault ceiling typology for the enhancement of human speech comfort in multi-listener environments. Geometric modelling explores simulated results for various tessellation arrangements within the overall segmentation of a global ceiling geometry. Where pattern-based design for acoustic surfaces often overlooks the optimisation of vault typologies, the tests demonstrated in this research seek a trade-off between acoustic properties and faceted detailing. This involves the performance-based design of micro joint topologies and ruled-surface geometries, and a macro-analysis of the vaulted surface for acoustic studies embedded into this workflow, using Pachyderm software.
keywords Architectural Acoustics; Mutli-listener Environments; Simulation; Faceted Patterns; Vaulted Design
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2019_651
id caadria2019_651
authors Imani, Marzieh, Sayah, Iman, Vale, Brenda and Donn, Michael
year 2019
title An Innovative, Hierarchical Energy Performance Data Visualization for Facilitating Recognition of Thermal Issues
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 815-824
doi https://doi.org/10.52842/conf.caadria.2019.1.815
summary This paper discusses the characteristics of and relationships between the most common building energy performance tools for simulating and visualising the thermal behaviour of buildings at the early stage of building design. The necessity for the latter and the importance of using relevant tools in practice are discussed. By highlighting existing gaps in these tools, a complementary component has been suggested that could assist building scientists in evaluating energy simulation results. The proposed energy performance data visualisation (EPDV) component is an under-development plugin (SlowLoris) that is intended to be added to the existing Grasshopper add-ons. This EPDV component provides users with simultaneous but different visualisation styles of monthly energy reports for individual floors and thermal zones. As an example, this paper uses a 2-storey building model to show the applicability of the plugin to analysis of energy simulation results.
keywords Building energy simulation; Data visualization; Energy performance analysis
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2019_266
id caadria2019_266
authors Indraprastha, Aswin and Dwi Pranata Putra, Bima
year 2019
title Informed Walkable City Model - Developing A Multi-Objective Optimization Model for Evaluating Walkability Concept
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 161-170
doi https://doi.org/10.52842/conf.caadria.2019.2.161
summary This study presents an informed city analysis methodology as a tool for evaluating the concept of walkability for the existing urban area. The aim of this study was to propose an integrative approaches enable optimization of urban design element and walkability amenities under certain walkability performance criteria. The parametric methods are being developed in three stages of modeling: 1) City data modeling; 2) Walkability scores and indicators modeling; 3) Optimization model of the urban area. In the walk score algorithm, we modified three elements that determine walk score result: Walk Score Categories, Distance Decay Function and Pedestrian Friendliness Metric. We developed the customized algorithm based on the data gathered from field observation and sample interviews to normalize and define values in the walk score algorithm. The result is a parametric model to evaluate walkability concept in a certain urban area considering quantified factors that determine walkability scores. The model furthermore seeks to optimize walkability score by assessing new amenities on an existing urban area using multi-objective optimization method that produces an integrative method of urban analysis.
keywords walkability; walk score; parametric models; multi-objective optimization; informed city analysis
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2019_104
id caadria2019_104
authors Johan, Ryan, Chernyavsky, Michael, Fabbri, Alessandra, Gardner, Nicole, Haeusler, M. Hank and Zavoleas, Yannis
year 2019
title Building Intelligence Through Generative Design - Structural analysis and optimisation informed by material performance
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 371-380
doi https://doi.org/10.52842/conf.caadria.2019.1.371
summary Generative design (GD) is the process of defining high-level goals and constraints and then using computation to automatically explore a range of solutions that meet the desired requirements. Generative processes are intelligent ways to fast-track early design stages. The outcomes are analyzed simultaneously to inform decisions for architects and engineers. Whilst material properties have been defined as a driving agent within generative systems to calculate structure, material performance or structural capacity are not linked with early decision-making. In response, this paper sets a constrained approach upon traditional and non-traditional materials to validate the feasibility of structures. A GD tool is developed within Grasshopper using C-sharp, Karamaba3D, Galapagos and various engineering formulas. The result is a script, which prioritizes the structural qualities of material as a driving factor within generative systems and facilitates communication across different expertise.
keywords Intelligent systems; generative design; material properties; structural analysis; evolutionary algorithms
series CAADRIA
email
last changed 2022/06/07 07:52

_id cf2019_025
id cf2019_025
authors Lin, Yuqiong; Chenyu Huang ,Yuqiong Lin and Philip F. Yuan
year 2019
title High-rise Building Group Morphology Generation Approach based on Wind Environmental Performance
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 185
summary In the urbanization process, high-rise is favored and popularized? while results to the high-density urban space which aggravated the deterioration of urban wind environment. Using quantifiable environmental factors to control the building, is promoting a more meaningful group formation of the sustainable high-rise buildings. Thus, taking wind performance into account in high-rise design infancy is essential. According to the achievement of CAADRIA2018 “SELF-FORM-FINDING WIND TUNNEL TO ENVIRONMENTAL-PERFORMANCE URBAN AND BUILDING DESIGN” workshop, a preliminary set related to the environmental performance urban morphology generation system and method was constructed. In this study, various of high-rise building forms that might be conducive to urban ventilation were selected, such as “hollow-out”, “twisting”, “façade retracting” and “liftup”, to design the Dynamic Model System with multi-dimensional motion.
keywords High-rise, group morphology, wind tunnel, dynamic models, environmental performance
series CAAD Futures
email
last changed 2019/07/29 14:15

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 17HOMELOGIN (you are user _anon_63904 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002