CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 548

_id acadia19_352
id acadia19_352
authors Poustinchi, Ebrahim
year 2019
title Robotically Augmented Imaging (RAI Alpha)
doi https://doi.org/10.52842/conf.acadia.2019.352
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 352-359
summary This paper presents a project-based research study in the design studio context, highlighting the use of robotic technology as a “perspective-machine” to create custom spatial readings/experiences through predetermined and controlled static/dynamic views. The early studies of this method—in this paper referred to as Robotically Augmented Imaging (RAI Alpha), enables architects, designers, and students to micro direct the “spatial experience” and atmospheric effects of the project through visual story-telling and in multiscale set-ups ranging from architectural to product and object scale. Demonstrating the contemporary opportunities of imaging and perspective—as an architectural tool to investigate/define the space—RAI Alpha studies the potentials of robotically controlled/manipulated views as a possible new medium for interacting with form, space, architecture, atmosphere, and performance in a scale-free seamless experience and as both a design tool and a product.
series ACADIA
type normal paper
email mpoustin@kent.edu
last changed 2022/06/07 08:00

_id caadria2019_403
id caadria2019_403
authors Lin, Xuhui and Muslimin, Rizal
year 2019
title RESHAPE - Rapid forming and simulation system using unmanned aerial vehicles for architectural representation
doi https://doi.org/10.52842/conf.caadria.2019.1.413
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 413-422
summary As digital technology advances, multiple ways of repre-senting objects interactively in space, architects and designers begin to use Virtual Reality (VR) and Immersive Digital Environ-ments (IDE) to communicate their ideas. However, these technolo-gies are bounded with their spatial limitations. In responding to this issue, our paper introduces ReShape, a digital-physical spatial representation system supported by Unmanned Aerial Vehicle (UAV) swarm technology that allows a user to project their unbuilt design and interact with them in real space, unattached by headset, fixed cameras or screen. ReShape can be controlled by user orien-tation and gesture as an input, where the real-time feedback is provided by UAV spatial arrangement in space, augmented by computational simulation. Spatial data is transmitted between the UAV agents for the user to experience the digital model, creating a versatile and computationally efficient platform to edit and en-hance the design in real-space. This paper outlines four systems in ReShape, i.e., (1) detection system to identify and locate the user position and orientation; (2) task-arrangement system to provide spatial information to the UAV agents; (3) UAV's communicating system to control the UAV position and task in space; and (4) Physical-Digital forming system, to project digital simulation by the UAV agents.
keywords UAV system; Spatial representation; a detecting sys-tem; human-computation interaction
series CAADRIA
email rizal.muslimin@sydney.edu.au
last changed 2022/06/07 07:59

_id acadia19_338
id acadia19_338
authors Aviv, Dorit; Houchois, Nicholas; Meggers, Forrest
year 2019
title Thermal Reality Capture
doi https://doi.org/10.52842/conf.acadia.2019.338
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 338-345
summary Architectural surfaces constantly emit radiant heat fluxes to their surroundings, a phenomenon that is wholly dependent on their geometry and material properties. Therefore, the capacity of 3D scanning techniques to capture the geometry of building surfaces should be extended to sense and capture the surfaces’ thermal behavior in real time. We present an innovative sensor, SMART (Spherical-Motion Average Radiant Temperature Sensor), which captures the thermal characteristics of the built environment by coupling laser geometry scanning with infrared surface temperature detection. Its novelty lies in the combination of the two sensor technologies into an analytical device for radiant temperature mapping. With a sensor-based dynamic thermal-surface model, it is possible to achieve representation and control over one of the major factors affecting human comfort. The results for a case-study of a 3D thermal scan conducted in the recently completed Lewis Center for the Arts at Princeton University are compared with simulation results based on a detailed BIM model of the same space.
series ACADIA
type normal paper
email daviv@upenn.edu
last changed 2022/06/07 07:54

_id caadria2019_624
id caadria2019_624
authors Gupta, Sachin Sean, Jayashankar, Dhileep Kumar, Sanandiya, Naresh D, Fernandez, Javier G. and Tracy, Kenneth
year 2019
title Prototyping of Chitosan-Based Shape-Changing Structures
doi https://doi.org/10.52842/conf.caadria.2019.2.441
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 441-450
summary In the built environment, the typical means of achieving responsive changes in the physical features of a structure is through energy-intensive actuation mechanisms that contradict the intended goal of energy-efficient performance. Nature offers several alternative energy-free examples of achieving large-scale shape change through passive actuation mechanisms, such as the intrinsic response of water-absorbing (hygroscopic) materials to humidity fluctuations. We utilize this principle of passive actuation in the context of chitosan biopolymer, a material demonstrating a combination of mechanical strength and hygroscopic potential that enables it to serve for both load-bearing and actuation purposes. By inserting biocomposite films of chitosan as dynamic tensile members into a space truss, a structural system is constructed whose variable structural performance is manipulated and expressed as a large-scale, programmable, and fast-acting shape change. We present a method for rationalizing this responsive structural system as an assembly using a combination of materials engineering and digital design and fabrication. As a proof-of-concept, a two-meter-long fiber-reinforced cantilevering truss prototype was designed and fabricated. The truss transforms in minutes from one shape that shelters the interior from rain to another shape that acts as an air foil to increase ventilation.
keywords Passive Actuation; Chitosan; Structural Assembly; Digital Fabrication
series CAADRIA
email jayashankar@sutd.edu.sg
last changed 2022/06/07 07:50

_id lasg_whitepapers_2019_207
id lasg_whitepapers_2019_207
authors Navab, Nima; and Desiree Foerster
year 2019
title Affective Atmospheres; Ambient Feedback Ecology
source Living Architecture Systems Group White Papers 2019 [ISBN 978-1-988366-18-0] Riverside Architectural Press: Toronto, Canada 2019. pp.207 - 220
summary Encompassing a series of experiments with atmospheric scenography the following paper maps out the relationships between different materials and energetic flows as part of a spatial design. These investigations emanate from the basis that poetic relationships between material and immaterial processes can induce new meaning to the ways we inhabit our environment. In diffusing the boundaries between states of matter in the environment and the perceiver, the unfolding atmospheric processes enacted here function as perceptual amplifiers for transformations on scales that are usually not sensually accessible. The focus shifts from the concrete to the in-between. The visualization and enaction of flows that make up our surroundings suggest a greater involvement of oneself with the environment.1 Through these experiments we demonstrate 1) how spatial continuity can be achieved in relating attributes of dynamic behavior of water, vapor, air, sound, and light to significances in space; 2) that the indifferent role of the human perceiver is challenged in making their impact and responsiveness to the environment part of the spatial composition itself; and 3) how the expressive qualities of atmospheric variables can be used to experience layers of meaning in spaces, that are usually not comprehensible (such as ecological dimensions of water use).
keywords living architecture systems group, organicism, intelligent systems, design methods, engineering and art, new media art, interactive art, dissipative systems, technology, cognition, responsiveness, biomaterials, artificial natures, 4DSOUND, materials, virtual projections,
email nima.navab@gmail.com
last changed 2019/07/29 14:02

_id ecaadesigradi2019_409
id ecaadesigradi2019_409
authors Ulkucu, Yigitcan and Alacam, Sema
year 2019
title A Decision Support Framework for FLP in the Context of Industrial Facilities by the Use of BIM
doi https://doi.org/10.52842/conf.ecaade.2019.2.269
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 269-278
summary In today's industrial production environment, an effective solution to the FLP (Facility Layout Problem) plays a significant role in deciding whether a facility will hold a competitive advantage against others by its improved workflow. This advantage comes from an efficient placement of facilities, which mostly contributes to the overall business performance. In addition to that, regarding the need to answer the demands of the dynamic market, facilities need to adapt their processes and adapt their production line as quickly as possible. Therefore, a continuous search for a solution to the FLP is present. Although there are many space allocation programs available both as academic and commercial products, present approaches' availability in the BIM environment is not common yet. This paper introduces a decision support system framework which uses Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) to generate the most appropriate solution in Revit Dynamo environment both in the earlier phases of design and through the life-cycle of the facility. The proposed framework will specifically be responsible for generating solutions for equipment location in serial production facilities. As NSGA-II is a Multi-Objective Evolutionary Algorithm (MOEA), a second optimization criterion is defined as the optimization of the foreman's locations distributed on the shop floor. A Dynamo package named Refinery will hold the optimization and evaluation procedures.
keywords Facility Layout Problems; NSGA-II; Automated Space Layout
series eCAADeSIGraDi
email yulkucu@gmail.com
last changed 2022/06/07 07:57

_id caadria2019_473
id caadria2019_473
authors Leung, Emily, Butler, Andrew, Asher, Rob, Gardner, Nicole and Haeusler, M. Hank
year 2019
title Redback BIM - Developing a Browser-based Modeling Application Software Taxonomy
doi https://doi.org/10.52842/conf.caadria.2019.1.775
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 775-784
summary Browser-based platforms (Google Docs or Minecraft) have instigated the value of collaborative environments. Browser-based modelling point out a future for the AEC industry. Yet at present no literature review nor a taxonomy of browser-based modelling platforms exist. A key outcome of a unique taxonomy framework of existing BMA characteristics reveals that current BMAs do not take full advantage of the web's unique capabilities such as centralising data across multiple tools within an 'ecosystem'. Consequently, this taxonomy has productively guided the development of Redback BIM, a proof-of-concept BMA that enables the coordination of BIM data in a collaborative online context. Redback BIM further demonstrates how, through establishing a universal data-type, a diverse range of scripts can be consolidated together in an online platform to enable greater accessibility for a range of AEC professionals towards improved project communication and efficiency.
keywords Web 2.0; browser-based modelling; taxonomy; software development; standardisation of processes
series CAADRIA
email m.haeusler@unsw.edu.au
last changed 2022/06/07 07:52

_id ecaade2023_227
id ecaade2023_227
authors Moorhouse, Jon and Freeman, Tim
year 2023
title Towards a Genome for Zero Carbon Retrofit of UK Housing
doi https://doi.org/10.52842/conf.ecaade.2023.2.197
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 197–206
summary The United Kingdom has some of the worst insulated housing stock in Northern Europe. This is in part due to the age of housing in the UK, with over 90% being built before 1990 [McCrone 2017, Piddington 2020]. Moreover, 85% of current UK housing will still be in use in 2050 by which stage their Government are targeting Net Carbon Zero [Eyre 2019]. Domestic energy use accounts for around 25% of UK carbon emissions. The UK will need to retrofit 20 million dwellings in order to meet this target. If this delivery were evenly spread, it would equate to over 2,000 retrofit completions each day. Government-funded initiatives are stimulating the market, with upwards of 60,000 social housing retrofits planned for 2023, but it is clear that a system must be developed to enable the design and implementation of housing-stock improvement at a large scale.This paper charts the 20-year development of a digital approach to the design for low-carbon domestic retrofit by architects Constructive Thinking Studio Limited and thence documents the emergence of a collaborative approach to retrofit patterns on a National scale. The author has led the Research and Development stream of this practice, developing a Building Information Modelling methodology and integrated Energy Modelling techniques to optimise design for housing retrofit [Georgiadou 2019, Ben 2020], and then inform a growing palette of details and a database of validated solutions [Moorhouse 2013] that can grow and be used to predict options for future projects [D’Angelo 2022]. The data is augmented by monitoring energy and environmental performance, enabling a growing body of knowledge that can be aligned with existing big data to simulate the benefits of nationwide stock improvement. The paper outlines incremental case studies and collaborative methods pivotal in developing this work The proposed outcome of the work is a Retrofit Genome that is available at a national level.
keywords Retrofit, Housing, Zero-Carbon, BIM, Big Data, Design Genome
series eCAADe
email jon@constructivethinking.co.uk
last changed 2023/12/10 10:49

_id sigradi2023_234
id sigradi2023_234
authors Santos, Ítalo, Andrade, Max, Zanchettin, Cleber and Rolim, Adriana
year 2023
title Machine learning applied in the evaluation of airport projects in Brazil based on BIM models
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 875–887
summary In a country with continental dimensions like Brazil, air transport plays a strategic role in the development of the country. In recent years, initiatives have been promoted to boost the development of air transport, among which the BIM BR strategy stands out, instituted by decree n-9.983 (2019), decree n-10.306 (2020) and more recently, the publication of the airport design manual (SAC, 2021). In this context, this work presents partial results of a doctoral research based on the Design Science Research (DSR) method for the application of Machine Learning (ML) techniques in the Artificial Intelligence (AI) subarea, aiming to support SAC airport project analysts in the phase of project evaluation. Based on a set of training and test data corresponding to airport projects, two ML algorithms were trained. Preliminary results indicate that the use of ML algorithms enables a new scenario to be explored by teams of airport design analysts in Brazil.
keywords Airports, Artificial intelligence, BIM, Evaluation, Machine learning.
series SIGraDi
email italo.guedes@ufpe.br
last changed 2024/03/08 14:07

_id ecaadesigradi2019_470
id ecaadesigradi2019_470
authors Silva, Luísa, Mussi, Andrea and Silva, Thaísa
year 2019
title Inclusive Architecture - Digital technologies and qualification of the project process
doi https://doi.org/10.52842/conf.ecaade.2019.2.295
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 295-303
summary This article presents the scenario of programming use by architects and engineers, creating their own unique tools. The goal is to emulate and understand the phenomenon of BIM software customization by developing plug-ins that can explore the human-environment relationship. Demonstrates the process for building a plugin that seeks to equalize the theory of accessibility technical standards, visually impaired and architects. Uses Design Science Research methodologies to guide the construction of artifacts for specific practical problems and the Collaborative Design / Codesign to understand and know the users' expertise. It is argued that the low quality of projects that include elements for the orientation of the visually impaired in Brazil is often related to an unstructured methodology in which important aspects such as the real needs of this group and the human-environment relationship are neglected.
keywords BIM; Design Science Research; Codesign; Inclusive Project
series eCAADeSIGraDi
email luisa.projetospredilar@gmail.com
last changed 2022/06/07 07:56

_id acadia23_v1_196
id acadia23_v1_196
authors Bao, Ding Wen; Yan, Xin; Min Xie, Yi
year 2023
title Intelligent Form
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 196-201.
summary InterLoop employs previously developed workflows that enable multi-planar robotic bending of metal tubes with high accuracy and repeatability (Huang and Spaw 2022). The scale and complexity is managed by employing augmented reality (AR) technology in two capacities, fabrication and assembly (Jahn et al. 2018; Jahn, Newnham, and Berg 2022). The AR display overlays part numbers, bending sequences, expected geometry, and robot movements in real time as the robot fabrication is occurring. For assembly purposes, part numbers, centerlines, and their expected positional relationships are projected via quick response (QR) codes spatially tracked by the Microsoft Hololens 2 (Microsoft 2019). This is crucial due to the length and self-similarity of complex multi-planar parts that make them difficult to distinguish and orient correctly. Leveraging augmented reality technology and robotic fabrication uncovers a novel material expression in tubular structures with bundles, knots, and interweaving (Figure 1).
series ACADIA
type project
email nic.bao@rmit.edu.au
last changed 2024/04/17 13:58

_id ecaadesigradi2019_342
id ecaadesigradi2019_342
authors Costa Couceiro, Mauro, Lobo, Rui and Monteiro, António
year 2019
title Inserting and Encircling - Two complementary immersive strategies for mixed-reality applied to cultural heritage *
doi https://doi.org/10.52842/conf.ecaade.2019.3.091
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 91-98
summary To accomplish the aims of a three-year research project we are developing, connected to cultural heritage, we became interested in the fusion of Virtual Reality and Augmented Reality, two emergent development fields that gave birth to what was coined as Mixed Reality. Both dimensions have intricate connections with hardware and software improvements related with the so called "4th Industrial Revolution".Virtual Reality (VR), an interactive experience generated by a computer, takes place inside of simulated environments, which can be analogous to the real world or which can be created as imaginary contexts. On the other hand, Augmented Reality (AR) is always based in an interactive experience inside a tangible environment where the elements of that reality are nurtured with digital information, across several senses, to empathize certain aspects of reality. Our research combines both VR and AR to empathize sensory and intellectual experience. To do so, several senses, mainly visual and auditory, are stimulated.We therefore explore two Case-Studies from our research project in order to show two different strategies. The intention of both situations is to create immersive mixed reality environments where the fusion of the digital and analogue elements can be persistently sustained by the visual outputs.
keywords Santa Cruz Monastery; Mixed Reality; VR/AR; 3D scanning; 3D modeling; Lost heritage
series eCAADeSIGraDi
email maurocostacouceiro@gmail.com
last changed 2022/06/07 07:56

_id acadia19_360
id acadia19_360
authors Dackiw, Jean-Nicolas Alois; Foltman, Andrzej; Garivani, Soroush; Kaseman, Keith; Sollazzo, Aldo
year 2019
title Cyber-physical UAV Navigation and Operation
doi https://doi.org/10.52842/conf.acadia.2019.360
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 360-367
summary The purpose of this paper is to present a work in progress pertaining to drone pose estimation and flight calibration. This paper intends to underline the increasing importance of determining alternative path planning instruments through accurate localization for Unmanned Aerial Vehicles (UAVs) with the purpose of achieving complex flight operations for the emerging applications of autonomous robotics in surveying, design, fabrication, and on-site operations. This research is based on the implementation of novel technologies such as Augmented Reality (AR), Robot Operating System (ROS), and computational approaches to define a drone calibration methodology, leveraging existing methods for drone path planning. Drones are equipped with measurement systems to provide geo-location and time information such as onboard Global Positioning System (GPS) sensors, and Inertial Measurement Units (IMU). As stated in previous research, to increase navigation capabilities, measurements and data processing algorithms have a critical role (Daponte et al. 2015). The outcome of this work in progress showcases valuable results in calculating and assessing accurate positioning for UAVs, and developing data exchanges in transmission, reception, and tracking.
series ACADIA
type normal paper
email jeannicolas.alois.dackiw@iaac.net
last changed 2022/06/07 07:56

_id ecaadesigradi2019_027
id ecaadesigradi2019_027
authors Erzetic, Catherine, Dobbs, Tiara, Fabbri, Alessandra, Gardner, Nicole, Haeusler, M. Hank and Zavoleas, Yannis
year 2019
title Enhancing User-Engagement in the Design Process through Augmented Reality Applications
doi https://doi.org/10.52842/conf.ecaade.2019.2.423
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 423-432
summary Augmented Reality (AR) technologies are often perceived as the most impactful method to enhance the communication between the designer and the client during the iterative design process. However, the significance of designing the User Interface (UI) and the User Experience (UX) are often underestimated. To intercede, this research aims to employ new and existing techniques to develop UI's, and comparatively assess "the accuracy and completeness with which specified users can achieve specified goals in particular environments" (Stone, 2005) - a notion this research delineates as 'effectiveness'. Prompted by the work of key scholars, the developed UI's were assessed through the lens of existing UI evaluation techniques, including: Usability Heuristics (Nielsen, 1994) and Visual and Cognitive Heuristics (Zuk and Carpendale, 2006). In partnership with PTW Architects, characteristics such as the rapidity and complexity of interactions, in conjunction with the interface's simplicity and intuitiveness, were extracted from 15 trials underwent by architectural practitioners. The outcomes of this research highlights strategies for the effective development of user interface design for mobile augmented reality applications.
keywords User Interface; Human Centered Design; User Experience; Heuristics; Usability Inspection Method
series eCAADeSIGraDi
email m.haeusler@unsw.edu.au
last changed 2022/06/07 07:55

_id caadria2020_426
id caadria2020_426
authors Goepel, Garvin and Crolla, Kristof
year 2020
title Augmented Reality-based Collaboration - ARgan, a bamboo art installation case study
doi https://doi.org/10.52842/conf.caadria.2020.2.313
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 313-322
summary ARgan is a geometrically complex bamboo sculpture that relied on Mixed Reality (MR) for its joint creation by multiple sculptors and used latest Augmented Reality (AR) technology to guide manual fabrication actions. It was built at the Chinese University of Hong Kong in the fall of 2019 by thirty participants of a design-and-build workshop on the integration of AR in construction. As part of its construction workflow, holographic setups were created on multiple devices, including a series of Microsoft HoloLenses and several handheld Smartphones, all linked simultaneously to a single digital base model to interactively guide the manufacturing process. This paper critically evaluates the experience of extending recent AR and MR tool developments towards applications that centre on creative collaborative production. Using ARgan as a demonstrator project, its developed workflow is assessed on its ability to transform a geometrically complex digitally drafted design to its final physically built form, highlighting the necessary strategic integration of variability as an opportunity to relax notions on design precision and exact control. The paper concludes with a plea for digital technology's ability to stimulate dialogue and collaboration in creative production and augment craftsmanship, thus providing greater agency and more diverse design output.
keywords Augmented-Reality; Mixed-Reality; Post-digital; High-tech vs low-tech; Bamboo
series CAADRIA
email garvingoepel@cuhk.edu.hk
last changed 2022/06/07 07:51

_id acadia19_430
id acadia19_430
authors Goepel, Garvin
year 2019
title Augmented Construction
doi https://doi.org/10.52842/conf.acadia.2019.430
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 430-437
summary This paper discusses the integration of Mixed Reality in the design and implementation of non-standard architecture. It deliberates a method that does not require conventional 2D drawings, and the need for skilled labor, by using the aid of holographic instructions. Augmented Construction allow builders to execute complex tasks and to understand structural relations intuitively by overlaying digital design information onto their field of view on the building site. This gives the implementation system authors different levels of control. As a proof of concept, a group of non-professionals reconstructed the south wall of Corbusier’s Ronchamp chapel, the Notre-Dame du Haut, at scale 1:5 using no architectural 2D drawings but only custom-built Augmented Reality apps for HoloLens and mobile devices. This project focused on the assembly of non-standard prefabricated elements, based on an optimized parametric structure that enables designers to integrate imprecision within the construction phases into the design through a constant feedback-loop between the real and the digital. The setup was designed in a non-linear process that allows the integration of new information during the Augmented Construction phases. The paper evaluates applied Augmented Construction for further improvements and research and concludes by discussing the impact potential of Augmented Construction on architectural design, socio-cultural, and economical levels.
series ACADIA
type normal paper
email garvingoepel@gmail.com
last changed 2022/06/07 07:51

_id ecaadesigradi2019_311
id ecaadesigradi2019_311
authors Hansen, Lasse Hedegaard and Kjems, Erik
year 2019
title Augmented Reality for Infrastructure Information - Challenges with information flow and interactions in outdoor environments especially on construction sites
doi https://doi.org/10.52842/conf.ecaade.2019.2.473
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 473-482
summary This paper discusses Augmented Reality (AR) as means to interact with information regarding infrastructure projects before, under and after construction. For that purpose, two different prototypes were developed using Apples ARKit and Unity's game design platform and tested on two use cases. However, the main focus of this paper is interacting with infrastructure information through AR rather than researching core AR technology. We learned that using AR under the constructing phase with subsurface utilities is still facing several difficulties. Especially when it comes to accessing and interacting with information in a changing construction environment. These difficulties will be discussed and also the challenges regarding information flow between civil engineering and AR software.
keywords Augmented Reality; ARKit; Information flow; Subsurface utilities ; Highway construction project; Construction site
series eCAADeSIGraDi
email lhh@civil.aau.dk
last changed 2022/06/07 07:50

_id acadia23_v1_180
id acadia23_v1_180
authors Huang, Lee-Su; Spaw, Gregory
year 2023
title InterLoop
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 180-187.
summary InterLoop employs previously developed workflows that enable multi-planar robotic bending of metal tubes with high accuracy and repeatability (Huang and Spaw 2022). The scale and complexity is managed by employing augmented reality (AR) technology in two capacities, fabrication and assembly (Jahn et al. 2018; Jahn, Newnham, and Berg 2022). The AR display overlays part numbers, bending sequences, expected geometry, and robot movements in real time as the robot fabrication is occurring. For assembly purposes, part numbers, centerlines, and their expected positional relationships are projected via quick response (QR) codes spatially tracked by the Microsoft Hololens 2 (Microsoft 2019). This is crucial due to the length and self-similarity of complex multi-planar parts that make them difficult to distinguish and orient correctly. Leveraging augmented reality technology and robotic fabrication uncovers a novel material expression in tubular structures with bundles, knots, and interweaving (Figure 1).
series ACADIA
type project
email huangleesu@gmail.com
last changed 2024/04/17 13:58

_id acadia23_v2_340
id acadia23_v2_340
authors Huang, Lee-Su; Spaw, Gregory
year 2023
title Augmented Reality Assisted Robotic: Tube Bending
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 2: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-0-3]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 340-349.
summary The intent of this research is to study potential improvements and optimizations in the context of robotic fabrication paired with Augmented Reality (AR), leveraging the technology in the fabrication of the individual part, as well as guiding the larger assembly process. AR applications within the Architecture, Engineering, and Construction (AEC) industry have seen constant research and development as designers, fabricators, and contractors seek methods to reduce errors, minimize waste, and optimize efficiency to lower costs (Chi, Kang, and Wang 2013). Recent advancements have made the technology very accessible and feasible for use in the field, as demonstrated by seminal projects such as the Steampunk Pavilion in Tallinn, Estonia (Jahn, Newnham, and Berg 2022). These types of projects typically improve manual craft processes. They often provide projective guidelines, and make possible complex geometries that would otherwise be painstakingly slow to complete and require decades of artisanal experience (Jahn et al. 2019). Building upon a previously developed robotic tube bending workflow, our research implements a custom AR interface to streamline the bending process for multiple, large, complex parts with many bends, providing a pre-visualization of the expected fabrication process for safety and part-verification purposes. We demonstrate the utility of this AR overlay in the part fabrication setting and in an inadvertent, human-robot, collaborative process when parts push the fabrication method past its limits. The AR technology is also used to facilitate the assembly process of a spatial installation exploring a unique aesthetic with subtle bends, loops, knots, bundles, and weaves utilizing a rigid tube material.
series ACADIA
type paper
email gspaw@aus.edu
last changed 2024/12/20 09:12

_id caadria2019_342
id caadria2019_342
authors Qureshi, Cyrus, Moleta, Tane Jacob and Schnabel, Marc Aurel
year 2019
title Beyond the portal - A Study of the Tangible and Intangible Rituals within Sacred Spaces
doi https://doi.org/10.52842/conf.caadria.2019.1.525
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 525-534
summary In its ambitions, the paper aims to propose a proof of concept for a Virtual, Augmented and Mixed (VAM) environment that digitally overlays a multifaith space in order to optimize their use, essentially transforming itself to the spiritual needs of the user. In order to do so, a mixed reality experience was developed by investigating and interpreting both the tangible and intangible rituals of prayer. By incorporating an immersive experience, the project promotes the idea of a multifaith space that moves beyond the notion of an "empty white room (Crompton, 2013, p.487)". To develop an immersive experience that caters to people of all religions or no religion is beyond the scope of this project. Hence, by creating a VAM environment for users of the Muslim faith the project may be able to support design ideologies for others, furthering research in this field.
keywords Tangible and Intangible Rituals; Multifaith Space; Mixed Reality; Digital Mosque
series CAADRIA
email cyrusqureshi@gmail.com
last changed 2022/06/07 08:00

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_93697 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002