CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 623

_id ecaadesigradi2019_126
id ecaadesigradi2019_126
authors Szabo, Anna, Lloret-Fritschi, Ena, Reiter, Lex, Gramazio, Fabio, Kohler, Matthias and J. Flatt, Robert
year 2019
title Revisiting Folded Forms with Digital Fabrication
doi https://doi.org/10.52842/conf.ecaade.2019.2.191
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 191-200
summary This paper discusses the potential of emerging digital fabrication techniques to produce material-efficient thin folded concrete structures. Although in the 50s and 60s folded structures provided a common optimal solution for spanning large distances without additional vertical supports, today, the number of these projects decreased significantly due to their complicated formworks and labour-intensive realization. Digital fabrication methods for concrete hold the promise to efficiently produce intricate folded mass-customized shapes with enhanced load-bearing capacity. This paper focuses on a robotic slip-forming process, Smart Dynamic Casting (SDC), to produce various thin-walled folded concrete elements with the same formwork providing smooth surface finish and gradual variations along the height. An empirical research methodology was applied to evaluate the fabrication feasibility of digitally designed thin folded geometries with one-to-one scale prototypes. Despite the discovered design limitations due to fabrication and material constraints, the exploration led to a new promising research direction, termed 'Digital Casting'.
keywords folded structures; digital concrete; Smart Dynamic Casting; set on demand; Digital Casting
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id ecaade2023_138
id ecaade2023_138
authors Crolla, Kristof and Wong, Nichol
year 2023
title Catenary Wooden Roof Structures: Precedent knowledge for future algorithmic design and construction optimisation
doi https://doi.org/10.52842/conf.ecaade.2023.1.611
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 611–620
summary The timber industry is expanding, including construction wood product applications such as glue-laminated wood products (R. Sikkema et al., 2023). To boost further utilisation of engineered wood products in architecture, further development and optimisation of related tectonic systems is required. Integration of digital design technologies in this endeavour presents opportunities for a more performative and spatially diverse architecture production, even in construction contexts typified by limited means and/or resources. This paper reports on historic precedent case study research that informs an ongoing larger study focussing on novel algorithmic methods for the design and production of lightweight, large-span, catenary glulam roof structures. Given their structural operation in full tension, catenary-based roof structures substantially reduce material needs when compared with those relying on straight beams (Wong and Crolla, 2019). Yet, the manufacture of their non-standard geometries typically requires costly bespoke hardware setups, having resulted in recent projects trending away from the more spatially engaging geometric experiments of the second half of the 20th century. The study hypothesis that the evolutionary design optimisation of this tectonic system has the potential to re-open and expand its practically available design solution space. This paper covers the review of a range of built projects employing catenary glulam roof system, starting from seminal historic precedents like the Festival Hall for the Swiss National Exhibition EXPO 1964 (A. Lozeron, Swiss, 1964) and the Wilkhahn Pavilions (Frei Otto, Germany, 1987), to contemporary examples, including the Grandview Heights Aquatic Centre (HCMA Architecture + Design, Canada, 2016). It analysis their structural concept, geometric and spatial complexity, fabrication and assembly protocols, applied construction detailing solutions, and more, with as aim to identify methods, tools, techniques, and construction details that can be taken forward in future research aimed at minimising construction complexity. Findings from this precedent study form the basis for the evolutionary-algorithmic design and construction method development that is part of the larger study. By expanding the tectonic system’s practically applicable architecture design solution space and facilitating architects’ access to a low-tech producible, spatially versatile, lightweight, eco-friendly, wooden roof structure typology, this study contributes to environmentally sustainable building.
keywords Precedent Studies, Light-weight architecture, Timber shell, Catenary, Algorithmic Optimisation, Glue-laminated timber
series eCAADe
email
last changed 2023/12/10 10:49

_id caadria2019_449
id caadria2019_449
authors Lin, Yuqiong, Yao, Jiawei, Huang, Chenyu and Yuan, Philip F.
year 2019
title The Future of Environmental Performance Architectural Design Based on Human-Computer Interaction - Prediction Generation Based on Physical Wind Tunnel and Neural Network Algorithms
doi https://doi.org/10.52842/conf.caadria.2019.2.633
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 633-642
summary As the medium of the environment, a building's environment performance-based generative design cannot be separated from intelligent data processing. Sustainable building design should seek an optimized form of environmental performance through a complete set of intelligent induction, autonomous analysis and feedback systems. This paper analyzed the trends in architectural design development in the era of algorithms and data and the status quo of building generative design based on environmental performance, as well as highlighting the importance of physical experiments. Furthermore, a design method for self-generating environmental performance of urban high-rise buildings by applying artificial intelligence neural network algorithms to a customized physical wind tunnel is proposed, which mainly includes a morphology parameter control and environmental data acquisition system, code translation of environmental evaluation rules and architecture of a neural network algorithm model. The design-oriented intelligent prediction can be generated directly from the target environmental requirements to the architectural forms.
keywords Physical wind tunnel; neural network algorithms; dynamic model; environmental performance; building morphology self-generation
series CAADRIA
email
last changed 2022/06/07 07:59

_id cf2019_025
id cf2019_025
authors Lin, Yuqiong; Chenyu Huang ,Yuqiong Lin and Philip F. Yuan
year 2019
title High-rise Building Group Morphology Generation Approach based on Wind Environmental Performance
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 185
summary In the urbanization process, high-rise is favored and popularized? while results to the high-density urban space which aggravated the deterioration of urban wind environment. Using quantifiable environmental factors to control the building, is promoting a more meaningful group formation of the sustainable high-rise buildings. Thus, taking wind performance into account in high-rise design infancy is essential. According to the achievement of CAADRIA2018 “SELF-FORM-FINDING WIND TUNNEL TO ENVIRONMENTAL-PERFORMANCE URBAN AND BUILDING DESIGN” workshop, a preliminary set related to the environmental performance urban morphology generation system and method was constructed. In this study, various of high-rise building forms that might be conducive to urban ventilation were selected, such as “hollow-out”, “twisting”, “façade retracting” and “liftup”, to design the Dynamic Model System with multi-dimensional motion.
keywords High-rise, group morphology, wind tunnel, dynamic models, environmental performance
series CAAD Futures
email
last changed 2019/07/29 14:15

_id ecaadesigradi2019_521
id ecaadesigradi2019_521
authors Millentrup, Viktoria, Ramsgaard Thomsen, Mette and Nicholas, Paul
year 2019
title Actuated Textile Hybrids - Textile smocking for designing dynamic force equilibria in membrane structures
doi https://doi.org/10.52842/conf.ecaade.2019.2.521
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 521-530
summary This paper introduces Actuated Textile Hybrids, and describes the steps needed to steer the form finding processes necessary for their production. The method presented employs an integration of an "activated" instead of a pre-stressed textile membrane to design different stages of force equilibrium within the Hybrid Structure, and to investigate the potentials of ever flexible shaping of tensile elements. The set-up for the Textile Hybrid consists of three main elements which are digitally and physically analysed in their inextricable interdependence in force, form and material. Together, the bending active beam (rod), the textile membrane and an applied pattern which actively shrinks surface areas of the membrane (activation), create the base for the form finding process.With advanced Finite Element Modelling software and the architects resulting ability to engineer responsive building-systems for a dynamic environment, it is essential to rethink the construction methods and the building-material of the classic building envelope. This is to not only develop a smartly engineered sustainable skin but also a boundary object which, due to its adaptation, develops the potential to interconnect with its surrounding to re-establish the relationships between nature, home and inhabitant.
keywords Textile Hybrid; Kiwi3D; Form-Finding; Material Studies; Structural System; Membrane Structure
series eCAADeSIGraDi
email
last changed 2022/06/07 07:58

_id acadia19_422
id acadia19_422
authors Morse, Christopher; Soulos, Foteinos
year 2019
title Interactive Facade Detail Design Reviews with the VR Scope Box
doi https://doi.org/10.52842/conf.acadia.2019.422
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 422-429
summary We present the development of the VR Scope Box as an example of the potential for Virtual Reality to enhance the design process as an interactive medium. The opportunities afforded designers by virtual environments should not be limited to simple immersive visualization. The VR scope box is shown to able to visualize details in 3-dimensional space at a 1:1 scale with accurate material representations. This visualization is not restricted to a single typical example detail, but rather allows for the dynamic exploration of the entire facade system. At the same time, the building exterior as a whole is also visible, to allow for a simultaneous understanding of the connections and the consequences of those details on the building as a whole. Additionally, we discuss the importance of user experience on the usability and adoption of new tools within architectural design reviews and the advantages of developing such tools in-house.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id lasg_whitepapers_2019_235
id lasg_whitepapers_2019_235
authors Parlac, Vera
year 2019
title Soft Kinetics; Integrating Soft Robotics into Architectural Assemblies
source Living Architecture Systems Group White Papers 2019 [ISBN 978-1-988366-18-0] Riverside Architectural Press: Toronto, Canada 2019. pp.235 - 250
summary The project described in this paper explores the integration of custom-made soft robotic muscles into a component-based surface. This project is part of a broader research that focuses on new material behaviors and their capacity to produce adaptive and dynamic material systems. The paper discusses the use of a pneumatic system as a form of material-based actuation. It presents the ongoing research into the capacity of integrated [pneu] structures to generate kinetic movement within a component-based assembly to produce a responsive and “programmable” architectural skin. This is a prototype-based exploration that demonstrates different kinds of movement achieved by different silicone muscle types and proposes a light modular construct, its components, and patterns of aggregation that work in unison with the silicone muscles to produce a dynamic architectural skin. The project is informed by a history of pneumatic structures, the technology of soft robotics, and a kit-of-parts design strategy.
keywords living architecture systems group, organicism, intelligent systems, design methods, engineering and art, new media art, interactive art, dissipative systems, technology, cognition, responsiveness, biomaterials, artificial natures, 4DSOUND, materials, virtual projections,
email
last changed 2019/07/29 14:02

_id acadia19_352
id acadia19_352
authors Poustinchi, Ebrahim
year 2019
title Robotically Augmented Imaging (RAI Alpha)
doi https://doi.org/10.52842/conf.acadia.2019.352
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 352-359
summary This paper presents a project-based research study in the design studio context, highlighting the use of robotic technology as a “perspective-machine” to create custom spatial readings/experiences through predetermined and controlled static/dynamic views. The early studies of this method—in this paper referred to as Robotically Augmented Imaging (RAI Alpha), enables architects, designers, and students to micro direct the “spatial experience” and atmospheric effects of the project through visual story-telling and in multiscale set-ups ranging from architectural to product and object scale. Demonstrating the contemporary opportunities of imaging and perspective—as an architectural tool to investigate/define the space—RAI Alpha studies the potentials of robotically controlled/manipulated views as a possible new medium for interacting with form, space, architecture, atmosphere, and performance in a scale-free seamless experience and as both a design tool and a product.
series ACADIA
type normal paper
email
last changed 2022/06/07 08:00

_id acadia20_176p
id acadia20_176p
authors Lok, Leslie; Zivkovic, Sasa
year 2020
title Ashen Cabin
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 176-181
summary Ashen Cabin, designed by HANNAH, is a small building 3D-printed from concrete and clothed in a robotically fabricated envelope made of irregular ash wood logs. From the ground up, digital design and fabrication technologies are intrinsic to the making of this architectural prototype, facilitating fundamentally new material methods, tectonic articulations, forms of construction, and architectural design languages. Ashen Cabin challenges preconceived notions about material standards in wood. The cabin utilizes wood infested by the Emerald Ash Borer (EAB) for its envelope, which, unfortunately, is widely considered as ‘waste’. At present, the invasive EAB threatens to eradicate most of the 8.7 billion ash trees in North America (USDA, 2019). Due to their challenging geometries, most infested ash trees cannot be processed by regular sawmills and are therefore regarded as unsuitable for construction. Infested and dying ash trees form an enormous and untapped material resource for sustainable wood construction. By implementing high precision 3D scanning and robotic fabrication, the project upcycles Emerald-Ash-Borer-infested ‘waste wood’ into an abundantly available, affordable, and morbidly sustainable building material for the Anthropocene. Using a KUKA KR200/2 with a custom 5hp band saw end effector at the Cornell Robotic Construction Laboratory (RCL), the research team can saw irregular tree logs into naturally curved boards of various and varying thicknesses. The boards are arrayed into interlocking SIP façade panels, and by adjusting the thickness of the bandsaw cut, the robotically carved timber boards can be assembled as complex single curvature surfaces or double-curvature surfaces. The undulating wooden surfaces accentuate the building’s program and yet remain reminiscent of the natural log geometry which they are derived from. The curvature of the wood is strategically deployed to highlight moments of architectural importance such as windows, entrances, roofs, canopies, or provide additional programmatic opportunities such as integrated shelving, desk space, or storage.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id ecaade2024_92
id ecaade2024_92
authors Mayor Luque, Ricardo; Beguin, Nestor; Rizvi Riaz, Sheikh; Dias, Jessica; Pandey, Sneham
year 2024
title Multi-material Gradient Additive Manufacturing: A data-driven performative design approach to multi-materiality through robotic fabrication
doi https://doi.org/10.52842/conf.ecaade.2024.1.381
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 1, pp. 381–390
summary Buildings are responsible for 39% of global energy-related carbon emissions, with operational activities contributing 28% and materials and construction accounting for 11%(World Green Building Council, 2019) It is therefore vital to reconsider our reliance on fossil fuels for building materials and to develop new advanced manufacturing techniques that enable an integrated approach to material-controlled conception and production. The emergence of Multi-material Additive Manufacturing (MM-AM) technology represents a paradigm shift in producing elements with hybrid properties derived from novel and optimized solutions. Through robotic fabrication, MM-AM offers streamlined operations, reduced material usage, and innovative fabrication methods. It encompasses a plethora of methods to address diverse construction needs and integrates material gradients through data-driven analyses, challenging traditional prefabrication practices and emphasizing the current growth of machine learning algorithms in design processes. The research outlined in this paper presents an innovative approach to MM-AM gradient 3D printing through robotic fabrication, employing data-driven performative analyses enabling control over print paths for sustainable applications in both the AM industry and our built environment. The article highlights several designed prototypes from two distinct phases, demonstrating the framework's viability, implications, and constraints: a workshop dedicated to data-driven analyses in facade systems for MM-AM 3D-printed brick components, and a 3D-printed brick facade system utilizing two renewable and bio-materials—Cork sourced from recycled stoppers and Charcoal, with the potential for carbon sequestration.
keywords Data-driven Performative design, Multi-material 3d Printing, Material Research, Fabrication-informed Material Design, Robotic Fabrication
series eCAADe
email
last changed 2024/11/17 22:05

_id acadia20_148p
id acadia20_148p
authors Vansice, Kyle; Attraya, Rahul; Culligan, Ryan; Johnson, Benton; Sondergaard, Asbjorn; Peters, Nate
year 2020
title Stereoform Slab
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 148-153
summary Stereoform Slab is both a pavilion and a prototype - an exhibition for the 2019 Chicago Architectural Biennial. It is an experiment in how digital form-finding and robotics can be leveraged to rethink the future of concrete construction. Stereoform Slab examines the role of one of the most ubiquitous horizontal elements in the city - the concrete slab, also the most common element in contemporary construction. Using smarter forming systems - in this case, a ruled-surface-derived, robotic hotwire process - the Stereoform Slab prototype proved that the amount of material used and waste generated could be minimized without increasing construction complexity, by about 20% over a conventional system. Stereoform also extends the conventional concrete span (column spacing), specifically in Chicago, from 30’ to 45’. In developing a concrete forming system that affords added flexibility without increasing construction costs, it is possible to reduce embodied carbon significantly. The method allows reducing carbon in buildings that aren’t typically the subject of advanced architectural design or rigorous optimization – conventional buildings that compose a majority of our built environment, and its respective contributions to global carbon emissions. Stereoform is the result of a multi-objective design optimization process. Optimal materialization, according to the compressive/tensile physics present in beam design, was balanced against the fabrication constraints of a singularly ruled-surface, which enables fast form-making using robotic hotwire cutting. SOM and Autodesk collaborated to mirror the approach developed to optimize Stereoform slab as a pavilion, to the building scale, using the multi-objective optimization platform Refinery. Project Refinery allowed the team to create a hyper-responsive system design that could adapt to any number of varying programmatic conditions and loading patterns. The development of this approach is a crucial step in making optimization techniques flexible enough to balance the number of competing parameters in the design process available and accessible to a broader design audience within architecture and engineering.
series ACADIA
type project
email
last changed 2021/10/26 08:03

_id caadria2019_659
id caadria2019_659
authors Wang, Xiang, Guo, Zhe, Zhang, Xiao, Jin, Jinxi and Yuan, Philip F.
year 2019
title Design, Analysis and Robotic Fabrication of a Bending-Active Shell Structure with Thin Sheets Based on Curved-Crease-Folding Technique
doi https://doi.org/10.52842/conf.caadria.2019.1.063
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 63-72
summary This paper shows a design and building application of an innovative structure concept which is developed by the authors. The long-span shell structure (8m*10m*2.5m) built with 1.5mm thin aluminum sheets demonstrates the possibility to apply bending-active structures with flexible thin sheet material in shell structures to enhance the global and local stiffness. The structure is mainly originated from the curved-crease-folding technique which enhances the structural stiffness by introducing curvature to the surfaces. The Y-shape structural elements define the basic geometrical rules and find its global double-curved geometry via the folding of the three lateral ribs. The full-scale prototype and its design and fabrication techniques show a design framework of the structure from its form-finding, surface optimization, robotic simulated fabrication to the final full-scale assembly. As a pioneer pavilion in a research workshop, students' design with diverse forms also show the widely possible application of this structural concept.
keywords shell structure; thin aluminum sheets; bending-active; robotic creased-folding
series CAADRIA
email
last changed 2022/06/07 07:58

_id ecaadesigradi2019_387
id ecaadesigradi2019_387
authors Wibranek, Bastian, Belousov, Boris, Sadybakasov, Alymbek, Peters, Jan and Tessmann, Oliver
year 2019
title Interactive Structure - Robotic Repositioning of Vertical Elements in Man-Machine Collaborative Assembly through Vision-Based Tactile Sensing
doi https://doi.org/10.52842/conf.ecaade.2019.2.705
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 705-713
summary The research presented in this paper explores a novel tactile sensor technology for architectural assembly tasks. In order to enable robots to interact both with humans and building elements, several robot control strategies had to be implemented. Therefore, we developed a communication interface between the architectural design environment, a tactile sensor and robot controllers. In particular, by combining tactile feedback with real-time gripper and robot control algorithms, we demonstrate grasp adaptation, object shape and texture estimation, slip and contact detection, force and torque estimation. We investigated the integration of robotic control strategies for human-robot interaction and developed an assembly task in which the robot had to place vertical elements underneath a deformed slab. Finally, the proposed tactile feedback controllers and learned skills are combined together to demonstrate applicability and utility of tactile sensing in collaborative human-robot architectural assembly tasks. Users were able to hand over building elements to the robot or guide the robot through the interaction with building elements. Ultimately this research aims to offer the possibility for anyone to interact with built structures through robotic augmentation.
keywords Interactive Structure; Robotics; Tactile Sensing; Man-Machine Collaboration
series eCAADeSIGraDi
email
last changed 2022/06/07 07:57

_id ecaadesigradi2019_555
id ecaadesigradi2019_555
authors Bomfim, Kyane and Tavares, Felipe
year 2019
title Building facade optimization for maximizing the incident solar radiation
doi https://doi.org/10.52842/conf.ecaade.2019.2.171
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 171-180
summary The technological breakthrough on photovoltaic facades and the high potential for installing photovoltaic (PV) systems in the city of Salvador are the motivation for this article. This case study explores the feasibility of implementing solar energy technology on a building facade, proposing a design method for optimizing insolation performance by the form-finding process in a parameterized shape. The goal was to generate a parametric design workflow, in which it could be found some facade shapes, generating triangle and quadrilateral supporting grids, leading to better results in the total amount of radiation in comparison to the basic flat facade. In these supporting grids were evaluated also the fitting in the distribution of quadrilateral commercial PV cells, measuring its geometric compatibility. By the results, it could be verified the gains and losses in PV potential in several instances obtained by the form-finding process, as the potentials to consider this in the design of every building.
keywords Radiation skydome; Shape parameterization; Form-finding; Genetic Algorithm; PV facade
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id caadria2019_225
id caadria2019_225
authors Khoo, Chin Koi and Wee, H. Koon
year 2019
title PixelGreen - A hybrid green media wall for existing high-rise buildings
doi https://doi.org/10.52842/conf.caadria.2019.2.131
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 131-140
summary Vertical farms and gardens are not new in dense urban environments, but few examples further explore the architectural potential and possibilities of the form to apply the same design approach to existing surfaces and walls of buildings. In addition, there is a design opportunity to exploit existing wall surfaces as 'analogue' media screens by using the vertical farm and garden as a medium of representation. In this paper we explore the opportunity for new design possibilities to achieve a hybrid architectural wall system as a reciprocal retrofit for existing building surfaces, integrating a vertical micro-farm and media screen. This architectural opportunity is explored through agile methods and the early design stages of a hybrid green media wall, PixelGreen. PixelGreen will be retrofitted to an existing wall of a high-rise building to convey mediated, graphical, artistic content and provide edible plant micro-farming simultaneously. The physical proof of concept is given through a modular mock-up with a programmed UAV (unmanned aerial vehicle) serving as the 'agent' for constant updating of mediated content, maintenance and a regular farming cycle. The outcome of this approach provides preliminary insight into how to feasibly implement a hybrid green media wall with autonomous robotics and computation technology.
keywords Green wall; media facade; vertical farm; architectural intervention
series CAADRIA
email
last changed 2022/06/07 07:52

_id acadia19_100
id acadia19_100
authors Meibodi, Mania Aghae; Kladeftira, Marirena; Kyttas, Thodoris; Dillenburger, Benjamin
year 2019
title Bespoke Cast Facade
doi https://doi.org/10.52842/conf.acadia.2019.100
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 100-109
summary This paper presents a computational design approach and a digital fabrication method for a freeform aluminum facade made of prefabricated bespoke elements. The fabrication of customized metal elements for construction remains a challenge to this day. Traditional fabrication methods, such as sand casting, are labor intensive, while direct metal 3D printing has limitations for architecture where large-scale elements are needed. Our research investigates the use of Binder Jetting technology to 3D print sand molds for casting bespoke facade elements in aluminum. Using this approach, custom facade elements can be economically fabricated in a short time. By automating the generation of mold design for each element, an efficient digital process chain from design to fabrication was established. In search of a computational method to integrate casting constraints into the form generation and the design process, a differential growth algorithm was used. The application of this fabrication method (3D printed sand molds and casting) in architecture is demonstrated via the design and fabrication of a freeform facade-screen. The paper articulates the relationship between the fabrication process and the differential growth algorithm with a parallel process of adaptive design tools and fabrication tests to exhibit future potential of the method for architectural practice.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id ecaadesigradi2019_464
id ecaadesigradi2019_464
authors Santiago, Pedro
year 2019
title Evolutionary Optimization of Building Facade Form for Energy and Comfort in Urban Environment through BIM and Algorithmic Modeling - A case study in Porto, Portugal
doi https://doi.org/10.52842/conf.ecaade.2019.2.153
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 153-160
summary Consolidated urban areas usually present a challenge for the sustainable design decisions for the architect. The site, orientation and surrounding built environment compromise both passive and active systems, shortening the possible optimization measures available, leaving the designer with doubts as far as efficiency is concerned.BIM methodologies and visual programming languages have opened up a very wide range of design and analysis tools allowing the architect to make informed decisions based on data extracted from the models. Nonetheless it's optimization is through a slow process of trial and error, creating a significant limitation. This paper discusses the potentialities of the use of evolutionary algorithms to generate optimized solutions for facade solar orientation. A comparison between three different evolutionary algorithms aiming for solar radiation, inside average temperature allows to conclude the best result versus time consumed. Although under similar results the multi-objective EA represents the best compromise between time and final objective on the case study chosen for the paper. The interconnectivity in real time of BIM and algorithmic modeling softwares represents an advantage for time saving sustainable design decisions.
keywords BIM; Evolutionary Optimization; Sustainable design
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id acadia19_338
id acadia19_338
authors Aviv, Dorit; Houchois, Nicholas; Meggers, Forrest
year 2019
title Thermal Reality Capture
doi https://doi.org/10.52842/conf.acadia.2019.338
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 338-345
summary Architectural surfaces constantly emit radiant heat fluxes to their surroundings, a phenomenon that is wholly dependent on their geometry and material properties. Therefore, the capacity of 3D scanning techniques to capture the geometry of building surfaces should be extended to sense and capture the surfaces’ thermal behavior in real time. We present an innovative sensor, SMART (Spherical-Motion Average Radiant Temperature Sensor), which captures the thermal characteristics of the built environment by coupling laser geometry scanning with infrared surface temperature detection. Its novelty lies in the combination of the two sensor technologies into an analytical device for radiant temperature mapping. With a sensor-based dynamic thermal-surface model, it is possible to achieve representation and control over one of the major factors affecting human comfort. The results for a case-study of a 3D thermal scan conducted in the recently completed Lewis Center for the Arts at Princeton University are compared with simulation results based on a detailed BIM model of the same space.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_459
id ecaadesigradi2019_459
authors Bourdakis, Vassilis and Tsangrassoulis, Aris
year 2019
title Dynamic Façade Design Studio - From sketches to microcontrollers
doi https://doi.org/10.52842/conf.ecaade.2019.2.725
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 725-730
summary The paper presents the outcome of two semesters running a dynamic façade design studio (2014 and 2018) to 3rd and 4th year undergraduates, using computational design, simulation and visualization tools in designing environmentally activated building envelopes. The paper discusses the problems faced by the students and the teaching team throughout the design process and finally suggests ways of integrating microcontrollers as a teaching tool enabling students to comprehend the logic, complexities and overall mechanics of responsive environmental design.
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_407
id ecaadesigradi2019_407
authors Capone, Mara, Lanzara, Emanuela, Marsillo, Laura and Nome Silva, Carlos Alejandro
year 2019
title Responsive complex surfaces manufacturing using origami
doi https://doi.org/10.52842/conf.ecaade.2019.2.715
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 715-724
summary Contemporary architecture is considered a dynamic system, capable of adapting to different needs, from environmental to functional ones. The term 'Adaptable Architecture' describes an architecture from which specific components can be changed in relation to external stimuli. This change could be executed by the building system itself, transformed manually or it could be any other ability to be transformed by external forces (Leliveld et al.2017). Adaptability concept is therefore linked to motion and to recent advances in kinetic architecture. In our research we are studying the rules that we can use to design a kinetic architecture using origami. Parametric design allows us to digitally simulate the movement of origami structures, we are testing algorithmic modeling to generate doubly curvature surfaces starting from a designed surface and not from the process. Our main goal is to study the relationship between geometry, motion and shape. We are interested, in particular, in complex surface manufacture using origami technique to design a kinetic and reactive ceiling.
keywords Origami; complex surface manufacture; responsive architecture; Applied Geometry
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_375001 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002