CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 615

_id ecaadesigradi2019_506
id ecaadesigradi2019_506
authors Kontovourkis, Odysseas, Georgiou, Christos, Stroumpoulis, Andreas, Kounnis, Constantinos, Dionyses, Christos and Bagdati, Styliana
year 2019
title Implementing Augmented Reality for the Holographic Assembly of a Modular Shading Device
doi https://doi.org/10.52842/conf.ecaade.2019.3.149
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 149-158
summary The development of innovative digital design and fabrication tools for material processing and manufacturing of complex and non-standard forms, apart from their advantages, have brought a number of challenges. These might be related to the effectiveness and sustainable potential of implementation associated with environmental, cost and time-related parameters, particularly in cases of large number of elements construction and complex assembly. Augmented Reality (AR) is an emerging technology with great potential for implementation in the construction industry, since it can enhance the real world with additional digital information, and thus, can assist towards manufacture and assemble of these particular systems. This study presents an AR methodology for assembling a modular shading device and discusses the advantages and disadvantages that this application can bring to the Architecture, Engineering and Construction (AEC) industry by taking into account precision and construction time issues based on the handling of the process by skilled and unskilled users/workers. Our aim is to investigate the potential implementation of AR in the assembly, and consequently, in the construction process as a whole. Also, this study aims at exploring existing constraints of the technology and suggests ways of improvement.
keywords Augmented Reality; Holographic assembly; Modular system; Shading device
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

_id cf2019_013
id cf2019_013
authors Boychenko, Kristina
year 2019
title Agency of Interactive Architecture in socio-technological relationship through Actor-Network Theory
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 102
summary With fast development of new technologies built environment transitioned from a silent background of activities performed by users to another participant of those activities. Agency of interactive architecture is based on interpretation of input data, like users’ actions, their response to the spatial agency, data from environment or other actors, and changing its performance accordingly. Architectural components, environmental conditions and people are all treated as agents and closely correspond to Actor-Network Theory (ANT). This theory generally aims to reveal the complexities of socio-technological world. ANT incorporates a principle of generalized symmetry, it means that human and nonhuman (artifacts, organization structures, etc.) actors are incorporated into the same conceptual framework and assigned equal level of agency. By analysis of the agency of Interactive Architecture through ANT the paper provides insight on social role of this new emerging type of space and its influence on other participants on socio-technological relationship.
keywords Interactive architecture, Communication, Agency, Social, ActorNetwork Theory
series CAAD Futures
email
last changed 2019/07/29 14:08

_id ecaadesigradi2019_447
id ecaadesigradi2019_447
authors Jutraž, Anja, Kukec, Andreja, Otorepec, Peter, Lampiè, Ladi, Pohleven, Jure, Sandak, Jakub, Malovrh, Katja and Varkonji Sajn, Monika
year 2019
title Monitoring Environmental and Health Impact Data in BIM Models to Assure Healthy Living Environments
doi https://doi.org/10.52842/conf.ecaade.2019.2.287
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 287-294
summary Health is our wealth and we are rarely aware that the choice of living and working environment affects us. We spend most of our time in indoor environments so the quality of indoor air plays an important role in the maintenance of health and well-being. Moreover, Building Information Modeling (BIM) is emerging technology, which plays an essential role in collaboration among multi-discipline professions, time and cost saving, fabrication and construction as well as facilities management. However, it is not accepted by all planners yet. BIM could also offer a framework to help improving health and well-being of future users of the new building. The main aim of this paper is to monitor environmental and health impact data in BIM models to assure healthy living environments. First, the paper explores which environmental and health parameters could be measured in the indoor environment and which are already present in BIM models. Second, it explores options to expand BIM specifications to support monitoring environmental and health impact data in BIM models to assure healthy living environments.
keywords Building Information Modeling (BIM); environmental impact data; indoor comfort; health impact data; healthy living environment
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id caadria2019_081
id caadria2019_081
authors Sheldon, Aron, Dobbs, Tiara, Fabbri, Alessandra, Gardner, Nicole, Haeusler, M. Hank, Ramos, Cristina and Zavoleas, Yannis
year 2019
title Putting the AR in (AR)chitecture - Integrating voice recognition and gesture control for Augmented Reality interaction to enhance design practice
doi https://doi.org/10.52842/conf.caadria.2019.1.475
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 475-484
summary The architectural design process involves the development of spatial explorable 3D models, but the computer screen is main medium to communicate information to clients. Yet, Augmented Reality (AR) and Virtual Reality (VR) are the closest way to replicate our world, create new ones and interact within them. AR and VR headsets offer different ways to allow multiple stakeholders to effectively immerse themselves in 3D representations of design projects. But, to interact within these spaces and to perform design modifications, the development of new workflows is required. This research presents a new method where AR is used to visualize and edit project models using both voice recognition and hand-gestures software. While numerous projects are addressing software interoperability issues, user-interaction in an AR space remains a developing area of crucial relevance in research. Although hand-gestures are the usual form of model-state control employed in such systems, voice-control is emerging as a highly desirable and everyday form of human-computer interaction. This paper presents a plugin for the Hololens that allows the user to use voice and hand gestures to enhance the ability to work with 3D models and discusses and evaluates the project.
keywords Augmented Reality; Design Workflows; Interaction Design; Voice Recogition; Gesture Recognition
series CAADRIA
email
last changed 2022/06/07 07:56

_id acadia19_90
id acadia19_90
authors Forward, Kristen; Taron, Joshua
year 2019
title Waste Ornament
doi https://doi.org/10.52842/conf.acadia.2019.090
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 90-99
summary The emergence of computational design and fabrication tools has escalated the potentials of architectural ornamentation to become innovative, beautiful, and highly sustainable. Historically, ornament has been known to express character and reveal relationships between materiality, technological advances, and societal evolution. But ornament rapidly declined in the late 1800s in large part due to mechanization and modernist ideals of uniform, unadorned façade components. However, ornamentation in architecture has recently reappeared—a development that can be linked closely to advancements in computational design and digital fabrication. While these advancements offer the ability to create expressive architecture, their potential contribution to the improvement of sustainable architecture has largely been overlooked (Augusti-Juan and Habert 2017). This paper provides a brief revisitation to the history of ornament and investigates the impact of computation and automation on the production of contemporary ornament. The paper also attempts to catalog examples of how designers have used computational technologies to address the growing criticality of environmental concerns. Moreover, the paper presents the Waste Ornament project, a research platform that critically examines how we can leverage technology to augment the visual and sustainable performance of facade ornamentation to reduce energy use in buildings. Three sub-projects are identified as territories for further research into sustainable ornamentation, ranging from material sourcing, to high-performance buildings, to the development of a systematic upcycling process that transforms old facades into new ones. While the examples are not exhaustive, they attempt to interlace the general ideas of waste and ornament by addressing particular issues that converge at building envelopes.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id ecaadesigradi2019_176
id ecaadesigradi2019_176
authors Giantini, Guilherme, Negris de Souza, Larissa, Turczyn, Daniel and Celani, Gabriela
year 2019
title Environmental Ceramics - Merging the digital and the physical in the design of a performance -based facade system
doi https://doi.org/10.52842/conf.ecaade.2019.2.749
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 749-758
summary Environmental comfort and space occupancy are essential considerations in architectural design process. Façade systems deeply impact both aspects but are usually standardized. However, performance-based facade systems tackle these issues through computational design to devise non-homogeneous elements. This work proposes a ceramic facade system designed according to a performance-based process grounded on environmental analysis and parametric design to allow adaptation and geometric variation according to specific building demands on environmental comfort and functionality. In this process, the Design Science Research method guided the exploration of both design and evaluation, bridging the gap between theory and practice. Positive facade environmental performance were found from digital and physical models assessment in terms of radiation, illuminance, dampness (with ventilation) and temperature. Computational processes minimized radiation inside the building while maximized illuminance. Their association influenced on operative temperature, which dropped according to local dampness and material absorption. Accordingly, this design process associates not only environmental comfort and functionality concepts but also adaptability, flexibility, mass customization, personal fabrication, additive manufacturing concepts, being an example architectural design changes in the 4th Industrial Revolution.
keywords sustainable design; facade system; computational design; environmental analysis; evolutionary algorithm
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

_id ecaadesigradi2019_456
id ecaadesigradi2019_456
authors Pereira, In?s, Belém, Catarina and Leit?o, António
year 2019
title Optimizing Exhibition Spaces - A Multi-Objective Approach
doi https://doi.org/10.52842/conf.ecaade.2019.3.053
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 53-62
summary Nowadays, there is a widespread awareness towards environmental issues. This is already visible in architecture by the increasing number of analysis tools that evaluate different performance criteria. However, the application of these tools is usually restricted to the final design stages, conditioning the implementation of design changes. Performance-Based Design (PBD) is an approach that addresses this limitation. Through PBD, architects integrate analysis tools since early design stages to make informed decisions regarding the performance of their designs. Since the success of PBD highly depends on the number of evaluations that can be performed, these approaches usually end up benefiting from Parametric Models (PMs), which facilitate the generation of a wide range of design variations, by simply changing the values of the parameters. Furthermore, in order to more efficiently achieve a PBD approach, architects can take advantage of the combination between PMs, analysis tools, and optimization processes. In this paper, we explore this combination to optimize an exhibition space regarding its daylight performance and the material cost of the new elements intended for that space.
keywords Environmental Design; Algorithmic Design and Analysis; Performance-Based Design; Multi-Objective Optimization; Daylight Optimization
series eCAADeSIGraDi
email
last changed 2022/06/07 08:00

_id cdrf2021_286
id cdrf2021_286
authors Yimeng Wei, Areti Markopoulou, Yuanshuang Zhu,Eduardo Chamorro Martin, and Nikol Kirova
year 2021
title Additive Manufacture of Cellulose Based Bio-Material on Architectural Scale
doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_27
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

summary There are severe environmental and ecological issues once we evaluate the architecture industry with LCA (Life Cycle Assessment), such as emission of CO2 caused by necessary high temperature for producing cement and significant amounts of Construction Demolition Waste (CDW) in deteriorated and obsolete buildings. One of the ways to solve these problems is Bio-Material. CELLULOSE and CHITON is the 1st and 2nd abundant substance in nature (Duro-Royo, J.: Aguahoja_ProgrammableWater-based Biocomposites for Digital Design and Fabrication across Scales. MIT, pp. 1–3 (2019)), which means significantly potential for architectural dimension production. Meanwhile, renewability and biodegradability make it more conducive to the current problem of construction pollution. The purpose of this study is to explore Cellulose Based Biomaterial and bring it into architectural scale additive manufacture that engages with performance in the material development, with respect to time of solidification and control of shrinkage, as well as offering mechanical strength. At present, the experiments have proved the possibility of developing a cellulose-chitosan- based composite into 3D-Printing Construction Material (Sanandiya, N.D., Vijay, Y., Dimopoulou, M., Dritsas, S., Fernandez, J.G.: Large-scale additive manufacturing with bioinspired cellulosic materials. Sci. Rep. 8(1), 1–5 (2018)). Moreover, The research shows that the characteristics (Such as waterproof, bending, compression, tensile, transparency) of the composite can be enhanced by different additives (such as xanthan gum, paper fiber, flour), which means it can be customized into various architectural components based on Performance Directional Optimization. This solution has a positive effect on environmental impact reduction and is of great significance in putting the architectural construction industry into a more environment-friendly and smart state.
series cdrf
email
last changed 2022/09/29 07:53

_id acadia19_360
id acadia19_360
authors Dackiw, Jean-Nicolas Alois; Foltman, Andrzej; Garivani, Soroush; Kaseman, Keith; Sollazzo, Aldo
year 2019
title Cyber-physical UAV Navigation and Operation
doi https://doi.org/10.52842/conf.acadia.2019.360
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 360-367
summary The purpose of this paper is to present a work in progress pertaining to drone pose estimation and flight calibration. This paper intends to underline the increasing importance of determining alternative path planning instruments through accurate localization for Unmanned Aerial Vehicles (UAVs) with the purpose of achieving complex flight operations for the emerging applications of autonomous robotics in surveying, design, fabrication, and on-site operations. This research is based on the implementation of novel technologies such as Augmented Reality (AR), Robot Operating System (ROS), and computational approaches to define a drone calibration methodology, leveraging existing methods for drone path planning. Drones are equipped with measurement systems to provide geo-location and time information such as onboard Global Positioning System (GPS) sensors, and Inertial Measurement Units (IMU). As stated in previous research, to increase navigation capabilities, measurements and data processing algorithms have a critical role (Daponte et al. 2015). The outcome of this work in progress showcases valuable results in calculating and assessing accurate positioning for UAVs, and developing data exchanges in transmission, reception, and tracking.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_471
id ecaadesigradi2019_471
authors Güzelci, Orkan Zeynel, Alaçam, Sema and Güzelci, Handan
year 2019
title Trend Topics and Changing Concepts of Computational Design in the Last 16 Years - A content analysis
doi https://doi.org/10.52842/conf.ecaade.2019.1.423
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 423-430
summary This study argues that analysis of written content might be helpful to provide clues at a certain extent on the future directions of current research areas and the emergence of new study areas. In the scope of the study, the International Journal of Architectural Computing (IJAC) which has been a scientific platform covering many pioneer publications on education research in computer-aided architectural design (CAAD) field was selected as source content. Although the size of the source domain is limited, the analysis of abstracts and titles of 439 articles published in IJAC between 2003 and 2018 revealed promising results which can be examined under four characteristics: "constant", "emerging", "fading" and "solidifying" concepts. The tokens in the analysis process are words, phrases, topic nodes and links between topic nodes. The outcomes of this study might contribute to tracking the evolution of concepts their emergence or disusage in different time and contexts, and interrelations between different concepts.
keywords content analysis; computational design concepts; IJAC
series eCAADeSIGraDi
email
last changed 2022/06/07 07:49

_id acadia19_16
id acadia19_16
authors Hosmer, Tyson; Tigas, Panagiotis
year 2019
title Deep Reinforcement Learning for Autonomous Robotic Tensegrity (ART)
doi https://doi.org/10.52842/conf.acadia.2019.016
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 16-29
summary The research presented in this paper is part of a larger body of emerging research into embedding autonomy in the built environment. We develop a framework for designing and implementing effective autonomous architecture defined by three key properties: situated and embodied agency, facilitated variation, and intelligence.We present a novel application of Deep Reinforcement Learning to learn adaptable behaviours related to autonomous mobility, self-structuring, self-balancing, and spatial reconfiguration. Architectural robotic prototypes are physically developed with principles of embodied agency and facilitated variation. Physical properties and degrees of freedom are applied as constraints in a simulated physics-based environment where our simulation models are trained to achieve multiple objectives in changing environments. This holistic and generalizable approach to aligning deep reinforcement learning with physically reconfigurable robotic assembly systems takes into account both computational design and physical fabrication. Autonomous Robotic Tensegrity (ART) is presented as an extended case study project for developing our methodology. Our computational design system is developed in Unity3D with simulated multi-physics and deep reinforcement learning using Unity’s ML-agents framework. Topological rules of tensegrity are applied to develop assemblies with actuated tensile members. Single units and assemblies are trained for a series of policies using reinforcement learning in single-agent and multi-agent setups. Physical robotic prototypes are built and actuated to test simulated results.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:50

_id ecaadesigradi2019_422
id ecaadesigradi2019_422
authors Kepczynska-Walczak, Anetta
year 2019
title Building Information Modelling Implementation in Progress
doi https://doi.org/10.52842/conf.ecaade.2019.2.279
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 279-286
summary The paper presents a critical evaluation of the latest achievements in Building Information Modelling (BIM) implementation in academia, based on its adoption in Architecture curriculum at Lodz University of Technology, Poland. It reflects upon a significant shift in architectural practice which is strongly influencing ongoing modernization of higher education curricula. Furthermore, it undertakes the challenge to answer one of the main eCAADe2019 questions, viz.: "What is the impact of new technologies in architectural education and practice, and, what are the emerging opportunities and main threats to our discipline?" It contributes to the discussion on the place of BIM in academia - the controversial topic that still needs to be explored and debated to receive a comprehensive feedback and wider publicity.
keywords Building Information Modelling; BIM; digital technologies; collaborative design process; architectural curriculum
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id acadia19_542
id acadia19_542
authors Klemmt, Christoph; Pantic, Igor; Gheorghe, Andrei; Sebestyen, Adam
year 2019
title Discrete vs. Discretized Growth
doi https://doi.org/10.52842/conf.acadia.2019.542
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 542-553
summary Discrete computational growth simulations, such as Cellular Automata of Diffusion Limited Aggregation, appear often to be difficult to use for architectural design as their geometric outcomes tend to be difficult to control. On the contrary, free-form growth simulations such as Differential Growth or cell-based growth algorithms produce highly complex geometries that are difficult to construct at a larger scale. We, therefore, propose a methodology of discretized free-form Cellular Growth algorithms in order to utilize the emerging qualities of growth simulations for a feasible architectural design. The methodology has been tested within the framework of a workshop and resulted in the efficient construction of a large physical prototype.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id caadria2019_107
id caadria2019_107
authors McMeel, Dermott
year 2019
title Algorithms, AI and Architecture - Notes on an extinction
doi https://doi.org/10.52842/conf.caadria.2019.2.061
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 61-70
summary This paper reports on ongoing research investigating applications and methodologies for algorithms and artificial intelligence within urban design. Although the research recognises not all design is numerically quantifiable, it posits that certain aspects are. It provides evidence of algorithmically derived solutions-in many cases-being as good as those developed by a design professional. I situate the research within a series of examples of design quantification and description. Before discussing practical implementations of algorithmic spatial planning by the co-work start-up WeWork. These projects demonstrate an ongoing narrative to establish spatial syntactical rules for building and urban design. Finally, the paper reports on original research that aims to apply algorithmic space planning to urban design. A work-in-progress, at this stage the finding report on our methodology, preliminary implementation of an algorithmic strategy. It finally presents emerging data pointing to what might happen if the sector does not embrace algorithms and AI.
keywords Algorithm; Artificial Intelligence; Architecture; Urban Design
series CAADRIA
email
last changed 2022/06/07 07:58

_id acadia19_470
id acadia19_470
authors Meyboom, AnnaLisa; Correa, David; Krieg, Oliver David
year 2019
title Stressed Skin Wood Surface Structure
doi https://doi.org/10.52842/conf.acadia.2019.470
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 470-477
summary Innovation in parametric design and robotic fabrication is in reciprocal relationship with the investigation of new structural types that facilitated by this technology. The stressed skin structure has historically been used to create lightweight curved structures, mainly in engineering applications such as naval vessels, aircraft, and space shuttles. Stressed skin structures were first referred to by Fairbairn in 1849. In England, the first use of the structure was in the Mosquito night bomber of World War II. In the United States, stressed skin structures were used at the same time, when the Wright Patterson Air Force Base designed and fabricated the Vultee BT-15 fuselage using fiberglass-reinforced polyester as the face material and both glass-fabric honeycomb and balsa wood core. With the renewed interest in wood as a structural building material, due to its sustainable characteristics, new potentials for the use of stressed skin structures made from wood on building scales are emerging. The authors present a material informed system that is characterized by its adaptability to freeform curvature on exterior surfaces. A stressed skin system can employ thinner materials that can be bent in their elastic bending range and then fixed into place, leading to the ability to be architecturally malleable, structurally highly efficient, as well as easily buildable. The interstitial space can also be used for services. Advanced digital fabrication and robotic manufacturing methods further enhance this capability by enabling precisely fabricated tolerances and embedded assembly instructions; these are essential to fabricate complex, multi-component forms. Through a prototypical installation, the authors demonstrate and discuss the technology of the stressed skin structure in wood considering current digital design and fabrication technologies.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id ecaadesigradi2019_488
id ecaadesigradi2019_488
authors Naboni, Roberto and Kunic, Anja
year 2019
title A computational framework for the design and robotic manufacturing of complex wood structures
doi https://doi.org/10.52842/conf.ecaade.2019.3.189
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 189-196
summary The emerging paradigm of Industry 4.0 is rapidly expanding in the AEC sector, where emergent technologies are offering new possibilities. The use of collaborative robots is enabling processes of advanced fabrication, where humans and robots coexist and collaborate towards the co-creation of new building processes. This paper focuses on setting a conceptual framework and a computational workflow for the design and assembly of a novel type of engineered wood structures. The aim is advancing timber construction through complex tectonic configurations, which are informed by logics of robotic assembly, topology and material optimization, and combinatorial design. Starting from the conceptualization of robotic layered manufacturing for timber structures, this work presents the development of a digital twin applied to the voxel-based design of complex timber structures.
keywords Digital Materials; Robotic Assembly; Wood structures; Voxel-based design; Topology Optimization
series eCAADeSIGraDi
email
last changed 2022/06/07 07:59

_id caadria2019_632
id caadria2019_632
authors Raspall, Felix, Banon, Carlos and Tay, Jenn Chong
year 2019
title AirTable - Stainless steel printing for functional space frames
doi https://doi.org/10.52842/conf.caadria.2019.1.113
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 113-122
summary In architecture, the use of Additive Manufacturing (AM) technologies has been typically undermined by the long production time, elevated cost to manufacture parts and the low mechanical properties of 3D printed components. As AM becomes faster cheaper and stronger, opportunities for architectures that make creative use of AM to produce functional architectural pieces are emerging. In this paper, we propose and discuss the application of metal AM in complex space frames and the theoretical and practical implications. A functional lightweight metal table by the authors support our hypothesis that AM has a clear application in architecture and furniture design, and that space frames constitutes a promising structural typology. Specifically, we investigate how AM using metal as a material can be used in the application of fabrication of complex space frame structure components and connection details. The paper presents background research and our contribution to the digital design tools, the manufacturing and assembly processes, and the analysis of the performances of a parametrically designed and digitally fabricated large meeting table. Insights from this paper are deployed in an architectural scale project, AIRMesh, a metal 3D-printed pavilion set in the greenery of Gardens by the Bay, Singapore.
keywords Metal Additive Manufacturing; Space Frame; 3D Printing; Furniture Design
series CAADRIA
email
last changed 2022/06/07 08:00

_id ecaadesigradi2019_663
id ecaadesigradi2019_663
authors Sha, Yin
year 2019
title The Emerging of Spontaneous Materiality under Limited Digital Control
doi https://doi.org/10.52842/conf.ecaade.2019.2.553
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 553-558
summary This paper focuses on a new form making method of spontaneous materiality under limited digital control, as a supplement to the trending method of digital materiality. A specific emphasis is placed on the connection between material selection and sensational expression in the contemporary information and digital technologies era. Spontaneous materiality refers to the alteration of material attributes by natural forces. The current techniques of digital materiality rely on accurate digital control and inhibit from the intervention of any unpredictable material variable, which shows excessive scientific calculations and a loss of artistic articulation in design. In the new form making method proposed here, intentional yet limited digital control sets the material framework where the combination of soft and hard materials takes place. With the influence of gravity and spatiotemporal accumulation of selected materials, the fusion of softness and hardness brings a coexistence of different material states and qualities in one object. Thus an integration of shape and matter produces a blurring boundary between physical material and digital form, and more importantly, a sensational experience with expectational slippages of vision and touch. Additional to the ongoing discussion of computation, this design research expands the potential of computation by restricting its influence.
keywords Spontaneous materiality; limited digital control; sensational expression; sensuous quality; illusion
series eCAADeSIGraDi
email
last changed 2022/06/07 07:57

_id ecaadesigradi2019_126
id ecaadesigradi2019_126
authors Szabo, Anna, Lloret-Fritschi, Ena, Reiter, Lex, Gramazio, Fabio, Kohler, Matthias and J. Flatt, Robert
year 2019
title Revisiting Folded Forms with Digital Fabrication
doi https://doi.org/10.52842/conf.ecaade.2019.2.191
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 191-200
summary This paper discusses the potential of emerging digital fabrication techniques to produce material-efficient thin folded concrete structures. Although in the 50s and 60s folded structures provided a common optimal solution for spanning large distances without additional vertical supports, today, the number of these projects decreased significantly due to their complicated formworks and labour-intensive realization. Digital fabrication methods for concrete hold the promise to efficiently produce intricate folded mass-customized shapes with enhanced load-bearing capacity. This paper focuses on a robotic slip-forming process, Smart Dynamic Casting (SDC), to produce various thin-walled folded concrete elements with the same formwork providing smooth surface finish and gradual variations along the height. An empirical research methodology was applied to evaluate the fabrication feasibility of digitally designed thin folded geometries with one-to-one scale prototypes. Despite the discovered design limitations due to fabrication and material constraints, the exploration led to a new promising research direction, termed 'Digital Casting'.
keywords folded structures; digital concrete; Smart Dynamic Casting; set on demand; Digital Casting
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id caadria2019_411
id caadria2019_411
authors Yan, Liang, Fukuda, Tomohiro and Yabuki, Nobuyoshi
year 2019
title Intergrating UAV Development Technology with Augmented Reality toward Landscape Tele-Simulation
doi https://doi.org/10.52842/conf.caadria.2019.1.423
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 423-432
summary Augmented reality (AR) is an emerging landscape simulation technology being used in the construction industry to reduce losses in subsequent projects by reviewing the landscape before a building is completed. However, since AR projects virtual models into the real world through portable devices, the designer's review perspective and the number of people able to participate in the review process is limited. Therefore, a system that combines AR and unmanned aerial vehicle (UAV) development with telecommunications technology was designed and prototyped to use the UAV camera as the source of the video stream of AR. This frees the designer's review perspective through ground control and allows remote communication with off-site people, thus allowing more users site access and improving system usability. This paper details the construction of the integrated system, including the integrating of different development languages, environments, and mutual calls used, the AR and UAV development modules, the construction process of the telecommunication protocol, and mutual data interoperability.
keywords Landscape simulation; tele-simulation; Markerless Augmented Reality (AR); Unmanned Aerial Vehicle (UAV); telecommunication
series CAADRIA
email
last changed 2022/06/07 07:57

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_758082 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002