CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 623

_id ijac201917101
id ijac201917101
authors Makki, Mohammed; Milad Showkatbakhsh, Aiman Tabony and Michael Weinstock
year 2019
title Evolutionary algorithms for generating urban morphology: Variations and multiple objectives
source International Journal of Architectural Computing vol. 17 - no. 1, 5-35
summary Morphological variation of urban tissues, which evolve through the optimisation of multiple conflicting objectives, benefit significantly from the application of robust metaheuristic search processes that utilise search and optimisation mechanisms for design problems that have no clear single optimal solution, as well as a solution search space that is too large for a ‘brute-force’ manual approach. As such, and within the context of the experiments presented within this article, the rapidly changing environmental, climatic and demographic global conditions necessitates the utilisation of stochastic search processes for generating design solutions that optimise for multiple conflicting objectives by means of controlled and directed morphological variation within the urban fabric.
keywords Architecture, computation, evolution, biology, urban, variation, morphology, genetic algorithm, computer aided design
series journal
email
last changed 2019/08/07 14:04

_id ecaadesigradi2019_138
id ecaadesigradi2019_138
authors Kim, Yujin
year 2019
title Bioinspired Modularity in Evolutionary Computation and a Rule-Based Logic - Design Solutions for Shared Office Space
doi https://doi.org/10.52842/conf.ecaade.2019.2.341
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 341-348
summary Evolutionary computation is a population-based problem solver that is characterized by a stochastic optimization in order to solve both a single objective and multiple objectives. Previous evolutionary computational researches provided various design options and improved optimization through being evolved with fitness criteria, especially when multiple design objectives conflict with one another. In this paper, a rule-based algorithm was combined with the evolutionary computational process to propose an assembly logic of the modules and to improve an architectural building design in order to adapt to environmental changes. Two algorithms - a rule based and generative algorithm- proceeded simultaneously and provided various options as well as optimization in real time. For the experiment set-up, existing buildings were divided into each module; the modules were reinterpreted and reassembled with the logic driven by Evolutionary Developmental Biology. The conclusion is that when a rule based logic is combined with a developmental algorithm with a modular system, it is more efficient for the design process to be analyzed, evaluated, and optimized. The ultimate outcome provides various options in a short amount of time.
keywords Evolutionary computation; rule-based algorithm; modularity; reassembly
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id caadria2019_354
id caadria2019_354
authors Cheddadi, Mohammed Aqil, Hotta, Kensuke and Ikeda, Yasushi
year 2019
title An Urban Form-Finding Parametric Model Based on the Study of Spontaneous Urban Tissues
doi https://doi.org/10.52842/conf.caadria.2019.2.181
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 181-190
summary This research paper investigates the peculiarities of unplanned urban fabrics known for developing in a spontaneous way. By studying the characteristics of their urban form, a set of rules, functions, and objectives used for an experimental urban form-finding model are explored. Based on these features, the development of a parametric model seeks to grasp certain characteristics of spontaneous urban tissues in old Islamic cities and incorporate them into an experimental social housing proposal. By the use of genetic algorithms, the model aims to offer better adaptability and more diversification which will be to while still keeping a degree of preservation to the distinctive aspects that define those settlements. The use of a genetic solver is expected to be a problem-solving method that can simulate and offer a wide range of objective-based spatial that are considerably adaptive to particular urban contexts. In this study, we discuss the defining aspects and constituents of the urban form of these settings before interpreting them into algorithmic components to be incorporated in a parametric model.
keywords Spontaneous Urban tissues; Urban form-finding; Genetic algorithms; Islamic cities; Multiple-objective optimization
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2019_449
id caadria2019_449
authors Lin, Yuqiong, Yao, Jiawei, Huang, Chenyu and Yuan, Philip F.
year 2019
title The Future of Environmental Performance Architectural Design Based on Human-Computer Interaction - Prediction Generation Based on Physical Wind Tunnel and Neural Network Algorithms
doi https://doi.org/10.52842/conf.caadria.2019.2.633
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 633-642
summary As the medium of the environment, a building's environment performance-based generative design cannot be separated from intelligent data processing. Sustainable building design should seek an optimized form of environmental performance through a complete set of intelligent induction, autonomous analysis and feedback systems. This paper analyzed the trends in architectural design development in the era of algorithms and data and the status quo of building generative design based on environmental performance, as well as highlighting the importance of physical experiments. Furthermore, a design method for self-generating environmental performance of urban high-rise buildings by applying artificial intelligence neural network algorithms to a customized physical wind tunnel is proposed, which mainly includes a morphology parameter control and environmental data acquisition system, code translation of environmental evaluation rules and architecture of a neural network algorithm model. The design-oriented intelligent prediction can be generated directly from the target environmental requirements to the architectural forms.
keywords Physical wind tunnel; neural network algorithms; dynamic model; environmental performance; building morphology self-generation
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2019_080
id caadria2019_080
authors Green, Stephen, King, Geoff, Fabbri, Alessandra, Gardner, Nicole, Haeusler, M. Hank and Zavoleas, Yannis
year 2019
title Designing Out Urban Heat Islands - Optimisation of footpath materials with different albedo value through evolutionary algorithms to address urban heat island effect
doi https://doi.org/10.52842/conf.caadria.2019.2.603
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 603-612
summary The Urban Heat Island (UHI) effect is pronounced in dense urban developments, and particular an issue in the case study city of Parramatta, where temperature increases are impacting use of public space, health, and economic productivity. To mitigate against elevated temperatures in built up areas, this research explores the optimisation of paving material layouts through using an evolutionary algorithm. High albedo (reflective) materials are objectively cooler than low albedo (absorbent) materials yet tend to be more expensive. To reduce the amount of heat absorbent pavement materials whilst keeping in mind material costs, a range of materials of different albedo levels (reflectivity) can be assigned on the same path using an evolutionary algorithm to optimise the coolest materials for the cheapest price. Over the course of this paper, this research aim will be approached using visual scripting software such as Grasshopper to simulate daylight analysis and to generate an optimisation algorithm. Previous research on the topics of UHI have revealed different methods for solving specific problems, all focusing on using software analysis to determine an informed decision on construction. The paper contributes via a computational approach of material selection to battle urban heat island effects.
keywords urban heat island; albedo value; material properties; evolutionary algorithm ; landscape architecture
series CAADRIA
email
last changed 2022/06/07 07:51

_id caadria2019_643
id caadria2019_643
authors Hramyka, Alina, Grewal, Neil, Makki, Mohammed and Dillon, Brittney
year 2019
title Intelligent Territory - A responsive cooling tower and shading system for arid environments
doi https://doi.org/10.52842/conf.caadria.2019.2.571
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 571-580
summary Climatic change coupled with desertification processes impacting cities located around the Mediterranean, has raised serious questions for the capability of the affected cities to adapt to the rapidly changing environmental conditions. This research aims to design small-scale tower structures and shading devices in Nicosia, Cyprus through employing environmental analyses within a generative design process to create an intelligent, adaptive system. Guided by Bernoulli's principles, geometrical design parameters acquired from fluid simulations, alongside solar analyses of the existing city fabric, were used to generate an evolutionary algorithm for design. The research develops a methodology to facilitate environmental flows in urban architectural systems, generating cooling processes in arid environments that facilitate the adaptation of cities to changes in climatic and environmental conditions.
keywords CFD Simulation; Generative Design; Desertification; Passive cooling system
series CAADRIA
type normal paper
email
last changed 2022/06/07 07:51

_id caadria2019_091
id caadria2019_091
authors Ilha Pereira, Bianca
year 2019
title Master Planning with Urban Algorithms - Urban parameters, optimization and scenarios
doi https://doi.org/10.52842/conf.caadria.2019.2.051
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 51-60
summary The analogue definition of studies on urban planning can be very time consuming in the top-down process of designing. Keeping in mind the rapid urbanization we had in Brazil, and the continuous migration to the capital of the country located in Federal District, our aim is to use digital aid models that could be flexible and make quicker responses to urban issues. Algorithms as finite sequences of instructions have broad application. Designing cities demands the interpretation of variables linked to the territory and takes into account the current legislation in order to develop urban plans. This research creates an algorithmic basis using Grasshopper® to propose a mathematical solution for interpreting the existing space, and from it, to model urban scenes. The territorial analysis uses the user's perspective, with the interpretation of pre-existing characteristics, such as main roads, function and equipment distributions that make up the basic services. It is based on parameters extracted from theoretical repertoire and community facilities optimization through Galapagos evolutionary solver to deliver different proposed scenarios.
keywords urban algorithms; master planning; Grasshopper; Galapagos; Federal District
series CAADRIA
email
last changed 2022/06/07 07:49

_id sigradi2023_416
id sigradi2023_416
authors Machado Fagundes, Cristian Vinicius, Miotto Bruscato, Léia, Paiva Ponzio, Angelica and Chornobai, Sara Regiane
year 2023
title Parametric environment for internalization and classification of models generated by the Shap-E tool
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 1689–1698
summary Computing has been increasingly employed in design environments, primarily to perform calculations and logical decisions faster than humans could, enabling tasks that would be impossible or too time-consuming to execute manually. Various studies highlight the use of digital tools and technologies in diverse methods, such as parametric modeling and evolutionary algorithms, for exploring and optimizing alternatives in architecture, design, and engineering (Martino, 2015; Fagundes, 2019). Currently, there is a growing emergence of intelligent models that increasingly integrate computers into the design process. Demonstrating great potential for initial ideation, artificial intelligence (AI) models like Shap-E (Nichol et al., 2023) by OpenAI stand out. Although this model falls short of state-of-the-art sample quality, it is among the most efficient orders of magnitude for generating three-dimensional models through AI interfaces, offering practical balance for certain use cases. Thus, aiming to explore this gap, the presented study proposes an innovative design agency framework by employing Shap-E connected with parametric modeling in the design process. The generation tool has shown promising results; through generations of synthetic views conditioned by text captions, its final output is a mesh. However, due to the lack of topological information in models generated by Shap-E, we propose to fill this gap by transferring data to a parametric three-dimensional surface modeling environment. Consequently, this interaction's use aims to enable the transformation of the mesh into quantifiable surfaces, subject to collection and optimization of dimensional data of objects. Moreover, this work seeks to enable the creation of artificial databases through formal categorization of parameterized outputs using the K-means algorithm. For this purpose, the study methodologically orients itself in a four-step exploratory experimental process: (1) creation of models generated by Shap-E in a pressing manner; (2) use of parametric modeling to internalize models into the Grasshopper environment; (3) generation of optimized alternatives using the evolutionary algorithm (Biomorpher); (4) and classification of models using the K-means algorithm. Thus, the presented study proposes, through an environment of internalization and classification of models generated by the Shap-E tool, to contribute to the construction of a new design agency methodology in the decision-making process of design. So far, this research has resulted in the generation and classification of a diverse set of three-dimensional shapes. These shapes are grouped for potential applications in machine learning, in addition to providing insights for the refinement and detailed exploration of forms.
keywords Shap-E, Parametric Design, Evolutionary Algorithm, Synthetic Database, Artificial Intelligence
series SIGraDi
email
last changed 2024/03/08 14:09

_id ecaadesigradi2019_464
id ecaadesigradi2019_464
authors Santiago, Pedro
year 2019
title Evolutionary Optimization of Building Facade Form for Energy and Comfort in Urban Environment through BIM and Algorithmic Modeling - A case study in Porto, Portugal
doi https://doi.org/10.52842/conf.ecaade.2019.2.153
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 153-160
summary Consolidated urban areas usually present a challenge for the sustainable design decisions for the architect. The site, orientation and surrounding built environment compromise both passive and active systems, shortening the possible optimization measures available, leaving the designer with doubts as far as efficiency is concerned.BIM methodologies and visual programming languages have opened up a very wide range of design and analysis tools allowing the architect to make informed decisions based on data extracted from the models. Nonetheless it's optimization is through a slow process of trial and error, creating a significant limitation. This paper discusses the potentialities of the use of evolutionary algorithms to generate optimized solutions for facade solar orientation. A comparison between three different evolutionary algorithms aiming for solar radiation, inside average temperature allows to conclude the best result versus time consumed. Although under similar results the multi-objective EA represents the best compromise between time and final objective on the case study chosen for the paper. The interconnectivity in real time of BIM and algorithmic modeling softwares represents an advantage for time saving sustainable design decisions.
keywords BIM; Evolutionary Optimization; Sustainable design
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id caadria2019_298
id caadria2019_298
authors Karoji, Gen, Hotta, Kensuke, Hotta, Akito and Ikeda, Yasushi
year 2019
title Pedestrian Dynamic Behaviour Modeling - An application to commercial environment using RNN framework
doi https://doi.org/10.52842/conf.caadria.2019.1.281
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 281-290
summary The research of developing and improving pedestrian simulation model is essential in the process of analysing, evaluating and generating the architectural spaces that can not only satisfy circulation design condition but also promote sales by attracting customers. In terms of programming the simulation for commercial environment, current study attempts to use shortest-path algorithm generally and these results suggested that the model can reproduce approximate real trajectory within given environment. However, these studies also mentioned about necessity of considering shopper internal state and visual field. In this paper, in order to further incorporate the dynamic internal state (memory) into simulation model, we propose using iterative algorithm based on recurrent neural network (RNN) framework which allow it to exhibit temporal dynamic behaviour for a time sequence. Finally, we demonstrate the effectiveness of these algorithms we introduce and assess the combination of multiple algorithms and calibration of probability by comparing with trajectories of the experiment.
keywords Pedestrian simulation; Algorithm; RNN; Commercial environment
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2019_640
id caadria2019_640
authors Zhang, Ruocheng, Tong, Hanshuang, Huang, Weixin and Zhang, Runzhou
year 2019
title A Generative Design Method for the Functional Layout of Town Planning based on Multi-Agent System
doi https://doi.org/10.52842/conf.caadria.2019.2.231
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 231-240
summary In recent years, with the development of artificial intelligence and digital architecture, more architects begin to wonder how to generate urban planning and urban design through computational method. For the purpose of generating urban planning digitally using computational algorithms, we design a series of algorithms to develop a system that evaluates initial features of the site such as the strength of sunlight, water, landscape. These parameters related to the function zoning of the town were determined based on the data extracted from case studies. These data were integrated into a Markov chain mathematical model for the sake of analyzing the function of grid points. Finally, an algorithm of a multi-agent system was used to optimize the function that could evaluate the grade of each raster point of the town, which could be used to decide the function of a specific region.
keywords Generative design, Town planning,Multi-agent system, Data analysis
series CAADRIA
email
last changed 2022/06/07 07:57

_id caadria2019_399
id caadria2019_399
authors Houda, Maryam and Dias-da-Costa, Daniel
year 2019
title Data Informed Branch Typologies for Structurally Optimised Curvilinear Surfaces - 3D Printed Mesh Density System (MDS) as Formwork for Concrete Shell Structures.
doi https://doi.org/10.52842/conf.caadria.2019.2.401
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 401-410
summary This research sheds light on the advancement of additive fabrication and its relevance to the construction of curvilinear surfaces. The Mesh Density System (MDS) explored in this paper, is a novel 3D printed dual formwork and reinforcement system for free-form complex concrete geometries. It offers an alternate method to current formwork systems, essentially for thin shell structures. By using multi-cellular distribution and optimised branch structural arrangements, the system optimises form and concrete flow.
keywords Additive Fabrication; Concrete Shells; Evolutionary Algorithms; Permanent Formwork; Structural Optimisation
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2019_104
id caadria2019_104
authors Johan, Ryan, Chernyavsky, Michael, Fabbri, Alessandra, Gardner, Nicole, Haeusler, M. Hank and Zavoleas, Yannis
year 2019
title Building Intelligence Through Generative Design - Structural analysis and optimisation informed by material performance
doi https://doi.org/10.52842/conf.caadria.2019.1.371
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 371-380
summary Generative design (GD) is the process of defining high-level goals and constraints and then using computation to automatically explore a range of solutions that meet the desired requirements. Generative processes are intelligent ways to fast-track early design stages. The outcomes are analyzed simultaneously to inform decisions for architects and engineers. Whilst material properties have been defined as a driving agent within generative systems to calculate structure, material performance or structural capacity are not linked with early decision-making. In response, this paper sets a constrained approach upon traditional and non-traditional materials to validate the feasibility of structures. A GD tool is developed within Grasshopper using C-sharp, Karamaba3D, Galapagos and various engineering formulas. The result is a script, which prioritizes the structural qualities of material as a driving factor within generative systems and facilitates communication across different expertise.
keywords Intelligent systems; generative design; material properties; structural analysis; evolutionary algorithms
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2019_648
id caadria2019_648
authors Schumann, Kyle and Johns, Ryan Luke
year 2019
title Airforming - Adaptive Robotic Molding of Freeform Surfaces through Incremental Heat and Variable Pressure
doi https://doi.org/10.52842/conf.caadria.2019.1.033
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 33-42
summary Advances in computational modelling and digital fabrication have created both the need and ability for novel strategies of bringing digitally modeled doubly curved surfaces into reality. In this paper, we introduce airforming as a non-contact and formwork-free method for fabricating digitally designed surfaces through the iterative robotic application of heat and air pressure, coupled with sensory feedback. The process lies somewhere between incremental metal fabrication and traditional vacuum forming of plastics. Airforming does not add or subtract material or use any mold or formwork materials that would typically be discarded as waste. Instead, airforming shapes a plastic sheet through the controlled spatial application of heat and the control of pressure and vacuum within an airtight chamber beneath the material. Through our research, we develop and test a method for airforming through 3D scanning and point cloud analysis, evolutionary physics simulation solvers, and robotic-aided actuation and control of heating and pressure systems. Different variations and analysis and workflow methods are explored. We demonstrate and posit potential future applications for the airforming method.
keywords Robotic Production; Digital Fabrication; Incremental Forming; Thermoforming; Freeform Surface
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_409
id ecaadesigradi2019_409
authors Ulkucu, Yigitcan and Alacam, Sema
year 2019
title A Decision Support Framework for FLP in the Context of Industrial Facilities by the Use of BIM
doi https://doi.org/10.52842/conf.ecaade.2019.2.269
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 269-278
summary In today's industrial production environment, an effective solution to the FLP (Facility Layout Problem) plays a significant role in deciding whether a facility will hold a competitive advantage against others by its improved workflow. This advantage comes from an efficient placement of facilities, which mostly contributes to the overall business performance. In addition to that, regarding the need to answer the demands of the dynamic market, facilities need to adapt their processes and adapt their production line as quickly as possible. Therefore, a continuous search for a solution to the FLP is present. Although there are many space allocation programs available both as academic and commercial products, present approaches' availability in the BIM environment is not common yet. This paper introduces a decision support system framework which uses Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) to generate the most appropriate solution in Revit Dynamo environment both in the earlier phases of design and through the life-cycle of the facility. The proposed framework will specifically be responsible for generating solutions for equipment location in serial production facilities. As NSGA-II is a Multi-Objective Evolutionary Algorithm (MOEA), a second optimization criterion is defined as the optimization of the foreman's locations distributed on the shop floor. A Dynamo package named Refinery will hold the optimization and evaluation procedures.
keywords Facility Layout Problems; NSGA-II; Automated Space Layout
series eCAADeSIGraDi
email
last changed 2022/06/07 07:57

_id caadria2019_007
id caadria2019_007
authors Wang, Likai, Janssen, Patrick and Ji, Guohua
year 2019
title Diversity and Efficiency - A Hybrid Evolutionary Algorithm Combining an Island Model with a Steady-state Replacement Strategy
doi https://doi.org/10.52842/conf.caadria.2019.2.593
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 593-602
summary Standard evolutionary algorithms have limited use in practical architectural design tasks. This may be due to the poor search efficiency and the lack of diversity of the result. In order to overcome these weaknesses, this paper proposes a hybrid evolutionary algorithm combining an island model approach (parallel distributed technique) and a steady-state replacement strategy for maintaining a rich design diversity of the result while speeding up the search process. Through a demonstration, it is shown that the hybrid algorithm can effectively improve both design diversity and search efficiency.
keywords hybrid evolutionary algorithms; island models; steady-state replacements; design diversity; search efficiency
series CAADRIA
email
last changed 2022/06/07 07:58

_id ijac201917103
id ijac201917103
authors Bejarano, Andres; and Christoph Hoffmann
year 2019
title A generalized framework for designing topological interlocking configurations
source International Journal of Architectural Computing vol. 17 - no. 1, 53-73
summary A topological interlocking configuration is an arrangement of pieces shaped in such a way that the motion of any piece is blocked by its neighbors. A variety of interlocking configurations have been proposed for convex pieces that are arranged in a planar space. Published algorithms for creating a topological interlocking configuration start from a tessellation of the plane (e.g. squares colored as a checkerboard). For each square S of one color, a plane P through each edge E is considered, tilted by a given angle ? against the tessellated plane. This induces a face F supported by P and limited by other such planes nearby. Note that E is interior to the face. By adjacency, the squares of the other color have similarly delimiting faces. This algorithm generates a topological interlocking configuration of tetrahedra or antiprisms. When checked for correctness (i.e. for no overlap), it rests on the tessellation to be of squares. If the tessellation consists of rectangles, then the algorithm fails. If the tessellation is irregular, then the tilting angle is not uniform for each edge and must be determined, in the worst case, by trial and error. In this article, we propose a method for generating topological interlocking configurations in one single iteration over the tessellation or mesh using a height value and a center point type for each tile as parameters. The required angles are a function of the given height and selected center; therefore, angle choices are not required as an initial input. The configurations generated using our method are compared against the configurations generated using the angle-choice approach. The results show that the proposed method maintains the alignment of the pieces and preserves the co-planarity of the equatorial sections of the pieces. Furthermore, the proposed method opens a path of geometric analysis for topological interlocking configurations based on non-planar tessellations.
keywords Topological interlocking, surface tessellation, irregular geometry, parametric design, convex assembly
series journal
email
last changed 2019/08/07 14:04

_id ecaadesigradi2019_065
id ecaadesigradi2019_065
authors Fukuda, Tomohiro, Novak, Marcos and Fujii, Hiroyuki
year 2019
title Development of Segmentation-Rendering on Virtual Reality for Training Deep-learning, Simulating Landscapes and Advanced User Experience
doi https://doi.org/10.52842/conf.ecaade.2019.2.433
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 433-440
summary Virtual reality (VR) has been suggested for various purposes in the field of architecture, engineering, and construction (AEC). This research explores new roles for VR toward the super-smart society in the near future. In particular, we propose to develop post-processing rendering, segmentation-rendering and shadow-casting rendering algorithms for novel VR expressions to enable more versatile approaches than the normal photorealistic red, green, and blue (RGB) expressions. We succeeded in applying a wide variety of VR renderings in urban-design projects after implementation. The developed system can create images in real time to train deep-learning algorithms, can also be applied to landscape analysis and contribute to advanced user experience.
keywords Super-smart society; Virtual Reality; Segmentation; Deep-learning; Landscape simulation; Shader
series eCAADeSIGraDi
email
last changed 2022/06/07 07:50

_id caadria2019_172
id caadria2019_172
authors G. Belém, Catarina and Leitão, António
year 2019
title Conflicting Goals in Architecture - A study on Multi-Objective Optimisation
doi https://doi.org/10.52842/conf.caadria.2019.1.453
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 453-462
summary Sustainability and economic factors are driving architectural practice towards more efficient designs. The application of optimization to the design process becomes essential to reduce the environmental footprint of buildings, as well as to reduce their costs. Building design requirements tend to be conflicting, involving the optimization of multiple goals simultaneously, which often translates to different compromises among the goals. Ideally, to make more informed and intelligent decisions, the architect should be given a set of design variations representing a heterogeneous sample of the optimal compromises one can achieve. In this paper, we discuss different approaches to find such compromises and we focus on multi-objective optimization algorithms that produce the required design variants, applying them in the context of an architectural case study.
keywords Multi-Objective Optimization; Pareto Optimization
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2019_223
id caadria2019_223
authors Han, Yunsong, Pan, Yongjie, Zhao, Tianyu, Wang, Chunxing and Sun, Cheng
year 2019
title Use of UAV Photogrammetry to Estimate the Solar Energy Potential of Residential Buildings in Severe Cold Region
doi https://doi.org/10.52842/conf.caadria.2019.2.613
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 613-622
summary In this paper, a method based on UAV photogrammetry is proposed to estimate the solar energy potential of the building surface. This methodology goes from the acquired aerial images captured by the camera mounted on UAV. 3D model of the urban context in study area was extracted from the aerial images using SFM and MVS algorithms, which could be directly applied to the Ladybug plugin as analysis objects. Estimates of solar radiation are expressed by means of data visualization. The results showed that the UAV photogrammetry could demonstrate the geometry and texture of residential buildings precisely and the solar radiation simulation results showed significant spatial and temporal variations in solar radiation on residential buildings.
keywords Residential buildings; UAV photogrammetry; 3D reconstruction; Solar energy potential; Severe cold region
series CAADRIA
email
last changed 2022/06/07 07:50

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_890275 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002