CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 619

_id caadria2019_354
id caadria2019_354
authors Cheddadi, Mohammed Aqil, Hotta, Kensuke and Ikeda, Yasushi
year 2019
title An Urban Form-Finding Parametric Model Based on the Study of Spontaneous Urban Tissues
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 181-190
doi https://doi.org/10.52842/conf.caadria.2019.2.181
summary This research paper investigates the peculiarities of unplanned urban fabrics known for developing in a spontaneous way. By studying the characteristics of their urban form, a set of rules, functions, and objectives used for an experimental urban form-finding model are explored. Based on these features, the development of a parametric model seeks to grasp certain characteristics of spontaneous urban tissues in old Islamic cities and incorporate them into an experimental social housing proposal. By the use of genetic algorithms, the model aims to offer better adaptability and more diversification which will be to while still keeping a degree of preservation to the distinctive aspects that define those settlements. The use of a genetic solver is expected to be a problem-solving method that can simulate and offer a wide range of objective-based spatial that are considerably adaptive to particular urban contexts. In this study, we discuss the defining aspects and constituents of the urban form of these settings before interpreting them into algorithmic components to be incorporated in a parametric model.
keywords Spontaneous Urban tissues; Urban form-finding; Genetic algorithms; Islamic cities; Multiple-objective optimization
series CAADRIA
email
last changed 2022/06/07 07:55

_id sigradi2023_416
id sigradi2023_416
authors Machado Fagundes, Cristian Vinicius, Miotto Bruscato, Léia, Paiva Ponzio, Angelica and Chornobai, Sara Regiane
year 2023
title Parametric environment for internalization and classification of models generated by the Shap-E tool
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 1689–1698
summary Computing has been increasingly employed in design environments, primarily to perform calculations and logical decisions faster than humans could, enabling tasks that would be impossible or too time-consuming to execute manually. Various studies highlight the use of digital tools and technologies in diverse methods, such as parametric modeling and evolutionary algorithms, for exploring and optimizing alternatives in architecture, design, and engineering (Martino, 2015; Fagundes, 2019). Currently, there is a growing emergence of intelligent models that increasingly integrate computers into the design process. Demonstrating great potential for initial ideation, artificial intelligence (AI) models like Shap-E (Nichol et al., 2023) by OpenAI stand out. Although this model falls short of state-of-the-art sample quality, it is among the most efficient orders of magnitude for generating three-dimensional models through AI interfaces, offering practical balance for certain use cases. Thus, aiming to explore this gap, the presented study proposes an innovative design agency framework by employing Shap-E connected with parametric modeling in the design process. The generation tool has shown promising results; through generations of synthetic views conditioned by text captions, its final output is a mesh. However, due to the lack of topological information in models generated by Shap-E, we propose to fill this gap by transferring data to a parametric three-dimensional surface modeling environment. Consequently, this interaction's use aims to enable the transformation of the mesh into quantifiable surfaces, subject to collection and optimization of dimensional data of objects. Moreover, this work seeks to enable the creation of artificial databases through formal categorization of parameterized outputs using the K-means algorithm. For this purpose, the study methodologically orients itself in a four-step exploratory experimental process: (1) creation of models generated by Shap-E in a pressing manner; (2) use of parametric modeling to internalize models into the Grasshopper environment; (3) generation of optimized alternatives using the evolutionary algorithm (Biomorpher); (4) and classification of models using the K-means algorithm. Thus, the presented study proposes, through an environment of internalization and classification of models generated by the Shap-E tool, to contribute to the construction of a new design agency methodology in the decision-making process of design. So far, this research has resulted in the generation and classification of a diverse set of three-dimensional shapes. These shapes are grouped for potential applications in machine learning, in addition to providing insights for the refinement and detailed exploration of forms.
keywords Shap-E, Parametric Design, Evolutionary Algorithm, Synthetic Database, Artificial Intelligence
series SIGraDi
email
last changed 2024/03/08 14:09

_id caadria2022_74
id caadria2022_74
authors Mazza, Domenico, Kocaturk, Tuba and Kaljevic, Sofija
year 2022
title Geelong Digital Outdoor Museum (GDOM) - Photogrammetry as the Surface for a Portable Museum
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 677-686
doi https://doi.org/10.52842/conf.caadria.2022.1.677
summary This paper presents the development and evaluation of the Geelong Digital Outdoor Museum (GDOM) prototype accessible at https://gdom.mindlab.cloud. GDOM is a portable museum‚our novel adaptation of the distributed museum model (Stuedahl & Lowe, 2013) which uses mobile devices to present museum collections attached to physical sites. Our prototype defines a way for intangible heritage associated with tangible landscapes to be accessible via personal digital devices using 360 3D scanned digital replicas of physical landscapes (photogrammetric digital models). Our work aligns with efforts set out in the UN Sustainable Development Goal 11 (SDG 11) to safeguard cultural and natural heritage, by openly disseminating the heritage of physical sites seamlessly through the landscape. Using a research by design methodology we delivered our prototype as a modular web-based platform that leveraged the Matterport digital model platform. We qualitatively evaluated the prototype's usability and future development opportunities with 32 front-end users and 13 potential stakeholders. We received a wide gamut of responses that included: users feeling empowered by the greater accessibility, users finding a welcome common ground with comparable physical experiences, and users and potential stakeholders seeing the potential to re-create physical world experiences with modifications to the digital model along with on-site activation. Our potential stakeholders suggested ways in which GDOM could be integrated into the arts, education, and tourism to widen its utility and applicability. In future we see design potential in breaking out of the static presentation of the digital model and expanding our portable museum experience to work on-site as a complement to the remote experience. However, we recognise the way in which on-site activation integrate into users' typical activities can be tangential (McGookin et al., 2019) and this would necessitate further investigation into how to best integrate the experience on-site.
keywords Cultural Heritage, Intangible Heritage, Digital Heritage, Web Platform, 3D Scanning, Photogrammetry, Digital model, Portable Museum, Distributed Museum, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id sigradi2023_234
id sigradi2023_234
authors Santos, Ítalo, Andrade, Max, Zanchettin, Cleber and Rolim, Adriana
year 2023
title Machine learning applied in the evaluation of airport projects in Brazil based on BIM models
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 875–887
summary In a country with continental dimensions like Brazil, air transport plays a strategic role in the development of the country. In recent years, initiatives have been promoted to boost the development of air transport, among which the BIM BR strategy stands out, instituted by decree n-9.983 (2019), decree n-10.306 (2020) and more recently, the publication of the airport design manual (SAC, 2021). In this context, this work presents partial results of a doctoral research based on the Design Science Research (DSR) method for the application of Machine Learning (ML) techniques in the Artificial Intelligence (AI) subarea, aiming to support SAC airport project analysts in the phase of project evaluation. Based on a set of training and test data corresponding to airport projects, two ML algorithms were trained. Preliminary results indicate that the use of ML algorithms enables a new scenario to be explored by teams of airport design analysts in Brazil.
keywords Airports, Artificial intelligence, BIM, Evaluation, Machine learning.
series SIGraDi
email
last changed 2024/03/08 14:07

_id ecaade2023_259
id ecaade2023_259
authors Sonne-Frederiksen, Povl Filip, Larsen, Niels Martin and Buthke, Jan
year 2023
title Point Cloud Segmentation for Building Reuse - Construction of digital twins in early phase building reuse projects
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 327–336
doi https://doi.org/10.52842/conf.ecaade.2023.2.327
summary Point cloud processing has come a long way in the past years. Advances in computer vision (CV) and machine learning (ML) have enabled its automated recognition and processing. However, few of those developments have made it through to the Architecture, Engineering and Construction (AEC) industry. Here, optimizing those workflows can reduce time spent on early-phase projects, which otherwise could be spent on developing innovative design solutions. Simplifying the processing of building point cloud scans makes it more accessible and therefore, usable for design, planning and decision-making. Furthermore, automated processing can also ensure that point clouds are processed consistently and accurately, reducing the potential for human error. This work is part of a larger effort to optimize early-phase design processes to promote the reuse of vacant buildings. It focuses on technical solutions to automate the reconstruction of point clouds into a digital twin as a simplified solid 3D element model. In this paper, various ML approaches, among others KPConv Thomas et al. (2019), ShapeConv Cao et al. (2021) and Mask-RCNN He et al. (2017), are compared in their ability to apply semantic as well as instance segmentation to point clouds. Further it relies on the S3DIS Armeni et al. (2017), NYU v2 Silberman et al. (2012) and Matterport Ramakrishnan et al. (2021) data sets for training. Here, the authors aim to establish a workflow that reduces the effort for users to process their point clouds and obtain object-based models. The findings of this research show that although pure point cloud-based ML models enable a greater degree of flexibility, they incur a high computational cost. We found, that using RGB-D images for classifications and segmentation simplifies the complexity of the ML model but leads to additional requirements for the data set. These can be mitigated in the initial process of capturing the building or by extracting the depth data from the point cloud.
keywords Point Clouds, Machine Learning, Segmentation, Reuse, Digital Twins
series eCAADe
email
last changed 2023/12/10 10:49

_id ecaadesigradi2019_068
id ecaadesigradi2019_068
authors Agirbas, Asli
year 2019
title The Effect of Complex Wall Forms on the Room Acoustics - An experimental case study
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 97-102
doi https://doi.org/10.52842/conf.ecaade.2019.2.097
summary The complexity of the wall form affects the acoustics of the space. In this study, the effect of the complex form walls produced by nCloth dynamic simulation on the acoustics of an office space was investigated. In this research, reverberation time and Speech Transmission Index (STI) values of the pilot office space with one wall having complex form and the office space with all of the walls as flat were measured by acoustic simulation. As a result of the comparison, it has been found that, within speech intelligibility and reverberation time, the acoustics of the space with one wall having complex form is better than the acoustics of the space with all the walls as flat.
keywords nCloth; Acoustics; Complex forms; Modeling & simulation
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_449
id ecaadesigradi2019_449
authors Becerra Santacruz, Axel
year 2019
title The Architecture of ScarCity Game - The craft and the digital as an alternative design process
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 45-52
doi https://doi.org/10.52842/conf.ecaade.2019.3.045
summary The Architecture of ScarCity Game is a board game used as a pedagogical tool that challenges architecture students by involving them in a series of experimental design sessions to understand the design process of scarcity and the actual relation between the craft and the digital. This means "pragmatic delivery processes and material constraints, where the exchange between the artisan of handmade, representing local skills and technology of the digitally conceived is explored" (Huang 2013). The game focuses on understanding the different variables of the crafted design process of traditional communities under conditions of scarcity (Michel and Bevan 1992). This requires first analyzing the spatial environmental model of interaction, available human and natural resources, and the dynamic relationship of these variables in a digital era. In the first stage (Pre-Agency), the game set the concept of the craft by limiting students design exploration from a minimum possible perspective developing locally available resources and techniques. The key elements of the design process of traditional knowledge communities have to be identified (Preez 1984). In other words, this stage is driven by limited resources + chance + contingency. In the second stage (Post-Agency) students taking the architects´ role within this communities, have to speculate and explore the interface between the craft (local knowledge and low technological tools), and the digital represented by computation data, new technologies available and construction. This means the introduction of strategy + opportunity + chance as part of the design process. In this sense, the game has a life beyond its mechanics. This other life challenges the participants to exploit the possibilities of breaking the actual boundaries of design. The result is a tool to challenge conventional methods of teaching and leaning controlling a prescribed design process. It confronts the rules that professionals in this field take for granted. The game simulates a 'fake' reality by exploring in different ways with surveyed information. As a result, participants do not have anything 'real' to lose. Instead, they have all the freedom to innovate and be creative.
keywords Global south, scarcity, low tech, digital-craft, design process and innovation by challenge.
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id cf2019_016
id cf2019_016
authors Cardoso Llach, Daniel and Scott Donaldson
year 2019
title An Experimental Archaeology of CAD Using Software Reconstruction to Explore the Past and Future of ComputerAided Design
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 130
summary This paper proposes software reconstruction as a method to shed new light into the material, gestural, and sensual dimensions of computer-aided design technologies. Specifically, it shows how by combining historical research and creative prototyping this method can bring us closer to distant ways of seeing, touching, drawing, and designing—while raising new questions about the impact of CAD technologies on present-day architectural practices. It documents the development of two software reconstructions—of Ivan Sutherland’s “Sketchpad” and of Steven A. Coons’s “Coons Patch”—and reflects on the responses they elicited in the context of two exhibitions. The paper shows how software reconstruction can offer access to overlooked aspects of computer-aided design systems, specially their material and sensual dimensions, and how we may explore its broader potential for research, preservation, pedagogy, and speculative design of design technologies.
keywords Software Reconstruction, Media Archaeology, CAD, Sketchpad, Steven A. Coons, Ivan Sutherland, Computational Design History
series CAAD Futures
email
last changed 2019/07/29 14:08

_id caadria2019_657
id caadria2019_657
authors Chen, Zhewen, Zhang, Liming and Yuan, Philip F.
year 2019
title Innovative Design Approach to Optimized Performance on Large-Scale Robotic 3D-Printed Spatial Structure
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 451-460
doi https://doi.org/10.52842/conf.caadria.2019.2.451
summary This paper presents an innovative approach on designing large-scale spatial structure with automated robotic 3D-printing. The incipient design approach mainly focused on optimizing structural efficiency at an early design stage by transform the object into a discrete system, and the elements in this system contains unique structural parameters that corresponding to its topology results of stiffness distribution. Back in 2017, the design team already implemented this concept into an experimental project of Cloud Pavilion in Shanghai, China, and the 3D-printed spatial structure was partitioned into five zones represent different level of structure stiffness and filled with five kinds of unit toolpath accordingly. Through further research, an upgrade version, the project of Cloud Pavilion 2.0 is underway and will be completed in January 2019. A detailed description on innovative printing toolpath design in this project is conducted in this paper and explains how the toolpath shape effects its overall structural stiffness. This paper contributes knowledge on integrated design in the field of robotic 3D-printing and provides an alternative approach on robotic toolpath design combines with the optimized topological results.
keywords 3D-Printing; Robotic Fabrication; Structural Optimization; Discrete System; Toolpath Design
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia19_156
id acadia19_156
authors Dahy, Hanaa; Baszyñski, Piotr; Petrš, Jan
year 2019
title Experimental Biocomposite Pavilion
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 156-165
doi https://doi.org/10.52842/conf.acadia.2019.156
summary Excessive use of aggregate materials and metals in construction should be balanced by increasing use of construction materials from annually renewable resources based on natural lignocellulosic fibers. Parametric design tools gave here a possibility of using an alternative newly developed biocomposite material, for realization of complex geometries. Contemporary digital fabrication tools have enabled precise manufacturing possibilities and sophisticated geometry-making to take place that helped in obtaining high structural behavior of the overall global geometry of the discussed project. This paper presents a process of realizing an experimental structure made from Natural Fiber-Reinforced Polymers (NFRP)- also referred to as biocomposites, which were synthesized from lignocellulosic flexible core reinforced by 3D-veneer layers in a closed-moulding vacuum-assisted process. The biocomposite sandwich panels parameters were developed and defined before the final properties were imbedded in the parametric model. This paper showcases the multi-disciplinarity work between architects, structural engineers and material developers. It allowed the architects to work on the material development themselves and enabled to apply a new created design philosophy by the first author, namely applying ‘Materials as a Design-Tool’. The erected biocomposite segmented shell construction allowed a 1:1 validation for the whole design process, material development and the digital fabrication processes applied. The whole development has been reached after merging an ongoing industrial research project results with academic education at the school of architecture in Stuttgart-Germany.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id acadia19_130
id acadia19_130
authors Devadass, Pradeep; Heimig, Tobias; Stumm, Sven; Kerber, Ethan; Cokcan, Sigrid Brell
year 2019
title Robotic Constraints Informed Design Process
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 130-139
doi https://doi.org/10.52842/conf.acadia.2019.130
summary Promising results in efficiently producing highly complex non-standard designs have been accomplished by integrating robotic fabrication with parametric design. However, the project workflow is hampered due to the disconnect between designer and robotic fabricator. The design is most often developed by the designer independently from fabrication process constraints. This results in fabrication difficulties or even non manufacturable components. In this paper we explore the various constraints in robotic fabrication and assembly processes, analyze their influence on design, and propose a methodology which bridges the gap between parametric design and robotic production. Within our research we investigate the workspace constraints of robots, end effectors, and workpieces used for the fabrication of an experimental architectural project: “The Twisted Arch.” This research utilizes machine learning approaches to parameterize, quantify, and analyze each constraint while optimizing how those parameters impact the design output. The research aims to offer a better planning to production process by providing continuous feedback to the designer during early stages of the design process. This leads to a well-informed “manufacturable” design.
keywords Robotic Fabrication and Assembly, Mobile Robotics, Machine Learning, Parametric Design, Constraint Based Design.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id ijac201917404
id ijac201917404
authors Erdolu, Emek
year 2019
title Lines, triangles, and nets: A framework for designing input technologies and interaction techniques for computer-aided design
source International Journal of Architectural Computing vol. 17 - no. 4, 357-381
summary This article serves to the larger quest for increasing our capacities as designers, researchers, and scholars in understanding and developing human-computer interaction in computer-aided design. The central question is on how to ground the related research work in input technologies and interaction techniques for computer-aided design applications, which primarily focus on technology and implementation, within the actual territories of computer-aided design processes. To discuss that, the article first reviews a collection of research studies and projects that present input technologies and interaction techniques developed as alternative or complimentary to the mouse as used in computer-aided design applications. Based on the mode of interaction, these studies and projects are traced in four categories: hand-mediated systems that involve gesture- and touch-based techniques, multimodal systems that combine various ways of interaction including speech-based techniques, experimental systems such as brain-computer interaction and emotive-based techniques, and explorations in virtual reality- and augmented reality-based systems. The article then critically examines the limitations of these alternative systems related to the ways they have been envisioned, designed, and situated in studies as well as of the two existing research bases in human-computer interaction in which these studies could potentially be grounded and improved. The substance of examination is what is conceptualized as “frameworks of thought”—on variables and interrelations as elements of consideration within these efforts. Building upon the existing frameworks of thought, the final part discusses an alternative as a vehicle for incorporating layers of the material cultures of computer-aided design in designing, analyzing, and evaluating computer-aided design-geared input technologies and interaction techniques. The alternative framework offers the potential to help generate richer questions, considerations, and avenues of investigation.
keywords Computer-aided design (CAD), human-computer interaction (HCI), input technologies and interaction techniques, material culture of computer-aided design (CAD), architectural design, engineering design, computational design
series journal
email
last changed 2020/11/02 13:34

_id ecaadesigradi2019_389
id ecaadesigradi2019_389
authors Mohite, Ashish, Kochneva, Mariia and Kotnik, Toni
year 2019
title Speed of Deposition - Vehicle for structural and aesthetic expression in CAM
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 729-738
doi https://doi.org/10.52842/conf.ecaade.2019.1.729
summary This paper presents intermediate results of an experimental research directed towards development of a method that uses additive manufacturing technology as a generative agent in architectural design process. The primary technique is to variate speed of material deposition of a 3D printer in order to produce undetermined textural effects. These effects demonstrate local variation of material distribution, which is treated as a consequence of interaction between machining parameters and material properties. Current stage of inquiry is concerned with studying the impact of these textural artefacts on structure. Experiments demonstrate that manipulating distribution of matter locally results in more optimal structural performance, it solves printability issues of overhanging geometry without the need for additional supports and provides variation to the surface. The research suggests aesthetic and structural benefits of applying the developed method for mass-customized fabrication. It questions the linear thinking that is predominant in the field of 3D printing and provides an approach that articulates interaction between digital and material logics as it directs the formation of an object that is informed by both.
keywords digital fabrication; digital craft; texture; ceramic 3D printing
series eCAADeSIGraDi
email
last changed 2022/06/07 07:58

_id ijac201917302
id ijac201917302
authors Nisztuk, Maciej and Pawel B. Myszkowski
year 2019
title Hybrid Evolutionary Algorithm applied to Automated Floor Plan Generation 260
source International Journal of Architectural Computing vol. 17 - no. 3, 260-283
summary The article presents the application of Hybrid Evolutionary and Greedy-based algorithms to the problem of Automated Floor Plan Generation. The described optimization issue is part of a wider domain of Computer-Aided Architectural Design. The article covers the extensive description of the representation domain model (architectural canonical guidelines, user design requirements and constraints) and the explanation of proposed approach: problem representation, genetic algorithm operators, and fitness function definition. The research experimental procedures are based on real-world data: the architectural design guidelines being the design constraints and five real-world functional programs introduced and proposed as benchmarks. The article summarizes the implementation of the proposed approach, compares the Hybrid Evolutionary Algorithm experimental results with the Greedy-based algorithm, and suggests possible extensions and future research directions.
keywords Computer-Aided Architectural Design, optimization in CAAD, Automated Floor Plan Generation, Hybrid Evolutionary Algorithm, optimization, benchmark
series journal
email
last changed 2020/11/02 13:34

_id ecaadesigradi2019_177
id ecaadesigradi2019_177
authors Ostrowska-Wawryniuk, Karolina
year 2019
title BIM-Aided Prefabrication for Minimum Waste DIY Timber Houses
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 251-258
doi https://doi.org/10.52842/conf.ecaade.2019.1.251
summary The continuous housing shortage demands efficient ways of design and construction. In the context of rising construction standards and shrinking manpower, one of the possible answers to the problem is prefabrication oriented towards do-it-yourself (DIY) construction methods, which could contribute to the low and middle income housing supply in the market. The article covers the process of developing an experimental tool for aiding single-family housing design with the use of small-element solid timber prefabrication, suitable for DIY assembly. The presented tool uses the potential of BIM technology adapting a traditionally-designed house to the needs of prefabrication and optimizing it in terms of waste generated in the assembly process. The presented experiment was realized in the Autodesk Revit environment and incorporates custom generative scripts developed in Dynamo-for-Revit. The prototype analyzed an input model and converted it into a prefabricated alternative based on the user- and technology-specified boundary conditions. The prototype was tested on the example design of a two-story single-family house. The results compare the automated optimized model conversion with manual adaptation approach. The implemented algorithm allowed for reducing the construction waste by more than 50%.
keywords do-it-yourself construction; do-it-yourself house; generative BIM; BIM-aided prefabrication; small-panel timber prefabrication; self-help housing
series eCAADeSIGraDi
email
last changed 2022/06/07 08:00

_id lasg_whitepapers_2019_319
id lasg_whitepapers_2019_319
authors Shahi, Sheida
year 2019
title Adaptability in Residential Adaptive Reuse
source Living Architecture Systems Group White Papers 2019 [ISBN 978-1-988366-18-0] Riverside Architectural Press: Toronto, Canada 2019. pp.319 - 326
summary This research complements existing LASG focuses on experimental constructional systems, especially relating to the LASG Scaffolds stream. Finding feasible and applicable strategies for improving resilience and empowering adaptability in the built environment are the objectives of this research and are aligned with the long-term objectives of the LASG. Residential adaptive reuse and ideas of adaptability integrated within the refurbishment of existing residential buildings will be examined in this paper. The potential for existing buildings to be extended and renewed by repurposing and adjusting outer layers of envelope and balconies will be addressed. Within the Scaffolds stream, a main focus is on the constructional systems and spatial qualities of envelopes and skeleton systems that will be needed to support dynamic movement and programming with multiple functions. This research contributes to a practical base that can provide opportunities to implement LASG systems at full public scale.
keywords living architecture systems group, organicism, intelligent systems, design methods, engineering and art, new media art, interactive art, dissipative systems, technology, cognition, responsiveness, biomaterials, artificial natures, 4DSOUND, materials, virtual projections,
email
last changed 2019/07/29 14:02

_id ecaadesigradi2019_201
id ecaadesigradi2019_201
authors Torreblanca-Díaz, David A., Pati?o, Ever, Valencia-Escobar, Andrés and Urdinola, Diana
year 2019
title Form-finding methodology as strategy for formative research in industrial design education - Experimental techniques for the early creative phases of the product design process
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 45-54
doi https://doi.org/10.52842/conf.ecaade.2019.1.045
summary The experimental work of Antoni Gaudí and Frei Otto have been the precedents of what is currently called form-finding, a methodology based on rules and physical forces of nature that promotes principles of transformation as a result of the relationship between form, material and structure. This text shows the first results of the research titled as Form-finding methodology as strategy for formative research in industrial design education, with an empirical-analytical approach through action-research based method and using collaborative-participatory tools. As a result of the analysis of different cases in the first stage of the research, a basic methodological proposal is made, this methodological proposal is aimed to find new research possibilities for the identification of morphological characteristics to be used in design projects in the early creative phases (ideation and experimentation); the methodological proposal stages are the following: selection of technique, design of the experimentation, experimentation, analysis and discussion.
keywords Form-finding; Experimental morphology; Industrial design education; Formative research; Action-research
series eCAADeSIGraDi
email
last changed 2022/06/07 07:58

_id caadria2019_131
id caadria2019_131
authors Wang, Sihan, Xuereb Conti, Zack and Raspall, Felix
year 2019
title Optimization of Clay Mould for Concrete Casting Using Design of Experiments
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 283-292
doi https://doi.org/10.52842/conf.caadria.2019.2.283
summary This paper presents a research work to optimize the Additive Manufactured (AM) clay moulds for concrete casting utilizing the Design of Experiments (DOE). The objective of this approach is to understand the impacts of clay moulds' fabrication parameters on the displacement of cast concrete artefacts. This will contribute to efficient and economical clay mould production without losing accuracy. We adopt a DOE approach to reveal insights into the influence of critical fabrication parameters on the displacement of the final concrete artefact and thus, suggest critical parameter settings to ensure that the lateral pressure exerted by concrete in the vertical build-up is sustained. We demonstrate experimental results for a case study: vertical columns of circular cross-sections.
keywords Clay Mould; Additive Manufacturing; Robotic Fabrication; Design of Experiments
series CAADRIA
email
last changed 2022/06/07 07:58

_id ijac201917105
id ijac201917105
authors Agkathidis, Asterios; Yorgos Berdos and André Brown
year 2019
title Active membranes: 3D printing of elastic fibre patterns on pre-stretched textiles
source International Journal of Architectural Computing vol. 17 - no. 1, 74-87
summary There has been a steady growth, over several decades, in the deployment of fabrics in architectural applications; both in terms of quantity and variety of application. More recently, three-dimensional printing and additive manufacturing have added to the palette of technologies that designers in architecture and related disciplines can call upon. Here, we report on research that brings those two technologies together – the development of active membrane elements and structures. We show how these active membranes have been achieved by laminating three-dimensional printed elasto-plastic fibres onto pre-stretched textile membranes. We report on a set of experimentations involving one-, two- and multi-directional geometric arrangements that take TPU 95 and polypropylene filaments and apply them to Lycra textile sheets, to form active composite panels. The process involves a parameterised design, actualised through a fabrication process including stress-line simulation, fibre pattern three-dimensional printing and the lamination of embossed patterns onto a pre-stretched membrane; followed by the release of tension afterwards in order to allow controlled, self-generation of the final geometry. Our findings document the investigation into mapping between the initial two-dimensional geometries and their resulting three-dimensional doubly curved forms. We also reflect on the products of the resulting, partly serendipitous, design process.
keywords Digital fabrication, three-dimensional printing, parametric design, material computation, fabrics
series journal
email
last changed 2019/08/07 14:04

_id caadria2019_005
id caadria2019_005
authors Alva, Pradeep, Janssen, Patrick and Stouffs, Rudi
year 2019
title A Spatial Decision Support Framework For Planning - Creating Tool-Chains for Organisational Teams
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 11-20
doi https://doi.org/10.52842/conf.caadria.2019.2.011
summary In practice, most planners do not make significant use of planning support systems. Although significant research has been conducted, the focus tends to be on supporting individual tasks, and the outcomes are often the development of new stand-alone tools that are difficult to integrate into existing workflows. The knowledge contribution in this paper focuses on developing a novel spatial decision support framework focusing on the workflows and tool-chains that span across different teams within an organisation, with varying skill sets and objectives. In the proposed framework, the core decision-making process uses set decision parameters that are combined using a weighted decision tree. The framework is evaluated by developing and testing tool-chains for a real-world land suitability case study. The tool-chain was implemented on top of a GIS platform.
keywords GIS SDSS PSS; Planning Automation; Geoprocessing; Data Analytics; Geoinformatics
series CAADRIA
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_787053 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002