CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 626

_id ecaade2022_247
id ecaade2022_247
authors Güntepe, Rahma
year 2022
title Building with Expanded Cork - A novel monolithic building structure
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 29–36
doi https://doi.org/10.52842/conf.ecaade.2022.1.029
summary This research presents the development of a construction system for a solid expanded cork building envelope. The inspiration for this research is the “Cork House” built in 2019 by Matthew Barnett Howland and Oliver Wilton, who developed a Cork Construction Kit for a monolithic dry-jointed cork structure. The goal of this research is to analyze and develop different varieties of construction methods for a dry-joined cork building by combining and applying traditional masonry techniques. The objective is to generate a material-based design for cork construction elements trough prototyping and using a selection of digital tools such as 3D modeling and 3D printing. Expanded cork is a 100% plant-based material which, if applied correctly, has the capacity to be used as a load bearing, insulating and protective structure all at once. It has almost no environmental impact and is completely compostable. To maintain the material's compostable property, this construction system has to be developed without any kind of binders or mortar. Additionally, this more reduced and simplified form of construction will not only make it possible to build without any specific expertise, but at the same time ensure resources to be reused or composted at the end of building life.
keywords Expanded Cork, Cork, Material-Based Design, Masonry, Stereotomy, 3D Modeling, 3D Printing, Sustainable Material, Dry-Joint Construction
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2023_138
id ecaade2023_138
authors Crolla, Kristof and Wong, Nichol
year 2023
title Catenary Wooden Roof Structures: Precedent knowledge for future algorithmic design and construction optimisation
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 611–620
doi https://doi.org/10.52842/conf.ecaade.2023.1.611
summary The timber industry is expanding, including construction wood product applications such as glue-laminated wood products (R. Sikkema et al., 2023). To boost further utilisation of engineered wood products in architecture, further development and optimisation of related tectonic systems is required. Integration of digital design technologies in this endeavour presents opportunities for a more performative and spatially diverse architecture production, even in construction contexts typified by limited means and/or resources. This paper reports on historic precedent case study research that informs an ongoing larger study focussing on novel algorithmic methods for the design and production of lightweight, large-span, catenary glulam roof structures. Given their structural operation in full tension, catenary-based roof structures substantially reduce material needs when compared with those relying on straight beams (Wong and Crolla, 2019). Yet, the manufacture of their non-standard geometries typically requires costly bespoke hardware setups, having resulted in recent projects trending away from the more spatially engaging geometric experiments of the second half of the 20th century. The study hypothesis that the evolutionary design optimisation of this tectonic system has the potential to re-open and expand its practically available design solution space. This paper covers the review of a range of built projects employing catenary glulam roof system, starting from seminal historic precedents like the Festival Hall for the Swiss National Exhibition EXPO 1964 (A. Lozeron, Swiss, 1964) and the Wilkhahn Pavilions (Frei Otto, Germany, 1987), to contemporary examples, including the Grandview Heights Aquatic Centre (HCMA Architecture + Design, Canada, 2016). It analysis their structural concept, geometric and spatial complexity, fabrication and assembly protocols, applied construction detailing solutions, and more, with as aim to identify methods, tools, techniques, and construction details that can be taken forward in future research aimed at minimising construction complexity. Findings from this precedent study form the basis for the evolutionary-algorithmic design and construction method development that is part of the larger study. By expanding the tectonic system’s practically applicable architecture design solution space and facilitating architects’ access to a low-tech producible, spatially versatile, lightweight, eco-friendly, wooden roof structure typology, this study contributes to environmentally sustainable building.
keywords Precedent Studies, Light-weight architecture, Timber shell, Catenary, Algorithmic Optimisation, Glue-laminated timber
series eCAADe
email
last changed 2023/12/10 10:49

_id ecaadesigradi2019_319
id ecaadesigradi2019_319
authors Hemmerling, Marco
year 2019
title TransDigital - A cooperative educational project between architecture and crafts
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 341-348
doi https://doi.org/10.52842/conf.ecaade.2019.1.341
summary Even though the computer acts as an effective interface for the cooperation of various actors involved in the construction, the success of a project depends crucially on the socio-cultural characteristics and disciplinary boundary conditions of the people involved. In addition to the technological challenges of digitisation, different working methods, requirements and objectives often represent an obstacle to the successful cooperation and execution of architectural projects. This is where we as a university are challenged to point out new ways that are geared to the future requirements of our professions and, as it were, integrate individual professional profiles. Against this background, the cooperative education project brought together architecture students and trainees in the carpentry trade in order to help them gain an understanding for their respective differing approaches and for their own expertise at an early stage in training, and thus experience the added value of a cooperative working method. The teaching of digital design and planning methods as well as the use of computer-aided production technologies were the vehicles for networked cooperation and integrative learning.
keywords cooperative learning; interdisciplinary collaboration; architecture curriculum; digital design and fabrication
series eCAADeSIGraDi
email
last changed 2022/06/07 07:49

_id ecaadesigradi2019_495
id ecaadesigradi2019_495
authors Herrera, Pablo C and Braida, Frederico
year 2019
title Digital Technologies in Latin American Architecture - A Literature Review from the Third to the Fourth Industrial Revolution
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 431-440
doi https://doi.org/10.52842/conf.ecaade.2019.1.431
summary This paper approaches the literature that combines the fields of Architectural Computing and Architecture and Urbanism produced in Latin America during the first two decades of the 21st Century. The main objective is to map the advancement of Digital Technology in Architecture and Urbanism in the context of the Third Industrial Revolution, in order to identify perspectives towards a Fourth Industrial Revolution. As methodology was applied a chronological survey of the literature produced in book format, predominantly printed in the 21st Century by Latin Americans researches in leading digital themes. At last, it can be verified that the production is still very scarce and still has not incorporated, in a significant way, the themes related to the Fourth Industrial Revolution.
keywords Latin America; Digital Technologies; Industrial Revolution; Literature Review; Architectural Computing
series eCAADeSIGraDi
email
last changed 2022/06/07 07:50

_id caadria2019_439
id caadria2019_439
authors Lo, Tian Tian, Xiao, ZuoPeng and Yu, Henry
year 2019
title Designing 'Action Trigger' for Architecture Modelling Design within Immersive Virtual Reality
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 545-552
doi https://doi.org/10.52842/conf.caadria.2019.1.545
summary Architectural modelling is radically evolving with time. The introduction of VR into gaming and education has also encouraged architecture to integrate VR into its course of the design process. However, the current integration of Augmented Reality (AR) and Virtual Reality (VR) components is mostly limited to enhancing visualisation, especially towards the corresponding design tasks. This opportunity lead to an increase in attempts to bring the modelling process into the immersive environment. This paper aims to challenge the current design capabilities within the immersive environment and introduce a new interaction method between the human and the virtual reality. The research in human-computer interaction (HCI) has been ongoing for years till present day to observe how humans interact with computers and design technologies. The appearance of the smartphone has extended this HCI research towards hand-carried devices. With VR, although the hardware is still considered 'computer', the interaction is very much different. Since the human is immersed in the virtual environment, the interaction is already beyond the traditional keyboard and mouse. This paper responds to the conference theme by capitalising the power of VR technology to bring new methods of HVRI to the architecture design process.
keywords VR; HVRI; Interaction; Action Trigger; Immersive
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaadesigradi2019_660
id ecaadesigradi2019_660
authors Martins, Pedro Filipe, Nunes, Sandra, Fonseca de Campos, Paulo and Sousa, José Pedro
year 2019
title RETHINKING THE PHILIPS PAVILION THROUGH ROBOTIC HOT WIRE CUTTING. - An experimental prototype
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 235-244
doi https://doi.org/10.52842/conf.ecaade.2019.3.235
summary The Philips Pavilion by Le Corbusier and Jannis Xenaquis was a landmark project in thin shell concrete construction, only made possible by an experimental precasting strategy that deeply defined the architectural character of the hyperbolic paraboloid surfaces of the pavilion. Using this historic precedent this research presents a reinterpretation of the design of the Philips Pavilion, specifically tailored for Robotic Hot Wire Cutting technologies and a layered mold system, combining speed and material optimization towards more sustainable concrete construction processes. By documenting the realization of an experimental prototype at a 1:2 scale, this paper demonstrates the feasibility of the proposed strategy and its value in comparison with existing construction scale digital fabrication technologies for concrete.
keywords Digital Fabrication; Concrete; Robotic Hot Wire Cutting; Philips Pavilion
series eCAADeSIGraDi
email
last changed 2022/06/07 07:59

_id ecaadesigradi2019_057
id ecaadesigradi2019_057
authors Paiva, Ricardo Alexandre
year 2019
title DIGITAL MODERN - 'Towards a new materiality' of Modern Architecture in Fortaleza-Ceará (Brazil).
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 505-512
doi https://doi.org/10.52842/conf.ecaade.2019.1.505
summary The topic 'Digital Modern' is a metaphor for expressing the importance of the valorization of Modernism in the current stage of capitalism and in the context of the 4th Industrial Revolution, marked also by the inclusion of the virtual/digital in architecture design, "towards a new materiality". Linking, past, present and future, this paper aims to discuss the importance of documentation of the most emblematic modern works of Fortaleza, capital of Ceará (Brazil), using digital technologies, such as the BIM platform and 3D printing, with the goal of contributing to the valorization of memory and conservation of this important architectural heritage.
keywords digital modeling; modern architecture; BIM; digital documentation; Fortaleza-CE (Brazil)
series eCAADeSIGraDi
email
last changed 2022/06/07 08:00

_id ecaadesigradi2019_327
id ecaadesigradi2019_327
authors Silva, Daniela, Paio, Alexandra and Sousa, José Pedro
year 2019
title Reprogramming Practice - Revising design thinking through digital fabrication
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 379-386
doi https://doi.org/10.52842/conf.ecaade.2019.1.379
summary Questioning the importance and impact of design thinking methodologies in the architectural design studios is a backbone of architectural education in twenty first century. 3D printing and digital manufacturing are disruptive technologies that are changing architects and designers daily lives. These trends require new skills, based on a deep understanding of digital continuum from design to production, from generation to fabrication. This continuity transcends the merely instrumental contributions of a person-machine relationship to praxis, has begun to evolve as a medium that supports a continuous logic of design thinking and making. Design thinking methodologies associated with digital fabrication emerged as a leading technological and design issue of digital research and design. As designers, we are witnessing a no frontier between computational design and digital fabrication. For this paper is taken into consideration the work of two architecture studios that share a unique background on new methodologies by embracing the digital technology in their own practice. Their work reflects on new design methodologies facing the expansion of digital technology in architectural practice. This paper discusses the possibility of new design thinking methods driven by digital fabrication.
keywords Design thinking; Digital Fabrication; AEC; Collaborative Design; Architectural Practice
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id ijac201917201
id ijac201917201
authors Trilsbeck, Matthew; Nicole Gardner, Alessandra Fabbri, Matthias Hank Haeusler, Yannis Zavoleas and Mitchell Page
year 2019
title Meeting in the middle: Hybrid clay three-dimensional fabrication processes for bio-reef structures
source International Journal of Architectural Computing vol. 17 - no. 2, 148-165
summary Despite the relative accessibility of clay, its low cost and reputation as a robust and sustainable building material, clay three-dimensional printing remains an under-utilized digital fabrication technique in the production of architectural artefacts. Given this, numerous research projects have sought to extend the viability of clay three-dimensional digital fabrication by streamlining and automating workflows through computational methods and robotic technologies in ways that afford agency to the digital and machinic processes over human bodily skill. Three-dimensional printed clay has also gained prominence as a resilient material well suited to the design and fabrication of artificial reef and habitat- enhancing seawall structures for coastal marine environments depleted and disrupted by human activity, climate change and pollution. Still, these projects face similar challenges when three-dimensional printing complex forms from the highly plastic and somewhat unpredictable feed material of clay. In response, this article outlines a research project that seeks to improve the translation of complex geometries into physical clay artefacts through additive three- dimensional printing processes by drawing on the notion of digital craft and giving focus to human–machine interaction as a collaborative practice. Through the case study of the 1:1 scale fabrication of a computationally generated bio-reef structure using clay as a feed material and a readily available Delta Potterbot XLS-2 ceramic printer, the research project documents how, by exploiting the human ability to intuitively handle clay and adapt, and the machine’s ability to work efficiently and with precision, humans and machines can fabricate together . With the urgent need to develop more sustainable building practices and materials, this research contributes valuable knowledge of hybrid fabrication processes towards extending the accessibility and viability of clay three-dimensional printing as a resilient material and fabrication system.
keywords Clay three-dimensional printing, digital fabrication, hybrid fabrication, digital craft, human–machine interaction
series journal
email
last changed 2019/08/07 14:04

_id acadia19_278
id acadia19_278
authors Ca?izares, Galo
year 2019
title Digital Suprematism
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 278-287
doi https://doi.org/10.52842/conf.acadia.2019.278
summary It is widely held that sometime around 2006, the World Wide Web as we knew it mutated into Web 2.0. This colloquial label signaled a shift from an Internet designed for us to an Internet designed by us. Nowhere was this more explicitly stated than in Time Magazine’s 2006 Person of the Year selection: You. More than a decade later, Internet browsers have evolved into ubiquitous interfaces accessible from mobile devices, tablet computers, public kiosks, workstations, laptops, etc. It would, therefore, not be an overstatement to say that the browser is the most widespread content canvas in the world. Designers frequently use web browsers for their ability to exhibit and organize content. They are the sites for portfolios, announcements, magazines, and at times, discussions. But despite its flexibility and rich infrastructure, rarely is the browser used to generate design elements. Thanks to advanced web development languages like JavaScript and open-source code libraries, such as p5.JS, Matter.JS, and Three.JS, browsers now support interactive and spatial content. Typically, these tools are used to generate gimmicks or visual effects, such as the parallax illusion or the infinite scroll. But if we perceive the browser as a timebased picture plane, we can immediately recognize its architectonic potential. This paper puts forth a method for engaging the creative potential of web-based media and Internet browsers. Through example projects, I argue that the Internet browser is a highly complex spatial plane that warrants more architectural analysis and experimentation.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id caadria2019_636
id caadria2019_636
authors Engholt, Jon and Pigram, Dave
year 2019
title Tailored Flexibility - Reinforcing concrete fabric formwork with 3D printed plastics
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 53-62
doi https://doi.org/10.52842/conf.caadria.2019.1.053
summary The tailored flexibility project seeks to develop a construction system that combines flexible formwork with robotic 3D plastic printing resulting in novel approaches that expand the ranges of both techniques. Combining 3D printing and flexible formwork does not necessarily suggest a unified design space and the development depends on thorough interrogation and critical assessment of the physical intelligence that emerges between digital design, manufacturing processes and structural integrity. This paper describes the initial prototyping of compound material behaviour in formwork and concrete, following the implicit rationales revealed through iterations and variations of physical experimentation. Such iterative feedback from physical prototyping informs and facilitates a discussion of the relationship between the manufacturing process and the design tool: How does the ultimate function as concrete shuttering transform the 3D printing process and how does this transformation conversely affect the shuttering design? How does a hierarchy of involved processes emerge and which composite opportunities do the initial results suggest as a further development into a coherent construction system?
keywords concrete; flexible formwork; 3D printing; robotic fabrication
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaadesigradi2019_205
id ecaadesigradi2019_205
authors Campos, Filipe Medéia de, Leite, Raquel Magalh?es, Prudencio, Christina Figueiredo, Dias, Maíra Sebasti?o and Celani, Gabriela
year 2019
title Prototyping a Facade Component - Mixed technologies applied to fabrication
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 179-186
doi https://doi.org/10.52842/conf.ecaade.2019.1.179
summary During the last decade, mass customization in developing countries has been rising. The combination of conventional methods and materials with computer numeric control technologies offers a possibility of merging established craftsmanship to the production of personalized components with mass production efficiency. This article aims to present the development of a facade component prototype as a means to prospect possibilities for mixing parametric design and digital fabrication to casting, especially in developing countries like Brazil. This is an applied research with an exploratory and constructive approach, which was a result of a graduate class structured on a research by design basis. The conceptual development and prototyping of the artifact followed iterative cycles, considering its performance, fabrication methods and feasibility. The selection of materials that are commonly used in Brazilian architecture, like concrete, facilitates the component adoption as as a facade solution. The main conclusion emphasizes the need of involvement between academia and industry for the development of innovative products and processes, and highlights different levels of mass customization to include a range of manufacturing agents, from major industries to local craftspeople.
keywords digital fabrication; mass customization; prototyping; facade component
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id ijac201917105
id ijac201917105
authors Agkathidis, Asterios; Yorgos Berdos and André Brown
year 2019
title Active membranes: 3D printing of elastic fibre patterns on pre-stretched textiles
source International Journal of Architectural Computing vol. 17 - no. 1, 74-87
summary There has been a steady growth, over several decades, in the deployment of fabrics in architectural applications; both in terms of quantity and variety of application. More recently, three-dimensional printing and additive manufacturing have added to the palette of technologies that designers in architecture and related disciplines can call upon. Here, we report on research that brings those two technologies together – the development of active membrane elements and structures. We show how these active membranes have been achieved by laminating three-dimensional printed elasto-plastic fibres onto pre-stretched textile membranes. We report on a set of experimentations involving one-, two- and multi-directional geometric arrangements that take TPU 95 and polypropylene filaments and apply them to Lycra textile sheets, to form active composite panels. The process involves a parameterised design, actualised through a fabrication process including stress-line simulation, fibre pattern three-dimensional printing and the lamination of embossed patterns onto a pre-stretched membrane; followed by the release of tension afterwards in order to allow controlled, self-generation of the final geometry. Our findings document the investigation into mapping between the initial two-dimensional geometries and their resulting three-dimensional doubly curved forms. We also reflect on the products of the resulting, partly serendipitous, design process.
keywords Digital fabrication, three-dimensional printing, parametric design, material computation, fabrics
series journal
email
last changed 2019/08/07 14:04

_id ecaadesigradi2019_340
id ecaadesigradi2019_340
authors Azambuja Varela, Pedro and Sousa, José Pedro
year 2019
title Digital Expansion of Stereotomy - A semantic classification
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 387-396
doi https://doi.org/10.52842/conf.ecaade.2019.1.387
summary This paper presents a critical analysis and reflection on stereotomy with the purpose of updating its theoretical discourse. Having risen to the apex of architecture technological possibilities in the 17th century, stereotomic construction lost its importance in favour of iron, steel and other materials and construction techniques brought by the Industrial Revolution. More recently, much owing to the possibilities offered by digital technologies, a resurgence of interest in the subject has spawned various researches which bring stereotomy back to the architectural discourse. Although technological applications and design innovations in service of stereotomy have developed in multiple interesting paths, there is a lack of a common theory on the subject which is capable of relating these multiple apparently diverging stereotomic approaches between each other and, maybe even more importantly, to the classical practice which sparked the development this discipline. The research presented in this paper shows how the digital tools were instrumental in bringing this tradition to architecture contemporaneity and how a current stereotomy is largely supported by these technologies, while keeping strong relations to its classic origin.
keywords stereotomy; classification; history; digital
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id caadria2025_742
id caadria2025_742
authors Cristobal Olave, Diana and McLemore, Duane
year 2025
title Towards Immediacy and Participation: The promises of algorithmic construction
source Dagmar Reinhardt, Christiane M. Herr, Anastasia Globa, Jielin Chen, Taro ?Narahara, Nicolas Rogeau (eds.), ARCHITECTURAL INFORMATICS - Proceedings of the 30th CAADRIA Conference, Tokyo, 22-29 March 2025, Volume 1, pp. 571–580
summary This paper examines the use of computation in participatory housing design, and discusses its history, ideals and limitations. Drawing from archival material and personal interviews, the authors compare four case studies: The Calculation Center of the University of Madrid (1969-1972), the Stichting Architecten Research (1975-1990), WikiHouse (2011-present), and Automated Architecture (2019-present). This genealogy reveals an evolution from the use of mainframe computers to desktop computers then web tools and robotic arms, and from modular prefabricated systems to mass-customized digital fabrication. It argues that despite technological development, a combinatorial approach to choice and participation has persisted, where the main author designs an algorithmic object and secondary authors (or end-users) adapt and adjust some limited variable aspects at will. The paper demonstrates the possibilities and limitations of such an approach. It argues that while this methodology offers disruptive changes into the economic underpinnings of industrial production, it also limits user participation to the act of selecting from a pre-defined menu of alternatives.
keywords Computer-Aided Participatory Design, Algorithmic Design, Mass-Customization, Open-Source, Computational Design History
series CAADRIA
last changed 2025/03/21 12:05

_id ijac201917102
id ijac201917102
authors Cutellic, Pierre
year 2019
title Towards encoding shape features with visual event-related potential based brain–computer interface for generative design
source International Journal of Architectural Computing vol. 17 - no. 1, 88-102
summary This article will focus on abstracting and generalising a well-studied paradigm in visual, event-related potential based brain–computer interfaces, for the spelling of characters forming words, into the visually encoded discrimination of shape features forming design aggregates. After identifying typical technologies in neuroscience and neuropsychology of high interest for integrating fast cognitive responses into generative design and proposing the machine learning model of an ensemble of linear classifiers in order to tackle the challenging features that electroencephalography data carry, it will present experiments in encoding shape features for generative models by a mechanism of visual context updating and the computational implementation of vision as inverse graphics, to suggest that discriminative neural phenomena of event-related potentials such as P300 may be used in a visual articulation strategy for modelling in generative design.
keywords Generative design, machine learning, brain–computer interface, design computing and cognition, integrated cognition, neurodesign, shape, form and geometry, design concepts and strategies
series journal
email
last changed 2019/08/07 14:04

_id ecaadesigradi2019_357
id ecaadesigradi2019_357
authors Gönenç Sorguç, Arzu, Özgenel, Ça?lar F?rat, Kruºa Yemiºcio?lu, Müge, Küçüksubaº?, Fatih, Y?ld?r?m, Soner, Antonini, Ernesto, Bartolomei, Luigi, Ovesen, Nis and Stein?, Nicolai
year 2019
title STEAM Approach for Architecture Education
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 137-146
doi https://doi.org/10.52842/conf.ecaade.2019.1.137
summary Starting with the first founded university, higher education has been evolving continuously, yet the pace of this evolution is not as fast as the changes that we observe in practice. Today, this discrepancy is not only limited to the content of the curricula but also the expected skills and competencies. It is evident that 21st-century skills and competencies should be much different than the ones delivered in the 20th-century due to rapidly developing and spreading new design and information technologies. Each and every discipline has been in continuous search of the "right" way of formalization of education both content and skill wise. This paper focuses on architectural design education incorporating discussions on the role of STEAM (Science Technology, Engineering, Art and Mathematics). The study presents the outcomes of the ArchiSTEAM project, which is funded by EU Erasmus+ Programme, with the aim of re-positioning STEAM in architectural design education by contemplating 21st-century skills (a.k.a. survival skills) of architects. Three educational modules together with the andragogic approaches, learning objectives, contents, learning/teaching activities and assessment methods determined with respect to the skill sets defined for 21st-century architects.
keywords STEAM; Architectural Education; Survival Skills
series eCAADeSIGraDi
email
last changed 2022/06/07 07:50

_id ecaade2024_4
id ecaade2024_4
authors Irodotou, Louiza; Gkatzogiannis, Stefanos; Phocas, Marios C.; Tryfonos, George; Christoforou, Eftychios G.
year 2024
title Application of a Vertical Effective Crank–Slider Approach in Reconfigurable Buildings through Computer-Aided Algorithmic Modelling
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 1, pp. 421–430
doi https://doi.org/10.52842/conf.ecaade.2024.1.421
summary Elementary robotics mechanisms based on the effective crank–slider and four–bar kinematics methods have been applied in the past to develop architectural concepts of reconfigurable structures of planar rigid-bar linkages (Phocas et al., 2020; Phocas et al., 2019). The applications referred to planar structural systems interconnected in parallel to provide reconfigurable buildings with rectangular plan section. In enabling structural reconfigurability attributes within the spatial circular section buildings domain, a vertical setup of the basic crank–slider mechanism is proposed in the current paper. The kinematics mechanism is integrated on a column placed at the middle of an axisymmetric circular shaped spatial linkage structure. The definition of target case shapes of the structure is based on a series of numerical geometric analyses that consider certain architectural and construction criteria (i.e., number of structural members, length, system height, span, erectability etc.), as well as structural objectives (i.e., structural behavior improvement against predominant environmental actions) aiming to meet diverse operational requirements and lightweight construction. Computer-aided algorithmic modelling is used to analyze the system's kinematics, in order to provide a solid foundation and enable rapid adaptation for mechanisms that exhibit controlled reconfigurations. The analysis demonstrates the implementation of digital parametric design tools for the investigation of the kinematics of the system at a preliminary design stage, in avoiding thus time-demanding numerical analysis processes. The design process may further provide enhanced interdisciplinary performance-based design outcomes.
keywords Reconfigurable Structures, Spatial Linkage Structures, Kinematics, Parametric Associative Design
series eCAADe
email
last changed 2024/11/17 22:05

_id ijac201917104
id ijac201917104
authors Matthews, Linda and Gavin Perin
year 2019
title Exploiting ambiguity: The diffraction artefact and the architectural surface
source International Journal of Architectural Computing vol. 17 - no. 1, 103-115
summary In the contemporary ‘envisioned’ environment, Internet webcams, low- and high-altitude unmanned aerial vehicles and satellites are the new vantage points from which to construct the image of the city. Armed with hi-resolution digital optical technologies, these vantage points effectively constitute a ubiquitous visioning apparatus serving either the politics of promotion or surveillance. Given the political dimensions of this apparatus, it is important to note that this digital imaging of public urban space refers to the human visual system model. In order to mimic human vision, a set of algorithm patterns are used to direct numerous ‘soft’ and ‘hard’ technologies. Mimicry thus has a cost because this insistence on the human visual system model necessitates multiple transformative moments in the production and transmission pipeline. If each transformative moment opens a potential vulnerability within the visioning apparatus, then every glitch testifies to the artificiality of the image. Moreover, every glitch potentially interrupts the political narratives be communicated in contemporary image production and transmission. Paradoxically, the current use of scripting to create glitch-like images has reimagined glitches as a discrete aesthetic category. This article counters this aestheticisation by asserting glitching as a disruption in communication. The argument will rely on scaled tests produced by one of the authors who show how duplicating the digital algorithmic patterns used within the digital imaging pipeline on any exterior building surface glitches the visual data captured within that image. Referencing image-based techniques drawn from the Baroque and contemporary modes of camouflage, it will be argued that the visual aberrations created by these algorithm-based patterned facades can modify strategically the ‘emission signature’ of selected parts of the urban fabric. In this way, the glitch becomes a way to intercede in the digital portrayal of city.
keywords Surveillance, algorithms, diffraction, pattern, disruptive, optics
series journal
email
last changed 2019/08/07 14:04

_id ecaadesigradi2019_173
id ecaadesigradi2019_173
authors Matthias, Kulcke and Martens, Bob
year 2019
title Digital Empowerment for the "Experimental Bureau" - Work Based Learning in Architectural Education
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 117-126
doi https://doi.org/10.52842/conf.ecaade.2019.1.117
summary This paper describes the concept of the "Experimental Bureau" as a didactic environment aiming to deal with real-life design tasks within the framework of architectural education. Its main focus lies on the specific opportunities for digital empowerment of students who learn about the design process - sometimes even in the role of contractors - in real-life oriented project work. Thus the following questions come under scrutiny and discussion from an angle of work based learning: What kind of design problems are tackled in a meaningful way by students through the utilization of a digital strategy? What kind of software (or software mix) is chosen and what problems are addressed by the choice and handling of these digital tools? These questions are answered in a different way applying the format of the Experimental Bureau, driven by its real-life projects and client communication, in comparison to largely artificial tasks confined to the academic realm.
keywords design education; real-life case study; stakeholder communication; real-world experience; didactic approach
series eCAADeSIGraDi
email
last changed 2022/06/07 07:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_433678 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002