CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 624

_id cdrf2023_526
id cdrf2023_526
authors Eric Peterson, Bhavleen Kaur
year 2023
title Printing Compound-Curved Sandwich Structures with Robotic Multi-Bias Additive Manufacturing
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_44
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
summary A research team at Florida International University Robotics and Digital Fabrication Lab has developed a novel method for 3d-printing curved open grid core sandwich structures using a thermoplastic extruder mounted on a robotic arm. This print-on-print additive manufacturing (AM) method relies on the 3d modeling software Rhinoceros and its parametric software plugin Grasshopper with Kuka-Parametric Robotic Control (Kuka-PRC) to convert NURBS surfaces into multi-bias additive manufacturing (MBAM) toolpaths. While several high-profile projects including the University of Stuttgart ICD/ITKE Research Pavilions 2014–15 and 2016–17, ETH-Digital Building Technologies project Levis Ergon Chair 2018, and 3D printed chair using Robotic Hybrid Manufacturing at Institute of Advanced Architecture of Catalonia (IAAC) 2019, have previously demonstrated the feasibility of 3d printing with either MBAM or sandwich structures, this method for printing Compound-Curved Sandwich Structures with Robotic MBAM combines these methods offering the possibility to significantly reduce the weight of spanning or cantilevered surfaces by incorporating the structural logic of open grid-core sandwiches with MBAM toolpath printing. Often built with fiber reinforced plastics (FRP), sandwich structures are a common solution for thin wall construction of compound curved surfaces that require a high strength-to-weight ratio with applications including aerospace, wind energy, marine, automotive, transportation infrastructure, architecture, furniture, and sports equipment manufacturing. Typical practices for producing sandwich structures are labor intensive, involving a multi-stage process including (1) the design and fabrication of a mould, (2) the application of a surface substrate such as FRP, (3) the manual application of a light-weight grid-core material, and (4) application of a second surface substrate to complete the sandwich. There are several shortcomings to this moulded manufacturing method that affect both the formal outcome and the manufacturing process: moulds are often costly and labor intensive to build, formal geometric freedom is limited by the minimum draft angles required for successful removal from the mould, and customization and refinement of product lines can be limited by the need for moulds. While the most common material for this construction method is FRP, our proof-of-concept experiments relied on low-cost thermoplastic using a specially configured pellet extruder. While the method proved feasible for small representative examples there remain significant challenges to the successful deployment of this manufacturing method at larger scales that can only be addressed with additional research. The digital workflow includes the following steps: (1) Create a 3D digital model of the base surface in Rhino, (2) Generate toolpaths for laminar printing in Grasshopper by converting surfaces into lists of oriented points, (3) Generate the structural grid-core using the same process, (4) Orient the robot to align in the direction of the substructure geometric planes, (5) Print the grid core using MBAM toolpaths, (6) Repeat step 1 and 2 for printing the outer surface with appropriate adjustments to the extruder orientation. During the design and printing process, we encountered several challenges including selecting geometry suitable for testing, extruder orientation, calibration of the hot end and extrusion/movement speeds, and deviation between the computer model and the physical object on the build platen. Physical models varied from their digital counterparts by several millimeters due to material deformation in the extrusion and cooling process. Real-time deviation verification studies will likely improve the workflow in future studies.
series cdrf
email
last changed 2024/05/29 14:04

_id ecaadesigradi2019_073
id ecaadesigradi2019_073
authors Junk, Stefan, Niederhüfner, Michelle, Borkowska, Nina and Schrock, Steffen
year 2019
title Direct Digital Manufacturing of Architectural Models using Binder Jetting and Polyjet Modeling
doi https://doi.org/10.52842/conf.ecaade.2019.1.451
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 451-456
summary Today, architectural models are an important tool for illustrating drawn-on plans or computer-generated virtual models and making them understandable. In addition to the conventional methods for the manufacturing of physical models, a wide range of processes for Direct Digital Manufacturing (DDM) has spread rapidly in recent years. In order to facilitate the application of these new methods for architects, this contribution examines which technical and economic results are possible using 3D printed architectural models. Within a case study, it will be shown on the basis of a multi-storey detached house, which kind of data preparation is necessary. The DDM of architectural models will be demonstrated using two widespread techniques and the resulting costs will be compared.
keywords Architeetual model; CAAD; Direct Digital Manufacturing; Binder Jetting; Polyjet Modelling
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id ecaadesigradi2019_568
id ecaadesigradi2019_568
authors Rubinowicz, Pawe³
year 2019
title Protection of the waterfront panoramas based on computational 3D-analysis
doi https://doi.org/10.52842/conf.ecaade.2019.2.325
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 325-332
summary The article presents the application of the Visual Protection Surface (VPS) method in protecting waterfront panoramas. The digital analysis of visual impact, which is most frequently used in urban planning, assesses the impact of new investment on the cityscape. The study presented in the article is based on a reverse approach -determining the maximum height of buildings so new facilities do not distort protected vistas in a city, vistas which are crucial for the preservation of the city's cultural identity and spatial identification. The assessment of the application is based on a case study of Gdañsk, Poland, where a 3D LiDAR model was used. The study involved the use of software developed by the author (C++). It also analyzed VPS input parameters. Conclusions can be used to assess and verify analysis findings with different software (GIS/CAD). The article shows the potential application of the VPS method in urban planning.
keywords computational urban analyses; urban landscape protection; strategic views; tall buildings; 3D city models; VPS method
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id caadria2022_74
id caadria2022_74
authors Mazza, Domenico, Kocaturk, Tuba and Kaljevic, Sofija
year 2022
title Geelong Digital Outdoor Museum (GDOM) - Photogrammetry as the Surface for a Portable Museum
doi https://doi.org/10.52842/conf.caadria.2022.1.677
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 677-686
summary This paper presents the development and evaluation of the Geelong Digital Outdoor Museum (GDOM) prototype accessible at https://gdom.mindlab.cloud. GDOM is a portable museum‚our novel adaptation of the distributed museum model (Stuedahl & Lowe, 2013) which uses mobile devices to present museum collections attached to physical sites. Our prototype defines a way for intangible heritage associated with tangible landscapes to be accessible via personal digital devices using 360 3D scanned digital replicas of physical landscapes (photogrammetric digital models). Our work aligns with efforts set out in the UN Sustainable Development Goal 11 (SDG 11) to safeguard cultural and natural heritage, by openly disseminating the heritage of physical sites seamlessly through the landscape. Using a research by design methodology we delivered our prototype as a modular web-based platform that leveraged the Matterport digital model platform. We qualitatively evaluated the prototype's usability and future development opportunities with 32 front-end users and 13 potential stakeholders. We received a wide gamut of responses that included: users feeling empowered by the greater accessibility, users finding a welcome common ground with comparable physical experiences, and users and potential stakeholders seeing the potential to re-create physical world experiences with modifications to the digital model along with on-site activation. Our potential stakeholders suggested ways in which GDOM could be integrated into the arts, education, and tourism to widen its utility and applicability. In future we see design potential in breaking out of the static presentation of the digital model and expanding our portable museum experience to work on-site as a complement to the remote experience. However, we recognise the way in which on-site activation integrate into users' typical activities can be tangential (McGookin et al., 2019) and this would necessitate further investigation into how to best integrate the experience on-site.
keywords Cultural Heritage, Intangible Heritage, Digital Heritage, Web Platform, 3D Scanning, Photogrammetry, Digital model, Portable Museum, Distributed Museum, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id ecaadesigradi2019_168
id ecaadesigradi2019_168
authors Varinlioglu, Guzden and Halici, Suheyla Muge
year 2019
title Gamification of Heritage through Augmented Reality
doi https://doi.org/10.52842/conf.ecaade.2019.1.513
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 513-518
summary This paper focuses on a game on architectural heritage, possibilities for using gamification for conveying information through the reanimation of an ancient city. It proposes an immersive AR game involving the portrayal of cultural heritage through mobile devices. The game includes an AR application for Android devices which enabled rendering of 3D content in combination with camera input. This application is an independent game, tracking targets through GPS on a larger scale and using object recognition on a smaller scale. Our research aims to propose implementing game mechanics on an AR system at an archaeological site in order to increase visitors' interest, and promote the dissemination of cultural heritage.
keywords digital heritage; model-based tracking; augmented reality; gamification; public archaeology
series eCAADeSIGraDi
email
last changed 2022/06/07 07:58

_id acadia19_458
id acadia19_458
authors Bartosh, Amber; Anzalone, Phillip
year 2019
title Experimental Applications of Virtual Reality in Design Education
doi https://doi.org/10.52842/conf.acadia.2019.458
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 458-467
summary By introducing rapid reproduction, algorithms, and complex formal configurations, the digital era of architecture began a revolution. Architects incorporated the computational capacity of the computer into the design process both as a tool and as a critical component of the theories and practice of architecture as a whole. As we move into what has been coined “the second digital turn,” a period in which digital integration is considered ubiquitous, how can we consider, prepare, and propel towards the next technological innovation to significantly inform design thinking, representation, and manifestation? What tools are available to investigate this speculative design future and how can they be implemented? If the integration of technology in architecture is now a given, perhaps the next digital design era is not just digital but virtual. As new technologies emerge the potential for integrating the virtual design world with our physical senses affords novel possibilities for interactive design, simulation, analysis and construction. Hybrid reality technologies including virtual reality (VR) and augmented reality (AR), embody the potential to supersede conventional representation methodologies such as drawing, rendering, physical modeling, and animation. As they become increasingly pervasive, they will transform how we communicate ideas and data as spatial concepts. Further, they will reform the construct of the built environment when applied to both materiality and fabrication. This paper will describe the incorporation of VR as a tool in various classroom and laboratory settings, recognize the educational outcomes of this incorporation, and identify the potential relationship of these technologies to future academic exploration and application to practice.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_449
id ecaadesigradi2019_449
authors Becerra Santacruz, Axel
year 2019
title The Architecture of ScarCity Game - The craft and the digital as an alternative design process
doi https://doi.org/10.52842/conf.ecaade.2019.3.045
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 45-52
summary The Architecture of ScarCity Game is a board game used as a pedagogical tool that challenges architecture students by involving them in a series of experimental design sessions to understand the design process of scarcity and the actual relation between the craft and the digital. This means "pragmatic delivery processes and material constraints, where the exchange between the artisan of handmade, representing local skills and technology of the digitally conceived is explored" (Huang 2013). The game focuses on understanding the different variables of the crafted design process of traditional communities under conditions of scarcity (Michel and Bevan 1992). This requires first analyzing the spatial environmental model of interaction, available human and natural resources, and the dynamic relationship of these variables in a digital era. In the first stage (Pre-Agency), the game set the concept of the craft by limiting students design exploration from a minimum possible perspective developing locally available resources and techniques. The key elements of the design process of traditional knowledge communities have to be identified (Preez 1984). In other words, this stage is driven by limited resources + chance + contingency. In the second stage (Post-Agency) students taking the architects´ role within this communities, have to speculate and explore the interface between the craft (local knowledge and low technological tools), and the digital represented by computation data, new technologies available and construction. This means the introduction of strategy + opportunity + chance as part of the design process. In this sense, the game has a life beyond its mechanics. This other life challenges the participants to exploit the possibilities of breaking the actual boundaries of design. The result is a tool to challenge conventional methods of teaching and leaning controlling a prescribed design process. It confronts the rules that professionals in this field take for granted. The game simulates a 'fake' reality by exploring in different ways with surveyed information. As a result, participants do not have anything 'real' to lose. Instead, they have all the freedom to innovate and be creative.
keywords Global south, scarcity, low tech, digital-craft, design process and innovation by challenge.
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id acadia19_642
id acadia19_642
authors Chua, Pamela Dychengbeng; Hui, Lee Fu
year 2019
title Compliant Laminar Assemblies
doi https://doi.org/10.52842/conf.acadia.2019.642
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 642-653
summary This paper presents an innovative approach to the design and fabrication of three-dimensional objects from single-piece flat sheets, inspired by the origami technique of twist-closing. While in origami twist-closing is merely used to stabilize a cylindrical or spherical structure, ensuring it maintains its shape, this research investigates the potential of twist-closing as a multi-functional mechanism that also activates and controls the transformation of a planar surface into a predesigned three-dimensional form. This exploration is directed towards an intended application to stiff and brittle sheet materials that are difficult to shape through other processes. The methods we have developed draw mainly upon principles of lattice kirigami and laminar reciprocal structures. These are reflected in a workflow that integrates digital form-generation and fabrication-rationalization techniques to reference and apply these principles at every stage. Significant capabilities of the developed methodology include: (1) achievement of pseudo-double-curvature with brittle, stiff sheet materials; (2) stabilization in a 3D end-state as a frameless self-contained single-element laminar reciprocal structure—essentially a compliant mechanism; and (3) an ability to pre-encode 3D assembly constraints in a 2D cutout pattern, which guides a moldless fabrication process. The paper reviews the precedent geometric techniques and principles that comprise this method of 3D surface fabrication and describes a sample deployment of the method as applied to the design of laminar modules made of high-pressure laminate (HPL).
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id caadria2020_431
id caadria2020_431
authors Kim, Jong Bum, Balakrishnan, Bimal and Aman, Jayedi
year 2020
title Environmental Performance-based Community Development - A parametric simulation framework for Smart Growth development in the United States
doi https://doi.org/10.52842/conf.caadria.2020.1.873
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 873-882
summary Smart Growth is an urban design movement initiated by Environmental Protection Agency (EPA) in the United States (Smart Growth America, 2019). The regulations of Smart Growth control urban morphologies such as building height, use, position, section configurations, façade configurations, and materials, which have an explicit association with energy performances. This research aims to analyze and visualize the impact of Smart Growth developments on environmental performances. This paper presents a parametric modeling and simulation framework for Smart Growth developments that can model the potential community development scenarios, simulate the environmental footprints of each parcel, and visualize the results of modeling and simulation. We implemented and examined the proposed framework through a case study of two Smart Growth regulations: Columbia Unified Development Code (UDC) in Missouri (City of Columbia Missouri, 2017) and Overland Park Downtown Form-based Code (FBC) in Kansas City (City of Overland Park, 2017, 2019). Last, we discuss the implementation results, the limitations of the proposed framework, and the future work. We anticipate that the proposed method can improve stakeholders' understanding of how Smart Growth developments are associated with potential environmental footprints from an expeditious and thorough exploration of what-if scenarios of the multiple development schemes.
keywords Smart Growth; Building Information Modeling (BIM); Parametric Simulation; Solar Radiation
series CAADRIA
email
last changed 2022/06/07 07:52

_id cf2019_010
id cf2019_010
authors Lorenz, Clara-Larissa; Bleil De Souza, Spaeth and Packianather
year 2019
title Machine Learning in Design Exploration: An Investigation of the Sensitivities of ANN-based Daylight Predictions
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 75-87
summary The use of Artificial Neural Networks (ANNs) promises greater efficiency in the assessment of daylight situations than simulations. With the daylight factor under scrutiny and the recent adaptation of climate-based daylight metrics in British and European buildings standards, ANNs provide a possibility for instantaneous feedback on otherwise time-consuming performance metrices. This study demonstrates the application of ANNs as prediction systems in design exploration. A specific focus of the research is the flexibility of ANNs, their reliability and sensitivity to changes.
keywords Artificial neural networks, atria, climate-based daylight modeling, daylight autonomy, daylight performance, parametric design
series CAAD Futures
email
last changed 2019/07/29 14:08

_id sigradi2023_416
id sigradi2023_416
authors Machado Fagundes, Cristian Vinicius, Miotto Bruscato, Léia, Paiva Ponzio, Angelica and Chornobai, Sara Regiane
year 2023
title Parametric environment for internalization and classification of models generated by the Shap-E tool
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 1689–1698
summary Computing has been increasingly employed in design environments, primarily to perform calculations and logical decisions faster than humans could, enabling tasks that would be impossible or too time-consuming to execute manually. Various studies highlight the use of digital tools and technologies in diverse methods, such as parametric modeling and evolutionary algorithms, for exploring and optimizing alternatives in architecture, design, and engineering (Martino, 2015; Fagundes, 2019). Currently, there is a growing emergence of intelligent models that increasingly integrate computers into the design process. Demonstrating great potential for initial ideation, artificial intelligence (AI) models like Shap-E (Nichol et al., 2023) by OpenAI stand out. Although this model falls short of state-of-the-art sample quality, it is among the most efficient orders of magnitude for generating three-dimensional models through AI interfaces, offering practical balance for certain use cases. Thus, aiming to explore this gap, the presented study proposes an innovative design agency framework by employing Shap-E connected with parametric modeling in the design process. The generation tool has shown promising results; through generations of synthetic views conditioned by text captions, its final output is a mesh. However, due to the lack of topological information in models generated by Shap-E, we propose to fill this gap by transferring data to a parametric three-dimensional surface modeling environment. Consequently, this interaction's use aims to enable the transformation of the mesh into quantifiable surfaces, subject to collection and optimization of dimensional data of objects. Moreover, this work seeks to enable the creation of artificial databases through formal categorization of parameterized outputs using the K-means algorithm. For this purpose, the study methodologically orients itself in a four-step exploratory experimental process: (1) creation of models generated by Shap-E in a pressing manner; (2) use of parametric modeling to internalize models into the Grasshopper environment; (3) generation of optimized alternatives using the evolutionary algorithm (Biomorpher); (4) and classification of models using the K-means algorithm. Thus, the presented study proposes, through an environment of internalization and classification of models generated by the Shap-E tool, to contribute to the construction of a new design agency methodology in the decision-making process of design. So far, this research has resulted in the generation and classification of a diverse set of three-dimensional shapes. These shapes are grouped for potential applications in machine learning, in addition to providing insights for the refinement and detailed exploration of forms.
keywords Shap-E, Parametric Design, Evolutionary Algorithm, Synthetic Database, Artificial Intelligence
series SIGraDi
email
last changed 2024/03/08 14:09

_id ecaadesigradi2019_522
id ecaadesigradi2019_522
authors Shi, Ji, Cho, Yesul, Taylor, Meghan and Correa, David
year 2019
title Guiding Instability - A craft-based approach for modular 3D clay printed masonry screen units
doi https://doi.org/10.52842/conf.ecaade.2019.1.477
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 477-484
summary As the field of 3D printing technologies expand, complex materials that require a deeper engagement, due to their more unstable properties, are of increasing interest. Cementitious composites, clays and other ceramic materials are of particular relevance: their potential for fast large-scale fabrication and local availability position these technologies at the forefront of expansion for 3D printing. Despite the extensive benefits inherent to clays, their irregularities and the largely unpredictable deviations that occur when printing from a digital model, currently limit design and architectural-scale applications. However, these deformations could conversely be harnessed as design generators, opening up avenues for both aesthetic and functional exploration. The paper presents an investigation into the inherent material instabilities of the clay 3D printing process for the development of an architectural masonry facade system. Through an iterative process based in craft, a new capacity for material expression and authenticity beyond previous manufacturing capabilities can become actualized.
keywords 3D printing; digital craft; clay; material computation; uncertainty; hybrid fabrication
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_602
id ecaadesigradi2019_602
authors Toulkeridou, Varvara
year 2019
title Steps towards AI augmented parametric modeling systems for supporting design exploration
doi https://doi.org/10.52842/conf.ecaade.2019.1.081
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 81-90
summary Dataflow parametric modeling environments have become popular as exploratory tools due to them allowing the variational exploration of a design by controlling the parameters of its parametric model schema. However, the nature of these systems requires designers to prematurely commit to a structure and hierarchy of geometric relationships, which makes them inflexible when it comes to design exploration that requires topological changes to the parametric modeling graph. This paper is a first step towards augmenting parametric modeling systems via the use of machine learning for assisting the user towards topological exploration. In particular, this paper describes an approach where Long Short-Term Memory recurrent neural networks, trained on a data set of parametric modeling graphs, are used as generative systems for suggesting alternative dataflow graph paths to the parametric model under development.
keywords design exploration; visual programming; machine learning
series eCAADeSIGraDi
email
last changed 2022/06/07 07:58

_id ecaadesigradi2019_140
id ecaadesigradi2019_140
authors Zahedi, Ata and Petzold, Frank
year 2019
title Interaction with analysis and simulation methods via minimized computer-readable BIM-based communication protocol
doi https://doi.org/10.52842/conf.ecaade.2019.1.241
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 241-250
summary The early stages of building design are characterized by a continuous endeavor for the development of variants and their evaluation and consistent detailing. The concept of adaptive detailing aims to enable the architect to evaluate and compare design variants which are partially incomplete and vague (Zahedi and Petzold 2018b). This paper discusses a minimized communication protocol based on BIM, which enables computer-readable interactions between the architect and different domain-experts (representing various analysis and simulation procedures) (Zahedi and Petzold 2018a). This comprises the selection of simulation procedures as well as any necessary consolidation of the information content according to the requirements of the simulations. Any additions required on the part of the simulation procedures are visually prepared globally or space-and component-oriented respectively, in order to perform detailing of a building model in a targeted way. Moreover, this paper proposes various supportive methods for visual representation and exploration of analysis results.
keywords Building Information Modeling (BIM); Early Stages of Design; Adaptive Detailing; Minimized Communication Protocol
series eCAADeSIGraDi
email
last changed 2022/06/07 07:57

_id ijac201917206
id ijac201917206
authors Ackerman, Aidan; Jonathan Cave, Chien-Yu Lin and Kyle Stillwell
year 2019
title Computational modeling for climate change: Simulating and visualizing a resilient landscape architecture design approach
source International Journal of Architectural Computing vol. 17 - no. 2, 125-147
summary Coastlines are changing, wildfires are raging, cities are getting hotter, and spatial designers are charged with the task of designing to mitigate these unknowns. This research examines computational digital workflows to understand and alleviate the impacts of climate change on urban landscapes. The methodology includes two separate simulation and visualization workflows. The first workflow uses an animated particle fluid simulator in combination with geographic information systems data, Photoshop software, and three-dimensional modeling and animation software to simulate erosion and sedimentation patterns, coastal inundation, and sea level rise. The second workflow integrates building information modeling data, computational fluid dynamics simulators, and parameters from EnergyPlus and Landsat to produce typologies and strategies for mitigating urban heat island effects. The effectiveness of these workflows is demonstrated by inserting design prototypes into modeled environments to visualize their success or failure. The result of these efforts is a suite of workflows which have the potential to vastly improve the efficacy with which architects and landscape architects use existing data to address the urgency of climate change.
keywords Modeling, simulation, environment, ecosystem, landscape, climate change, sea level rise, urban heat island
series journal
email
last changed 2019/08/07 14:04

_id ijac201917105
id ijac201917105
authors Agkathidis, Asterios; Yorgos Berdos and André Brown
year 2019
title Active membranes: 3D printing of elastic fibre patterns on pre-stretched textiles
source International Journal of Architectural Computing vol. 17 - no. 1, 74-87
summary There has been a steady growth, over several decades, in the deployment of fabrics in architectural applications; both in terms of quantity and variety of application. More recently, three-dimensional printing and additive manufacturing have added to the palette of technologies that designers in architecture and related disciplines can call upon. Here, we report on research that brings those two technologies together – the development of active membrane elements and structures. We show how these active membranes have been achieved by laminating three-dimensional printed elasto-plastic fibres onto pre-stretched textile membranes. We report on a set of experimentations involving one-, two- and multi-directional geometric arrangements that take TPU 95 and polypropylene filaments and apply them to Lycra textile sheets, to form active composite panels. The process involves a parameterised design, actualised through a fabrication process including stress-line simulation, fibre pattern three-dimensional printing and the lamination of embossed patterns onto a pre-stretched membrane; followed by the release of tension afterwards in order to allow controlled, self-generation of the final geometry. Our findings document the investigation into mapping between the initial two-dimensional geometries and their resulting three-dimensional doubly curved forms. We also reflect on the products of the resulting, partly serendipitous, design process.
keywords Digital fabrication, three-dimensional printing, parametric design, material computation, fabrics
series journal
email
last changed 2019/08/07 14:04

_id caadria2019_459
id caadria2019_459
authors Behmanesh, Hossein and Brown, André G.P.
year 2019
title Classification and Review of Software Applications in the Context of Urban Design Processes
doi https://doi.org/10.52842/conf.caadria.2019.2.211
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 211-220
summary We have seen increasing expectations from our cities: as we aim to enable them to become smarter, more efficient and more sustainable. Having these goals makes the urban designing process increasingly complex. Undertaking contemporary urban design and analysis requires a rounded and inclusive approach. In the discussion relating to the smart city there has been attention to infrastructure technology solutions. But ways of estimating the success of more comprehensive urban design interventions is also extremely important. In response to these needs, digital urban design simulation and analysis software packages have been developed to help urban designers model and evaluate their designs before they take shape in the real world. We analyse, and reflect on the current aids available, classifying the urban design software packages which were used in the body of knowledge. In addition, more influential urban design software packages have been reviewed to figure out in which stages of the urban design process, they have applied. This review also helpful for software developer to understand which software packages more useful and which ones need to be developed in future.
keywords Smart city; Urban Design Process; software application; classification
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2024_222
id ecaade2024_222
authors Bindreiter, Stefan; Sisman, Yosun; Forster, Julia
year 2024
title Visualise Energy Saving Potentials in Settlement Development: By linking transport and energy simulation models for municipal planning
doi https://doi.org/10.52842/conf.ecaade.2024.2.079
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 2, pp. 79–88
summary To achieve Sustainable Development Goals, in addition to the switch to sustainable energy sources and energy-efficient buildings, transport offers a major lever for reducing energy consumption and greenhouse gases. The increasing demand for emission-free mobility (e.g. through electromobility) but also heat pumps has a direct impact on the electricity consumption of buildings and settlements. It is still difficult to simulate the effects and interactions of different measures as sector coupling concepts require comprehensible tools for ex ante evaluation of planning measures at the community level and the linking of domain-specific models (energy, transport). Using the municipality of Bruck an der Leitha (Austria) as an example, a digital twin based on an open data model (Bednar et al., 2020) is created for the development of methods, which can be used to simulate measures to improve the settlement structure within the municipality. Forecast models for mobility (Schmaus, 2019; Ritz, 2019) and the building stock are developed or applied and linked via the open data model to be able to run through development scenarios and variants. The forecasting and visualisation options created in the project form the basis for the ex-ante evaluation of measures and policies on the way to a Positive-Energy-District. By identifying and collecting missing data, data gaps are filled for the simulation of precise models in the specific study area. A digital, interactive 3D model is created to examine the forecast results and the different scenarios.
keywords visualisation, decision support, sector coupling, holistic spatial energy models for municipal planning, (energy) saving potentials in settlement development
series eCAADe
email
last changed 2024/11/17 22:05

_id ecaadesigradi2019_342
id ecaadesigradi2019_342
authors Costa Couceiro, Mauro, Lobo, Rui and Monteiro, António
year 2019
title Inserting and Encircling - Two complementary immersive strategies for mixed-reality applied to cultural heritage *
doi https://doi.org/10.52842/conf.ecaade.2019.3.091
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 91-98
summary To accomplish the aims of a three-year research project we are developing, connected to cultural heritage, we became interested in the fusion of Virtual Reality and Augmented Reality, two emergent development fields that gave birth to what was coined as Mixed Reality. Both dimensions have intricate connections with hardware and software improvements related with the so called "4th Industrial Revolution".Virtual Reality (VR), an interactive experience generated by a computer, takes place inside of simulated environments, which can be analogous to the real world or which can be created as imaginary contexts. On the other hand, Augmented Reality (AR) is always based in an interactive experience inside a tangible environment where the elements of that reality are nurtured with digital information, across several senses, to empathize certain aspects of reality. Our research combines both VR and AR to empathize sensory and intellectual experience. To do so, several senses, mainly visual and auditory, are stimulated.We therefore explore two Case-Studies from our research project in order to show two different strategies. The intention of both situations is to create immersive mixed reality environments where the fusion of the digital and analogue elements can be persistently sustained by the visual outputs.
keywords Santa Cruz Monastery; Mixed Reality; VR/AR; 3D scanning; 3D modeling; Lost heritage
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id acadia19_156
id acadia19_156
authors Dahy, Hanaa; Baszyñski, Piotr; Petrš, Jan
year 2019
title Experimental Biocomposite Pavilion
doi https://doi.org/10.52842/conf.acadia.2019.156
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 156-165
summary Excessive use of aggregate materials and metals in construction should be balanced by increasing use of construction materials from annually renewable resources based on natural lignocellulosic fibers. Parametric design tools gave here a possibility of using an alternative newly developed biocomposite material, for realization of complex geometries. Contemporary digital fabrication tools have enabled precise manufacturing possibilities and sophisticated geometry-making to take place that helped in obtaining high structural behavior of the overall global geometry of the discussed project. This paper presents a process of realizing an experimental structure made from Natural Fiber-Reinforced Polymers (NFRP)- also referred to as biocomposites, which were synthesized from lignocellulosic flexible core reinforced by 3D-veneer layers in a closed-moulding vacuum-assisted process. The biocomposite sandwich panels parameters were developed and defined before the final properties were imbedded in the parametric model. This paper showcases the multi-disciplinarity work between architects, structural engineers and material developers. It allowed the architects to work on the material development themselves and enabled to apply a new created design philosophy by the first author, namely applying ‘Materials as a Design-Tool’. The erected biocomposite segmented shell construction allowed a 1:1 validation for the whole design process, material development and the digital fabrication processes applied. The whole development has been reached after merging an ongoing industrial research project results with academic education at the school of architecture in Stuttgart-Germany.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_353079 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002