CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 466

_id cf2019_025
id cf2019_025
authors Lin, Yuqiong; Chenyu Huang ,Yuqiong Lin and Philip F. Yuan
year 2019
title High-rise Building Group Morphology Generation Approach based on Wind Environmental Performance
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 185
summary In the urbanization process, high-rise is favored and popularized? while results to the high-density urban space which aggravated the deterioration of urban wind environment. Using quantifiable environmental factors to control the building, is promoting a more meaningful group formation of the sustainable high-rise buildings. Thus, taking wind performance into account in high-rise design infancy is essential. According to the achievement of CAADRIA2018 “SELF-FORM-FINDING WIND TUNNEL TO ENVIRONMENTAL-PERFORMANCE URBAN AND BUILDING DESIGN” workshop, a preliminary set related to the environmental performance urban morphology generation system and method was constructed. In this study, various of high-rise building forms that might be conducive to urban ventilation were selected, such as “hollow-out”, “twisting”, “façade retracting” and “liftup”, to design the Dynamic Model System with multi-dimensional motion.
keywords High-rise, group morphology, wind tunnel, dynamic models, environmental performance
series CAAD Futures
email
last changed 2019/07/29 14:15

_id caadria2019_413
id caadria2019_413
authors Ahrens, Chandler, Chamberlain, Roger, Mitchell, Scott, Barnstorff, Adam and Gelbard, Joshua
year 2019
title Controlling Daylight Reflectance with Cyber-physical Systems
doi https://doi.org/10.52842/conf.caadria.2019.1.433
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 433-442
summary Cyber-physical systems increasingly inform and alter the perception of atmospheric conditions within interior environments. The Catoptric Surface research project uses computation and robotics to precisely control the location of reflected daylight through a building envelope to form an image-based pattern of light on the building interior's surfaces. In an attempt to amplify or reduce spatial perception, the daylighting reflected onto architectural surfaces within a built environment generates atmospheric effects. The modification of light patterns mapped onto existing or new surfaces enables the perception of space to not rely on form alone. The mapping of a new pattern that is independent of architectural surfaces creates a visual effect of a formless atmosphere and holds the potential to affect the way people interact with the space. People need different amounts and quality of daylight depending on physiological differences due to age or the types of tasks they perform. This research argues for an informed luminous and atmospheric environment that is relative both to the user and more conceptual architectural aspirations of spatial perception controlled by a cyber-physical robotic façade system.
keywords Contextual; Computation
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2020_431
id caadria2020_431
authors Kim, Jong Bum, Balakrishnan, Bimal and Aman, Jayedi
year 2020
title Environmental Performance-based Community Development - A parametric simulation framework for Smart Growth development in the United States
doi https://doi.org/10.52842/conf.caadria.2020.1.873
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 873-882
summary Smart Growth is an urban design movement initiated by Environmental Protection Agency (EPA) in the United States (Smart Growth America, 2019). The regulations of Smart Growth control urban morphologies such as building height, use, position, section configurations, façade configurations, and materials, which have an explicit association with energy performances. This research aims to analyze and visualize the impact of Smart Growth developments on environmental performances. This paper presents a parametric modeling and simulation framework for Smart Growth developments that can model the potential community development scenarios, simulate the environmental footprints of each parcel, and visualize the results of modeling and simulation. We implemented and examined the proposed framework through a case study of two Smart Growth regulations: Columbia Unified Development Code (UDC) in Missouri (City of Columbia Missouri, 2017) and Overland Park Downtown Form-based Code (FBC) in Kansas City (City of Overland Park, 2017, 2019). Last, we discuss the implementation results, the limitations of the proposed framework, and the future work. We anticipate that the proposed method can improve stakeholders' understanding of how Smart Growth developments are associated with potential environmental footprints from an expeditious and thorough exploration of what-if scenarios of the multiple development schemes.
keywords Smart Growth; Building Information Modeling (BIM); Parametric Simulation; Solar Radiation
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2019_407
id caadria2019_407
authors Loh, Paul, Leggett, David and Prohasky, Daniel
year 2019
title Robotic Fabrication of Doubly Curved Façade System - Constructing intelligence in the digital fabrication workflow
doi https://doi.org/10.52842/conf.caadria.2019.2.521
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 521-530
summary This paper presents a novel advance digital fabrication method to produce doubly curved concrete panel with no immediate waste as a facade system. Using a bespoke CNC adjustable mould frame system coupled with robotic trimming techniques, the research examines the streamlining of data within a cohesive fabrication workflow. The paper concludes by reviewing an integrated workflow that points towards a multifaceted system of design, engineering and advanced manufacturing that propel research to design application.
keywords Digital Fabrication; Design workflow; Robotic
series CAADRIA
email
last changed 2022/06/07 07:59

_id acadia20_176p
id acadia20_176p
authors Lok, Leslie; Zivkovic, Sasa
year 2020
title Ashen Cabin
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 176-181
summary Ashen Cabin, designed by HANNAH, is a small building 3D-printed from concrete and clothed in a robotically fabricated envelope made of irregular ash wood logs. From the ground up, digital design and fabrication technologies are intrinsic to the making of this architectural prototype, facilitating fundamentally new material methods, tectonic articulations, forms of construction, and architectural design languages. Ashen Cabin challenges preconceived notions about material standards in wood. The cabin utilizes wood infested by the Emerald Ash Borer (EAB) for its envelope, which, unfortunately, is widely considered as ‘waste’. At present, the invasive EAB threatens to eradicate most of the 8.7 billion ash trees in North America (USDA, 2019). Due to their challenging geometries, most infested ash trees cannot be processed by regular sawmills and are therefore regarded as unsuitable for construction. Infested and dying ash trees form an enormous and untapped material resource for sustainable wood construction. By implementing high precision 3D scanning and robotic fabrication, the project upcycles Emerald-Ash-Borer-infested ‘waste wood’ into an abundantly available, affordable, and morbidly sustainable building material for the Anthropocene. Using a KUKA KR200/2 with a custom 5hp band saw end effector at the Cornell Robotic Construction Laboratory (RCL), the research team can saw irregular tree logs into naturally curved boards of various and varying thicknesses. The boards are arrayed into interlocking SIP façade panels, and by adjusting the thickness of the bandsaw cut, the robotically carved timber boards can be assembled as complex single curvature surfaces or double-curvature surfaces. The undulating wooden surfaces accentuate the building’s program and yet remain reminiscent of the natural log geometry which they are derived from. The curvature of the wood is strategically deployed to highlight moments of architectural importance such as windows, entrances, roofs, canopies, or provide additional programmatic opportunities such as integrated shelving, desk space, or storage.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id ecaadesigradi2019_514
id ecaadesigradi2019_514
authors de Miguel, Jaime, Villafa?e, Maria Eugenia, Piškorec, Luka and Sancho-Caparrini, Fernando
year 2019
title Deep Form Finding - Using Variational Autoencoders for deep form finding of structural typologies
doi https://doi.org/10.52842/conf.ecaade.2019.1.071
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 71-80
summary In this paper, we are aiming to present a methodology for generation, manipulation and form finding of structural typologies using variational autoencoders, a machine learning model based on neural networks. We are giving a detailed description of the neural network architecture used as well as the data representation based on the concept of a 3D-canvas with voxelized wireframes. In this 3D-canvas, the input geometry of the building typologies is represented through their connectivity map and subsequently augmented to increase the size of the training set. Our variational autoencoder model then learns a continuous latent distribution of the input data from which we can sample to generate new geometry instances, essentially hybrids of the initial input geometries. Finally, we present the results of these computational experiments and lay out the conclusions as well as outlook for future research in this field.
keywords artificial intelligence; deep neural networks; variational autoencoders; generative design; form finding; structural design
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id cf2019_069
id cf2019_069
authors Caetano, Inês ;and António Leitão
year 2019
title Weaving Architectural Façades: Exploring algorithmic stripe-based design patterns
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 565-584
summary With the recent technological developments, particularly, the integration of computational design approaches in architecture, the traditional art techniques became increasingly important in the field. This includes weaving techniques, which have a promising application in architectural screens and façade designs. Nevertheless, the adoption of weaving as a design strategy still has many unexplored areas, particularly those related to Algorithmic Design (AD). This paper addresses the creation of weave-based façade patterns by presenting a Generative System (GS) that aids architects that intend to use AD in the design of façades inspired on traditional weaving techniques. This GS proves to reduce the time and effort spent with the programming task, while supporting the exploration of a wider solution space. Moreover, in addition to enabling the integration of user-generated weaving patterns, the GS also provides rationalization algorithms to assess the construction feasibility of the obtained solutions.
keywords Algorithmic Design, Façade Design, Weaving Patterns, Algorithmic Framework, Rationalization Processes
series CAAD Futures
type normal paper
email
last changed 2019/07/29 14:19

_id ecaadesigradi2019_404
id ecaadesigradi2019_404
authors Collins, Jeffrey and Gentry, Russell
year 2019
title Coordinating Atypical Architectural Precast Concrete Façades - Two categories
doi https://doi.org/10.52842/conf.ecaade.2019.2.261
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 261-268
summary This research focuses on issues of coordination between designers and fabricators during early design. The aim of this work is to improve representations, enable more informed conversations, and streamline exchanges of digital models. In order to show the potential of the work, research is focused on architectural precast concrete facades. Previous work established methods for linking "global" and "local" parametric models of architectural intent and corresponding components, describing processes of mapping from individual custom panels to diagrammatic façade surfaces and vice-versa. Such mapping may be considered "direct," wherein individual panel boundaries - defined by surface patterning - allow simple mapping of data from global to local or from local to global descriptions. However, there are some buildings with architectural precast concrete façades which do not permit direct relationships between global and local descriptions. These atypical facades require "indirect" maps containing additional layers of information in order to coordinate global and local descriptions. This paper describes two categories of these indirect scenarios: "panelization" and "patterns across panels."
keywords BIM; Parametric modelling; Architectural precast concrete; Building facades
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_176
id ecaadesigradi2019_176
authors Giantini, Guilherme, Negris de Souza, Larissa, Turczyn, Daniel and Celani, Gabriela
year 2019
title Environmental Ceramics - Merging the digital and the physical in the design of a performance -based facade system
doi https://doi.org/10.52842/conf.ecaade.2019.2.749
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 749-758
summary Environmental comfort and space occupancy are essential considerations in architectural design process. Façade systems deeply impact both aspects but are usually standardized. However, performance-based facade systems tackle these issues through computational design to devise non-homogeneous elements. This work proposes a ceramic facade system designed according to a performance-based process grounded on environmental analysis and parametric design to allow adaptation and geometric variation according to specific building demands on environmental comfort and functionality. In this process, the Design Science Research method guided the exploration of both design and evaluation, bridging the gap between theory and practice. Positive facade environmental performance were found from digital and physical models assessment in terms of radiation, illuminance, dampness (with ventilation) and temperature. Computational processes minimized radiation inside the building while maximized illuminance. Their association influenced on operative temperature, which dropped according to local dampness and material absorption. Accordingly, this design process associates not only environmental comfort and functionality concepts but also adaptability, flexibility, mass customization, personal fabrication, additive manufacturing concepts, being an example architectural design changes in the 4th Industrial Revolution.
keywords sustainable design; facade system; computational design; environmental analysis; evolutionary algorithm
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

_id caadria2020_395
id caadria2020_395
authors Loo, Stella Yi Ning, Jayashankar, Dhileep Kumar, Gupta, Sachin and Tracy, Kenneth
year 2020
title Hygro-Compliant: Responsive Architecture with Passively Actuated Compliant Mechanisms
doi https://doi.org/10.52842/conf.caadria.2020.1.223
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 223-232
summary Research investigating water-driven passive actuation demonstrates the potential to transform how buildings interact with their environment while avoiding the complications of conventionally powered actuation. Previous experiments evidence the possibilities of bi-layer materials (Reichert, Menges, and Correa 2015; Correa et al. 2015) and mechanical assemblies with discretely connected actuating members (Gupta et al. 2019). By leveraging changes in weather to power actuated building components these projects explore the use of smart biomaterials and responsive building systems. Though promising the implementation of these technologies requires deep engagement into material synthesis and fabrication. This paper presents the design and prototyping of a rain responsive façade system using chitosan hygroscopic films as actuators counterbalanced by programmed compliant mechanisms. Building on previous work into chitosan film assemblies this research focuses on the development of compliant mechanisms as a means of controlling movement without over-complicated rotating parts.
keywords Passive Actuation; Responsive Architecture; Bio-polymers; 4D Structures; Compliant Mechanism
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2019_290
id caadria2019_290
authors Ma, Chenlong, Zhu, Shuyan and Xiang, Ke
year 2019
title Digital Aided Façade Design Introduced in a Traditional Design Workflow - An experience from one large-scale museum design and construction practice
doi https://doi.org/10.52842/conf.caadria.2019.1.675
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 675-684
summary This paper discusses the opportunities and barriers of adopting parametric tools in discrete elements of the design development documentation processes in parallel with more traditional 2D computer aided architectural design (CAAD). We believe it is a more reasonable way for small to middle sized design companies in China, to introduce parametric design method into the design and construction process, especially when there being a long way from traditional CAAD approach to an all-BIM future in China.
keywords parametric tools; collaborative design; façade design
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2019_318
id caadria2019_318
authors Martinho, Helena, Belém, Catarina, Leitão, António, Loonen, Roel and Gomes, M. Glória
year 2019
title Algorithmic Design and Performance Analysis of Adaptive Façades
doi https://doi.org/10.52842/conf.caadria.2019.1.685
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 685-694
summary Building performance simulation tools have the potential for aiding the decision-making process in early design stages of an architectural project. As traditional simulation tools are based on a static design and adaptive façades encompass an envisioned movement of construction elements, there is a lack of supporting tools and workflows that can correctly evaluate the performance of such building envelopes at an early stage. The presented ongoing research focuses on developing efficient parametric performance-based approaches for assessing the energy consumption in buildings with adaptive façades, combining generative architectural design and performance analysis in a seamless workflow. To this end, we combine a new algorithmic design research tool with the well-established whole-building simulation engine EnergyPlus. The purpose of linking both tools lies in the possibility of generating and simulating models with adaptive façade mechanisms through a single script, evaluating and using the simulation results to adjust the model's parameters and develop optimized control strategies.
keywords Building performance simulation; Adaptive façades; Algorithmic design; Energy analysis
series CAADRIA
email
last changed 2022/06/07 07:59

_id cf2019_028
id cf2019_028
authors Sroka, Jeffrey and Kihong Ku
year 2019
title A Geometry Exploration of Flexagons: Designing a Tetrahedron Based Responsive Daylight Control System
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 223-233
summary This project aimed to expand the area of responsive shading systems through the novel application of a volumetric origami geometry – the flexagon. The original contributions of this project come through the design development and prototyping of the kinetics of an octa-flexagon based geometry. Few researchers or designers have investigated the flexagon pattern in architecture and departing from relevant research, this project identified a novel geometric construct of flexagons that allow kinetic actuation with beneficial performative and aesthetic properties. These include surface qualities of the component tetrahedron geometry for daylighting and view control. The aggregation of multiple units resulted in new understanding of the stacking characteristics and the rotational envelope of flexagon geometries.
keywords Architectural Geometry, Prototyping, Origami, Responsive Façade
series CAAD Futures
email
last changed 2019/07/29 14:15

_id caadria2019_367
id caadria2019_367
authors Forren, James
year 2019
title Intelligent Systems and Mass Production of Form - Tacit and Explicit Information in Dynamic Concrete Molds
doi https://doi.org/10.52842/conf.caadria.2019.2.705
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 705-714
summary This paper constructs a lexicon of tacit intentionalities around tools and materials in computational design and fabrication contexts through a close study of dynamic molds. Drawing on historical, theoretical, and practice-based research we develop methods for reading, teaching, and designing with intelligence in computational design contexts in concert with the tacit information provided by tools and materials.
keywords Material computation; Dynamic mold; Human-technology interaction; Precast concrete technology
series CAADRIA
email
last changed 2022/06/07 07:51

_id caadria2019_665
id caadria2019_665
authors Jin, Jinxi, Han, Li, Chai, Hua, Zhang, Xiao and Yuan, Philip F.
year 2019
title Digital Design and Construction of Lightweight Steel-Timber Composite Gridshell for Large-Span Roof - A Practice of Steel-timber Composite Gridshell in Venue B for 2018 West Bund World AI Conference
doi https://doi.org/10.52842/conf.caadria.2019.1.183
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 183-192
summary Timber gridshell is an efficient structural system. However, the feature of double curved surface result in limitation of practical application of timber gridshell. Digital technology provides an opportunity to break this limitation and achieve a lightweight free-form gridshell. In the practice of Venue B for 2018 West Bund World AI Conference, architects and structural engineers cooperated to explore innovative design of lightweight steel-timber composite gridshell with the help of digital tools. Setting digital technology as support and restrains of the project as motivation, the design tried to achieve the realization of material, structure, construction and spatial expression. The digital design and construction process will be discussed from four aspects, including form-finding of gridshell surface, steel-timber composite design, digital detailed design and model-based fabrication and construction. We focuses on the use of digital tools in this process, as well as the role of the design subject.
keywords Timber Gridshell; Steel-timber Composite; Digital Design and Construction; Lightweight Structure; Large-span Roof
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaadesigradi2019_521
id ecaadesigradi2019_521
authors Millentrup, Viktoria, Ramsgaard Thomsen, Mette and Nicholas, Paul
year 2019
title Actuated Textile Hybrids - Textile smocking for designing dynamic force equilibria in membrane structures
doi https://doi.org/10.52842/conf.ecaade.2019.2.521
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 521-530
summary This paper introduces Actuated Textile Hybrids, and describes the steps needed to steer the form finding processes necessary for their production. The method presented employs an integration of an "activated" instead of a pre-stressed textile membrane to design different stages of force equilibrium within the Hybrid Structure, and to investigate the potentials of ever flexible shaping of tensile elements. The set-up for the Textile Hybrid consists of three main elements which are digitally and physically analysed in their inextricable interdependence in force, form and material. Together, the bending active beam (rod), the textile membrane and an applied pattern which actively shrinks surface areas of the membrane (activation), create the base for the form finding process.With advanced Finite Element Modelling software and the architects resulting ability to engineer responsive building-systems for a dynamic environment, it is essential to rethink the construction methods and the building-material of the classic building envelope. This is to not only develop a smartly engineered sustainable skin but also a boundary object which, due to its adaptation, develops the potential to interconnect with its surrounding to re-establish the relationships between nature, home and inhabitant.
keywords Textile Hybrid; Kiwi3D; Form-Finding; Material Studies; Structural System; Membrane Structure
series eCAADeSIGraDi
email
last changed 2022/06/07 07:58

_id caadria2019_173
id caadria2019_173
authors Ng, Jonathan Ming-En, Ho, Samuel Yu De, Ng, Truman Wei Cheng, Soh, Jia Ying and Dritsas, Stylianos
year 2019
title Fabrication of Ultra-Lightweight Parametric Glass Fiber Reinforced Shell Assemblies
doi https://doi.org/10.52842/conf.caadria.2019.1.013
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 13-22
summary We present an experimental form-finding technique for ultra-thin glass fiber reinforced concrete components and assemblies. The objective is to challenge conventional concrete use in construction, often perceived as a massive and compressive structural material. Instead, we targeted production of fine shell assemblies principally operating in tension. To achieve thin profile components, we use a compliant molding technique where premixed GFRC is cast in polyethylene bags. Subsequently, a robotic arm system pins the bags on a substrate plate and the setup is inverted whereby gravity induces a curvature to components while concrete cures. Use of parametric modeling, computer simulation and statistical experimental methods allowed us to understand the behavior of the material process and translate computationally modeled designs into physical artifacts. We discuss the opportunity for digital fabrication methods to fuse with traditional form-finding techniques, contrast the use of computational modeling techniques and present a series of prototypes created through our process.
keywords Digital Fabrication; Glass Fibre Reinforced Concrete; Form-Finding
series CAADRIA
email
last changed 2022/06/07 07:58

_id lasg_whitepapers_2019_291
id lasg_whitepapers_2019_291
authors Sabin, Jenny
year 2019
title Lumen
source Living Architecture Systems Group White Papers 2019 [ISBN 978-1-988366-18-0] Riverside Architectural Press: Toronto, Canada 2019. pp.291 - 318
summary This paper documents the computational design methods, digital fabrication strategies, and generative design process for [Lumen], winner of MoMA & MoMA PS1’s 2017 Young Architects Program. The project was installed in the courtyard at MoMA PS1 in Long Island City, New York, during the summer of 2017. Two lightweight 3D digitally knitted fabric canopy structures composed of responsive tubular and cellular components employ recycled textiles, photo-luminescent and solar active yarns that absorb and store UV energy, change color, and emit light. This environment offers spaces of respite, exchange, and engagement as a 150 x 75-foot misting system responds to visitors’ proximity, activating fabric stalactites that produce a refreshing micro-climate. Families of robotically prototyped and woven recycled spool chairs provide seating throughout the courtyard. The canopies are digitally fabricated with over 1,000,000 yards of high tech responsive yarn and are supported by three 40+ foot tensegrity towers and the surrounding matrix of courtyard walls. Material responses to sunlight as well as physical participation are integral parts of our exploratory approach to the 2017 YAP brief. The project is mathematically generated through form-finding simulations informed by the sun, site, materials, program, and the material morphology of knitted cellular components. Resisting a biomimetic approach, [Lumen] employs an analogic design process where complex material behavior and processes are integrated with personal engagement and diverse programs. The comprehensive installation was designed by Jenny Sabin Studio and fabricated by Shima Seiki WHOLEGARMENT, Jacobsson Carruthers, and Dazian with structural engineering by Arup and lighting by Focus Lighting.
keywords living architecture systems group, organicism, intelligent systems, design methods, engineering and art, new media art, interactive art, dissipative systems, technology, cognition, responsiveness, biomaterials, artificial natures, 4DSOUND, materials, virtual projections,
email
last changed 2019/07/29 14:02

_id ecaadesigradi2019_201
id ecaadesigradi2019_201
authors Torreblanca-Díaz, David A., Pati?o, Ever, Valencia-Escobar, Andrés and Urdinola, Diana
year 2019
title Form-finding methodology as strategy for formative research in industrial design education - Experimental techniques for the early creative phases of the product design process
doi https://doi.org/10.52842/conf.ecaade.2019.1.045
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 45-54
summary The experimental work of Antoni Gaudí and Frei Otto have been the precedents of what is currently called form-finding, a methodology based on rules and physical forces of nature that promotes principles of transformation as a result of the relationship between form, material and structure. This text shows the first results of the research titled as Form-finding methodology as strategy for formative research in industrial design education, with an empirical-analytical approach through action-research based method and using collaborative-participatory tools. As a result of the analysis of different cases in the first stage of the research, a basic methodological proposal is made, this methodological proposal is aimed to find new research possibilities for the identification of morphological characteristics to be used in design projects in the early creative phases (ideation and experimentation); the methodological proposal stages are the following: selection of technique, design of the experimentation, experimentation, analysis and discussion.
keywords Form-finding; Experimental morphology; Industrial design education; Formative research; Action-research
series eCAADeSIGraDi
email
last changed 2022/06/07 07:58

_id ecaadesigradi2019_103
id ecaadesigradi2019_103
authors Wallisser, Tobias, Henriques, Gonçalo Castro, Ribeiro, Amanda and Menna, Ronaldo Lee
year 2019
title Weaving physical-digital networks:Brazil-Germany integration experience
doi https://doi.org/10.52842/conf.ecaade.2019.1.315
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 315-324
summary The idea of a network weaved this project in a conceptual as well as in a physical way. A network in the sense of an intangible connection between people, and a network in the sense of a materiality, woven to constitute the skin of a building according to different techniques associated with the ancient culture of covering to provide shelter. We seek to integrate old cultural identities with new digital methods. In the time of the fourth industrial revolution, we might think about a network as something fully accomplished, as if the availability of an internet connection was synonymous with effective communication. In our methodology, we face network challenges at the intersection of human communication and the physical and material domains. The challenge is to discover what to exchange and how to do so. Through the Brazilian-German program 'Connect', we tested our research in two practical workshops in two continents. The result suggests that is possible to weave a network incorporating local building traditions and analogue and digital processes of form-finding. The report describes our findings and shares critical reflections opening future research possibilities.
keywords Network; Brazilian-German; Traditional construction; Gridshell; OCA; analogue-digital
series eCAADeSIGraDi
email
last changed 2022/06/07 07:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 23HOMELOGIN (you are user _anon_25426 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002