CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 622

_id caadria2019_626
id caadria2019_626
authors Hahm, Soomeen, Maciel, Abel, Sumitiomo, Eri and Lopez Rodriguez, Alvaro
year 2019
title FlowMorph - Exploring the human-material interaction in digitally augmented craftsmanship
doi https://doi.org/10.52842/conf.caadria.2019.1.553
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 553-562
summary It has been proposed that, after the internet age, we are now entering a new era of the '/Augmented Age/' (King, 2016). Physician Michio Kaku imagined the future of architects will be relying heavily on Augmented Reality technology (Kaku, 2015). Augmented reality technology is not a new technology and has been evolving rapidly. In the last three years, the technology has been applied in mainstream consumer devices (Coppens, 2017). This opened up possibilities in every aspect of our daily lives and it is expected that this will have a great impact on every field of consumer's technology in near future, including design and fabrication. What is the future of design and making? What kind of new digital fabrication paradigm will emerge from inevitable technological development? What kind of impact will this have on the built environment and industry? FlowMorph is a research project developed in the Bartlett School of Architecture, B-Pro AD with the collaboration of the authors and students as a 12 month MArch programme, we developed a unique design project trying to answer these questions which will be introduced in this paper.
keywords Augmented Reality, Mixed Reality, Virtual Reality, Design Augmentation, Digital Fabrication, Cognition models, Conceptual Designing, Design Process, Design by Making, Generative Design, Computational Design, Human-Machine Collaboration, Human-Computer Collaboration, Human intuition in digital fabrication
series CAADRIA
email
last changed 2022/06/07 07:51

_id ecaadesigradi2019_449
id ecaadesigradi2019_449
authors Becerra Santacruz, Axel
year 2019
title The Architecture of ScarCity Game - The craft and the digital as an alternative design process
doi https://doi.org/10.52842/conf.ecaade.2019.3.045
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 45-52
summary The Architecture of ScarCity Game is a board game used as a pedagogical tool that challenges architecture students by involving them in a series of experimental design sessions to understand the design process of scarcity and the actual relation between the craft and the digital. This means "pragmatic delivery processes and material constraints, where the exchange between the artisan of handmade, representing local skills and technology of the digitally conceived is explored" (Huang 2013). The game focuses on understanding the different variables of the crafted design process of traditional communities under conditions of scarcity (Michel and Bevan 1992). This requires first analyzing the spatial environmental model of interaction, available human and natural resources, and the dynamic relationship of these variables in a digital era. In the first stage (Pre-Agency), the game set the concept of the craft by limiting students design exploration from a minimum possible perspective developing locally available resources and techniques. The key elements of the design process of traditional knowledge communities have to be identified (Preez 1984). In other words, this stage is driven by limited resources + chance + contingency. In the second stage (Post-Agency) students taking the architects´ role within this communities, have to speculate and explore the interface between the craft (local knowledge and low technological tools), and the digital represented by computation data, new technologies available and construction. This means the introduction of strategy + opportunity + chance as part of the design process. In this sense, the game has a life beyond its mechanics. This other life challenges the participants to exploit the possibilities of breaking the actual boundaries of design. The result is a tool to challenge conventional methods of teaching and leaning controlling a prescribed design process. It confronts the rules that professionals in this field take for granted. The game simulates a 'fake' reality by exploring in different ways with surveyed information. As a result, participants do not have anything 'real' to lose. Instead, they have all the freedom to innovate and be creative.
keywords Global south, scarcity, low tech, digital-craft, design process and innovation by challenge.
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id acadia19_654
id acadia19_654
authors Maierhofer, Mathias; Soana, Valentina; Yablonina, Maria; Erazo, Seiichi Suzuki; Körner, Axel; Knippers, Jan; Menges, Achim
year 2019
title Self-Choreographing Network
doi https://doi.org/10.52842/conf.acadia.2019.654
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 654-663
summary The aim of this research is to challenge the prevalent separation between (digital) design and (physical) operation processes of adaptive and interactive architectural systems. The linearity of these processes implies predetermined material or kinetic behaviors, limiting performances to those that are predictable and safe. This is particularly restricting with regard to compliant or flexible material systems, which exhibit significant kinetic and thus adaptive potential, but behave in ways that are difficult to fully predict in advance. In this paper we present a hybrid approach: a real-time, interactive design and operation process that enables the (material) system to be self-aware, fully utilizing and exploring its kinetic design space for adaptive purposes. The proposed approach is based on the interaction of compliant materials with embedded robotic agents, at the interface between digital and physical. This is demonstrated in the form of a room-scale spatial architectural robot, comprising networks of linear elastic components augmented with robotic joints capable of sensing and two axis actuation. The system features both a physical instance and a corresponding digital twin that continuously augments physical performances based on simulation feedback informed by sensor data from the robotic joints. With this setup, spatial adaptation and reconfiguration can be designed in real-time, based on an openended and cyber-physical negotiation between numerical, robotic, material, and human behaviors, in the context of a physically deployed structure and its occupants.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:59

_id acadia23_v2_340
id acadia23_v2_340
authors Huang, Lee-Su; Spaw, Gregory
year 2023
title Augmented Reality Assisted Robotic: Tube Bending
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 2: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-0-3]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 340-349.
summary The intent of this research is to study potential improvements and optimizations in the context of robotic fabrication paired with Augmented Reality (AR), leveraging the technology in the fabrication of the individual part, as well as guiding the larger assembly process. AR applications within the Architecture, Engineering, and Construction (AEC) industry have seen constant research and development as designers, fabricators, and contractors seek methods to reduce errors, minimize waste, and optimize efficiency to lower costs (Chi, Kang, and Wang 2013). Recent advancements have made the technology very accessible and feasible for use in the field, as demonstrated by seminal projects such as the Steampunk Pavilion in Tallinn, Estonia (Jahn, Newnham, and Berg 2022). These types of projects typically improve manual craft processes. They often provide projective guidelines, and make possible complex geometries that would otherwise be painstakingly slow to complete and require decades of artisanal experience (Jahn et al. 2019). Building upon a previously developed robotic tube bending workflow, our research implements a custom AR interface to streamline the bending process for multiple, large, complex parts with many bends, providing a pre-visualization of the expected fabrication process for safety and part-verification purposes. We demonstrate the utility of this AR overlay in the part fabrication setting and in an inadvertent, human-robot, collaborative process when parts push the fabrication method past its limits. The AR technology is also used to facilitate the assembly process of a spatial installation exploring a unique aesthetic with subtle bends, loops, knots, bundles, and weaves utilizing a rigid tube material.
series ACADIA
type paper
email
last changed 2024/12/20 09:12

_id ijac201917404
id ijac201917404
authors Erdolu, Emek
year 2019
title Lines, triangles, and nets: A framework for designing input technologies and interaction techniques for computer-aided design
source International Journal of Architectural Computing vol. 17 - no. 4, 357-381
summary This article serves to the larger quest for increasing our capacities as designers, researchers, and scholars in understanding and developing human-computer interaction in computer-aided design. The central question is on how to ground the related research work in input technologies and interaction techniques for computer-aided design applications, which primarily focus on technology and implementation, within the actual territories of computer-aided design processes. To discuss that, the article first reviews a collection of research studies and projects that present input technologies and interaction techniques developed as alternative or complimentary to the mouse as used in computer-aided design applications. Based on the mode of interaction, these studies and projects are traced in four categories: hand-mediated systems that involve gesture- and touch-based techniques, multimodal systems that combine various ways of interaction including speech-based techniques, experimental systems such as brain-computer interaction and emotive-based techniques, and explorations in virtual reality- and augmented reality-based systems. The article then critically examines the limitations of these alternative systems related to the ways they have been envisioned, designed, and situated in studies as well as of the two existing research bases in human-computer interaction in which these studies could potentially be grounded and improved. The substance of examination is what is conceptualized as “frameworks of thought”—on variables and interrelations as elements of consideration within these efforts. Building upon the existing frameworks of thought, the final part discusses an alternative as a vehicle for incorporating layers of the material cultures of computer-aided design in designing, analyzing, and evaluating computer-aided design-geared input technologies and interaction techniques. The alternative framework offers the potential to help generate richer questions, considerations, and avenues of investigation.
keywords Computer-aided design (CAD), human-computer interaction (HCI), input technologies and interaction techniques, material culture of computer-aided design (CAD), architectural design, engineering design, computational design
series journal
email
last changed 2020/11/02 13:34

_id acadia19_448
id acadia19_448
authors Hahm, Soomeen
year 2019
title Augmented Craftsmanship
doi https://doi.org/10.52842/conf.acadia.2019.448
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 448-457
summary Over the past decade, we have witnessed rapid advancements on both practical and theoretical levels in regard to automated construction as a consequence of increasing sophistication of digital fabrication technologies such as robotics, 3D printing, etc. However, digital fabrication technology is often very limited when it comes to dealing with delicate and complex crafting processes. Although digital fabrication processes have become widely accessible and utilized across industries in recent times, there are still a number of fabrication techniques—which heavily rely on human labour—due to the complex nature of procedures and delicacy of materials. With this in mind, we need to ask ourselves if full automation is truly an ultimate goal, or if we need to (re)consider the role of humans in the architectural construction chain, as automation becomes more prevalent. We propose rethinking the role which human, machine, and computer have in construction— occupying the territory between purely automated, exclusively robotically-driven fabrication and highly crafted processes requiring human labour. This is to propose an alternative to reducing construction to fully automated assembly of simplified/discretized building parts, by appreciating physical properties of materials and nature of crafting processes. The research proposes a design-to-construction workflow pursued and enabled by augmented humans using AR devices. As a result, proposed workflows are tested on three prototypical inhabitable structure, aiming to be applicable to other projects in the near future, and to bridge the gap between purely automated construction processes on one hand, and craft-based, material-driven but labour-intensive processes on the other.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id acadia19_630
id acadia19_630
authors Ahlquist, Sean
year 2019
title Expanding the Systematic Agencyof a Material System
doi https://doi.org/10.52842/conf.acadia.2019.630
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 630-641
summary Computational design and fabrication have reached an accomplished level of ubiquity and proficiency in the field of architecture, in both academia and practice. Materiality driving structure, responsiveness, and spatial organization can be seen to evolve, in kind, with the capabilities to fabricate deeper material hierarchies. Such maturity of a procedural material-driven approach spurs a need to shift from the dictations of how to explorations of why material efficiencies, bespoke aesthetics, and performativity are critical to a particular architecture, requiring an examination of linkages between approach, techniques, and process. The material system defines a branch of architectural research utilizing bespoke computational techniques to generate performative material capacities that are inextricably linked to both internal and external forces and energies. This paper examines such a self-referential view to define an expanded ecological approach that integrates new modes of design agency and shift the material system from closed-loop relationship with site to open-ended reciprocation with human behavior. The critical need for this capacity is shown in applications of novel textile hybrid material systems—as sensorially-responsive environments for children with the neurological autism spectrum disorder—in ongoing research titled Social Sensory Architectures. Through engaging fabrication across all material scales, manners of elastic responsivity are shown, through a series of feasibility studies, to exhibit a capacity for children to become design agents in exploring the beneficial interrelationship of sensorimotor agency and social behavior. The paper intends to contribute a theoretical approach by which novel structural capacities of a material system can support a larger ecology of social and behavioral agency.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_665
id ecaadesigradi2019_665
authors Duque Estrada, Rebeca, Wyller, Maria and Dahy, Hanaa
year 2019
title Aerochair - Integrative design methodologies for lightweight carbon fiber furniture design
doi https://doi.org/10.52842/conf.ecaade.2019.1.691
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 691-700
summary Carbon fiber composites embody lightweight and strength and is a well-integrated material in various fields of engineering. In spite of its excellent material properties, it is not frequently found in architecture and design applications. In this project, the intention is to research how the material's most prominent qualities can be applied to create a lightweight furniture design. The furniture object was chosen as an example of a small architectural component with a structural capacity of holding a human body weight between 60-90 Kg. In particular, carbon fiber composites display an impressive tensile strength, and with the aim of exploring this feature, a case-study of a full-scale, hanging carbon chair was conducted. To develop a design, optimize it and realize it, an integrated design and fabrication process was developed. It combined material research, computational design, and a novel fabrication method for filament materials.
keywords carbon fiber composites; computational design; lightweight furniture; chair design; fiber winding
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id caadria2019_211
id caadria2019_211
authors Globa, Anastasia, Wang, Rui and Beza, Beau B.
year 2019
title Sensory Urbanism and Placemaking - Exploring Virtual Reality and the Creation of Place
doi https://doi.org/10.52842/conf.caadria.2019.2.737
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 737-746
summary Sensory Urbanism is an experimental prototyping project exploring the potential of immersive Virtual Reality (VR) environments to support the incorporation of sensory and intangible aspects of place. The study investigates how sensory exploration of urban places can be integrated into decision making regarding the future of cities. In the past, numerous studies reported various sophisticated 'livability' measures, deeming to determine what makes a city a great place to live in. While a part of these measures can be quantified and be represented as text, graphs or images, most of the qualitative aspects of place are inherently abstract and sensory. These aspects have to be experienced to be understood and therefore they are extremely difficult to communicate using conventional representation means. The proposition explored in this study is that the increasing ubiquity of VR and Augmented Reality (AR) technologies can provide new opportunities to engage with the multi-sensory and temporal aspects of urban place. A mixed media approach was adopted, tapping into a temporal dimension as well as visual, aural and kinesthetic range of human senses. The paper reports on the development of the VR sensory urbanism prototype and the initial pilot study that demonstrated the proof-of-concept.
keywords Sensory Urbanism; Immersive Environments; Virtual Reality; Design Evaluation; Placemaking
series CAADRIA
email
last changed 2022/06/07 07:51

_id ecaadesigradi2019_506
id ecaadesigradi2019_506
authors Kontovourkis, Odysseas, Georgiou, Christos, Stroumpoulis, Andreas, Kounnis, Constantinos, Dionyses, Christos and Bagdati, Styliana
year 2019
title Implementing Augmented Reality for the Holographic Assembly of a Modular Shading Device
doi https://doi.org/10.52842/conf.ecaade.2019.3.149
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 149-158
summary The development of innovative digital design and fabrication tools for material processing and manufacturing of complex and non-standard forms, apart from their advantages, have brought a number of challenges. These might be related to the effectiveness and sustainable potential of implementation associated with environmental, cost and time-related parameters, particularly in cases of large number of elements construction and complex assembly. Augmented Reality (AR) is an emerging technology with great potential for implementation in the construction industry, since it can enhance the real world with additional digital information, and thus, can assist towards manufacture and assemble of these particular systems. This study presents an AR methodology for assembling a modular shading device and discusses the advantages and disadvantages that this application can bring to the Architecture, Engineering and Construction (AEC) industry by taking into account precision and construction time issues based on the handling of the process by skilled and unskilled users/workers. Our aim is to investigate the potential implementation of AR in the assembly, and consequently, in the construction process as a whole. Also, this study aims at exploring existing constraints of the technology and suggests ways of improvement.
keywords Augmented Reality; Holographic assembly; Modular system; Shading device
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

_id acadia19_674
id acadia19_674
authors Farahi, Benhaz
year 2019
title IRIDESCENCE: Bio-Inspired Emotive Matter
doi https://doi.org/10.52842/conf.acadia.2019.674
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp.674-683
summary The Hummingbird is an amazing creature. The male Anna’s Hummingbird changes color from dark green to iridescence pink in his spectacular courtship. Can we exploit this phenomenon to produce color and shape changing material systems for the future of design? This paper describes the design process behind the interactive installation, Iridescence, through the logic of two interconnected themes, ‘morphology’ and ‘behavior’. Inspired by the gorget of the Anna’s hummingbird, this 3D printed collar is equipped with a facial tracking camera and an array of 200 rotating quills. The custom-made actuators flip their colors and start to make patterns, in response to the movement of onlookers and their facial expressions. The paper addresses how wearables can become a vehicle for self-expression, capable of influencing social interaction and enhancing one’s sensory experience of the world. Through the lens of this project, the paper proposes ‘bio-inspired emotive matter’ as an interdisciplinary design approach at the intersection of Affective Computing, Artificial Intelligence and Ethology, which can be applied in many design fields. The paper argues that bio-inspired material systems should be used not just for formal or performative reasons, but also as an interface for human emotions to address psycho-social issues.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id caadria2019_367
id caadria2019_367
authors Forren, James
year 2019
title Intelligent Systems and Mass Production of Form - Tacit and Explicit Information in Dynamic Concrete Molds
doi https://doi.org/10.52842/conf.caadria.2019.2.705
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 705-714
summary This paper constructs a lexicon of tacit intentionalities around tools and materials in computational design and fabrication contexts through a close study of dynamic molds. Drawing on historical, theoretical, and practice-based research we develop methods for reading, teaching, and designing with intelligence in computational design contexts in concert with the tacit information provided by tools and materials.
keywords Material computation; Dynamic mold; Human-technology interaction; Precast concrete technology
series CAADRIA
email
last changed 2022/06/07 07:51

_id ecaadesigradi2019_200
id ecaadesigradi2019_200
authors Ghandi, Mona
year 2019
title Cyber-Physical Emotive Spaces: Human Cyborg, Data, and Biofeedback Emotive Interaction with Compassionate Spaces
doi https://doi.org/10.52842/conf.ecaade.2019.2.655
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 655-664
summary This paper aims to link human's emotions and cognition to the built environment to improve the user's mental health and well-being. It focuses on cyber-physical adaptive spaces that can respond to the user's physiological and psychological needs based on their biological and neurological data. Through artificial intelligence and affective computing, this paper seeks to create user-oriented spaces that can learn from occupant's behavioral patterns in real-time, reduce user's anxiety and depression, enhance environmental quality, and promote more flexible human-centered designs for people with mental/physical disabilities. To achieve its objectives, this research integrates tangible computing devices/interfaces, robotic self-adjusting structures, interactive systems of control, programmable materials, human behavior, and a sensory network. Through embedded responsiveness and material intelligence, the goal is to blur the lines between the physical, digital, and biological spheres and create cyber-physical spaces that can "feel" and be controlled by the user's mind and feelings.
keywords AI for Design and Built Environment; Cyber-Physical Spaces; Artificial Emotional Intelligence; Human-Computer Interaction; Affective Computing; Mental Health and Well-Being; Interactive and Responsive Built Environments;
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

_id caadria2020_426
id caadria2020_426
authors Goepel, Garvin and Crolla, Kristof
year 2020
title Augmented Reality-based Collaboration - ARgan, a bamboo art installation case study
doi https://doi.org/10.52842/conf.caadria.2020.2.313
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 313-322
summary ARgan is a geometrically complex bamboo sculpture that relied on Mixed Reality (MR) for its joint creation by multiple sculptors and used latest Augmented Reality (AR) technology to guide manual fabrication actions. It was built at the Chinese University of Hong Kong in the fall of 2019 by thirty participants of a design-and-build workshop on the integration of AR in construction. As part of its construction workflow, holographic setups were created on multiple devices, including a series of Microsoft HoloLenses and several handheld Smartphones, all linked simultaneously to a single digital base model to interactively guide the manufacturing process. This paper critically evaluates the experience of extending recent AR and MR tool developments towards applications that centre on creative collaborative production. Using ARgan as a demonstrator project, its developed workflow is assessed on its ability to transform a geometrically complex digitally drafted design to its final physically built form, highlighting the necessary strategic integration of variability as an opportunity to relax notions on design precision and exact control. The paper concludes with a plea for digital technology's ability to stimulate dialogue and collaboration in creative production and augment craftsmanship, thus providing greater agency and more diverse design output.
keywords Augmented-Reality; Mixed-Reality; Post-digital; High-tech vs low-tech; Bamboo
series CAADRIA
email
last changed 2022/06/07 07:51

_id ecaadesigradi2019_367
id ecaadesigradi2019_367
authors Goti, Kyriaki, Katz, Shir, Baharlou, Ehsan, Vasey, Lauren and Menges, Achim
year 2019
title Jamming Formations - Intuitive design and fabrication process through human-computer interaction
doi https://doi.org/10.52842/conf.ecaade.2019.1.669
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 669-680
summary This paper examines the potential of User Interfaces (UI) and sensor feedback to develop an intuitive design and fabrication process utilizing granular jamming. By taking advantage of the variable stiffness of granular jamming over time, an adaptive fabrication process is presented in which various structures are formed from individual jammed components which can weave or interlock in an overall system. A User Interface (UI) is developed as a design tool which would enable interactive design decisions and operations, based on pre-designed formal and tectonic strategies. The project has four research trajectories that are developed in parallel: (1) material system research; (2) development of an ad hoc digital recording system; (3) creation of a computational library that stores users' iterations; and (4) development of a User Interface (UI) that enables users' interaction with the computational library.
keywords Granular Jamming, Human-computer Interaction, Adaptive Fabrication
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

_id caadria2019_256
id caadria2019_256
authors Lertsithichai, Surapong
year 2019
title Augemented Architecture - Interplay between Digital and Physical Environments
doi https://doi.org/10.52842/conf.caadria.2019.2.353
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 353-362
summary In an increasingly connected world where computers are everywhere, surrounding us in embedded small portable devices, appliances and inside buildings, implementing these interconnected and embedded computers have now become common practice in the design of smart spaces and intelligent environments of today. Digital information is constantly being collected and distributed by a network of digital devices communicating with users and vice versa. New behaviors and activities that may have not been considered before in the design of architectural building types are now commonly found in public and private spaces throughout the world. In an attempt to explore and experiment with the concept of interplay between digital and physical environments, an option studio was proposed to 4th year architecture students to develop a new type of augmented architecture that corresponds to changes in human social behavior due to digital technologies. Five pilot projects are presented with experiments conducted to question three social activities commonly found in everyday lives using Arduino prototypes installed in real physical locations. The prototypes were then used as a basis for the development of large-scale projects proposed as augmented architecture.
keywords Human-Computer Interaction; Ubiquitous Computing; Virtual / Augmented Reality; Computational Design Research; IoT for Built Environments
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2019_403
id caadria2019_403
authors Lin, Xuhui and Muslimin, Rizal
year 2019
title RESHAPE - Rapid forming and simulation system using unmanned aerial vehicles for architectural representation
doi https://doi.org/10.52842/conf.caadria.2019.1.413
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 413-422
summary As digital technology advances, multiple ways of repre-senting objects interactively in space, architects and designers begin to use Virtual Reality (VR) and Immersive Digital Environ-ments (IDE) to communicate their ideas. However, these technolo-gies are bounded with their spatial limitations. In responding to this issue, our paper introduces ReShape, a digital-physical spatial representation system supported by Unmanned Aerial Vehicle (UAV) swarm technology that allows a user to project their unbuilt design and interact with them in real space, unattached by headset, fixed cameras or screen. ReShape can be controlled by user orien-tation and gesture as an input, where the real-time feedback is provided by UAV spatial arrangement in space, augmented by computational simulation. Spatial data is transmitted between the UAV agents for the user to experience the digital model, creating a versatile and computationally efficient platform to edit and en-hance the design in real-space. This paper outlines four systems in ReShape, i.e., (1) detection system to identify and locate the user position and orientation; (2) task-arrangement system to provide spatial information to the UAV agents; (3) UAV's communicating system to control the UAV position and task in space; and (4) Physical-Digital forming system, to project digital simulation by the UAV agents.
keywords UAV system; Spatial representation; a detecting sys-tem; human-computation interaction
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2019_439
id caadria2019_439
authors Lo, Tian Tian, Xiao, ZuoPeng and Yu, Henry
year 2019
title Designing 'Action Trigger' for Architecture Modelling Design within Immersive Virtual Reality
doi https://doi.org/10.52842/conf.caadria.2019.1.545
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 545-552
summary Architectural modelling is radically evolving with time. The introduction of VR into gaming and education has also encouraged architecture to integrate VR into its course of the design process. However, the current integration of Augmented Reality (AR) and Virtual Reality (VR) components is mostly limited to enhancing visualisation, especially towards the corresponding design tasks. This opportunity lead to an increase in attempts to bring the modelling process into the immersive environment. This paper aims to challenge the current design capabilities within the immersive environment and introduce a new interaction method between the human and the virtual reality. The research in human-computer interaction (HCI) has been ongoing for years till present day to observe how humans interact with computers and design technologies. The appearance of the smartphone has extended this HCI research towards hand-carried devices. With VR, although the hardware is still considered 'computer', the interaction is very much different. Since the human is immersed in the virtual environment, the interaction is already beyond the traditional keyboard and mouse. This paper responds to the conference theme by capitalising the power of VR technology to bring new methods of HVRI to the architecture design process.
keywords VR; HVRI; Interaction; Action Trigger; Immersive
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2019_081
id caadria2019_081
authors Sheldon, Aron, Dobbs, Tiara, Fabbri, Alessandra, Gardner, Nicole, Haeusler, M. Hank, Ramos, Cristina and Zavoleas, Yannis
year 2019
title Putting the AR in (AR)chitecture - Integrating voice recognition and gesture control for Augmented Reality interaction to enhance design practice
doi https://doi.org/10.52842/conf.caadria.2019.1.475
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 475-484
summary The architectural design process involves the development of spatial explorable 3D models, but the computer screen is main medium to communicate information to clients. Yet, Augmented Reality (AR) and Virtual Reality (VR) are the closest way to replicate our world, create new ones and interact within them. AR and VR headsets offer different ways to allow multiple stakeholders to effectively immerse themselves in 3D representations of design projects. But, to interact within these spaces and to perform design modifications, the development of new workflows is required. This research presents a new method where AR is used to visualize and edit project models using both voice recognition and hand-gestures software. While numerous projects are addressing software interoperability issues, user-interaction in an AR space remains a developing area of crucial relevance in research. Although hand-gestures are the usual form of model-state control employed in such systems, voice-control is emerging as a highly desirable and everyday form of human-computer interaction. This paper presents a plugin for the Hololens that allows the user to use voice and hand gestures to enhance the ability to work with 3D models and discusses and evaluates the project.
keywords Augmented Reality; Design Workflows; Interaction Design; Voice Recogition; Gesture Recognition
series CAADRIA
email
last changed 2022/06/07 07:56

_id ijac201917201
id ijac201917201
authors Trilsbeck, Matthew; Nicole Gardner, Alessandra Fabbri, Matthias Hank Haeusler, Yannis Zavoleas and Mitchell Page
year 2019
title Meeting in the middle: Hybrid clay three-dimensional fabrication processes for bio-reef structures
source International Journal of Architectural Computing vol. 17 - no. 2, 148-165
summary Despite the relative accessibility of clay, its low cost and reputation as a robust and sustainable building material, clay three-dimensional printing remains an under-utilized digital fabrication technique in the production of architectural artefacts. Given this, numerous research projects have sought to extend the viability of clay three-dimensional digital fabrication by streamlining and automating workflows through computational methods and robotic technologies in ways that afford agency to the digital and machinic processes over human bodily skill. Three-dimensional printed clay has also gained prominence as a resilient material well suited to the design and fabrication of artificial reef and habitat- enhancing seawall structures for coastal marine environments depleted and disrupted by human activity, climate change and pollution. Still, these projects face similar challenges when three-dimensional printing complex forms from the highly plastic and somewhat unpredictable feed material of clay. In response, this article outlines a research project that seeks to improve the translation of complex geometries into physical clay artefacts through additive three- dimensional printing processes by drawing on the notion of digital craft and giving focus to human–machine interaction as a collaborative practice. Through the case study of the 1:1 scale fabrication of a computationally generated bio-reef structure using clay as a feed material and a readily available Delta Potterbot XLS-2 ceramic printer, the research project documents how, by exploiting the human ability to intuitively handle clay and adapt, and the machine’s ability to work efficiently and with precision, humans and machines can fabricate together . With the urgent need to develop more sustainable building practices and materials, this research contributes valuable knowledge of hybrid fabrication processes towards extending the accessibility and viability of clay three-dimensional printing as a resilient material and fabrication system.
keywords Clay three-dimensional printing, digital fabrication, hybrid fabrication, digital craft, human–machine interaction
series journal
email
last changed 2019/08/07 14:04

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_604055 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002