CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 229

_id acadia19_130
id acadia19_130
authors Devadass, Pradeep; Heimig, Tobias; Stumm, Sven; Kerber, Ethan; Cokcan, Sigrid Brell
year 2019
title Robotic Constraints Informed Design Process
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 130-139
doi https://doi.org/10.52842/conf.acadia.2019.130
summary Promising results in efficiently producing highly complex non-standard designs have been accomplished by integrating robotic fabrication with parametric design. However, the project workflow is hampered due to the disconnect between designer and robotic fabricator. The design is most often developed by the designer independently from fabrication process constraints. This results in fabrication difficulties or even non manufacturable components. In this paper we explore the various constraints in robotic fabrication and assembly processes, analyze their influence on design, and propose a methodology which bridges the gap between parametric design and robotic production. Within our research we investigate the workspace constraints of robots, end effectors, and workpieces used for the fabrication of an experimental architectural project: “The Twisted Arch.” This research utilizes machine learning approaches to parameterize, quantify, and analyze each constraint while optimizing how those parameters impact the design output. The research aims to offer a better planning to production process by providing continuous feedback to the designer during early stages of the design process. This leads to a well-informed “manufacturable” design.
keywords Robotic Fabrication and Assembly, Mobile Robotics, Machine Learning, Parametric Design, Constraint Based Design.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id acadia20_192p
id acadia20_192p
authors Doyle, Shelby; Hunt, Erin
year 2020
title Melting 2.0
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 192-197
summary This project presents computational design and fabrication methods for locating standard steel reinforcement within 3D printed water-soluble PVA (polyvinyl alcohol) molds to create non-standard concrete columns. Previous methods from “Melting: Augmenting Concrete Columns with Water Soluble 3D Printed Formwork” and “Dissolvable 3D Printed Formwork: Exploring Additive Manufacturing for Reinforced Concrete” (Doyle & Hunt 2019) were adapted for larger-scale construction, including the introduction of new hardware, development of custom programming strategies, and updated digital fabrication techniques. Initial research plans included 3D printing continuous PVA formwork with a KUKA Agilus Kr10 R1100 industrial robotic arm. However, COVID-19 university campus closures led to fabrication shifting to the author’s home, and this phase instead relied upon a LulzBot TAZ 6 (build volume of 280 mm x 280 mm x 250 mm) with an HS+ (Hardened Steel) tool head (1.2 mm nozzle diameter). Two methods were developed for this project phase: new 3D printing hardware and custom GCode production. The methods were then evaluated in the fabrication of three non-standard columns designed around five standard reinforcement bars (3/8-inch diameter): Woven, Twisted, Aperture. Each test column was eight inches in diameter (the same size as a standard Sonotube concrete form) and 4 feet tall, approximately half the height of an architecturally scaled 8-foot-tall column. Each column’s form was generated from combining these diameter and height restrictions with the constraints of standard reinforcement placement and minimum concrete coverage. The formwork was then printed, assembled, cast, and then submerged in water to dissolve the molds to reveal the cast concrete. This mold dissolving process limits the applicable scale for the work as it transitions from the research lab to the construction site. Therefore, the final column was placed outside with its mold intact to explore if humidity and water alone can dissolve the PVA formwork in lieu of submersion.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id acadia19_332
id acadia19_332
authors Koerner, Andreas
year 2019
title Thermochromic Articulations
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 332- 337
doi https://doi.org/10.52842/conf.acadia.2019.332
summary The ongoing research presented in this paper lies on the threshold between computational design and digital fabrication with a strong focus on emergent techniques for environmental design. The main hypothesis is, that with an increasing granularity of thermal comfort - observing a trend towards more heterogeneous indoor microclimates – new design challenges arise. Architectural fabrics will be required to communicate indoor climate conditions to the inhabitants, to maintain high levels of thermal comfort locally but specifically. This research investigates a novel generative design methodology, which links computational fluid dynamics simulations, robotic fabrication and material-inert performances. The resulting environmentally active panels respond to climatic conditions and by this communicate parameters of thermal comfort, such as temperature, airflow, and humidity, to the inhabitants. This paper presents a digital design workflow, a prototype for a thermochromic panel, and speculates on potential development. Communicating invisible parameters of thermal comfort to users is a crucial requirement when designing large continuous indoor volumes, when blurring the dichotomous duality of inside and outside and when designing highly porous architecture.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id ecaadesigradi2019_327
id ecaadesigradi2019_327
authors Silva, Daniela, Paio, Alexandra and Sousa, José Pedro
year 2019
title Reprogramming Practice - Revising design thinking through digital fabrication
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 379-386
doi https://doi.org/10.52842/conf.ecaade.2019.1.379
summary Questioning the importance and impact of design thinking methodologies in the architectural design studios is a backbone of architectural education in twenty first century. 3D printing and digital manufacturing are disruptive technologies that are changing architects and designers daily lives. These trends require new skills, based on a deep understanding of digital continuum from design to production, from generation to fabrication. This continuity transcends the merely instrumental contributions of a person-machine relationship to praxis, has begun to evolve as a medium that supports a continuous logic of design thinking and making. Design thinking methodologies associated with digital fabrication emerged as a leading technological and design issue of digital research and design. As designers, we are witnessing a no frontier between computational design and digital fabrication. For this paper is taken into consideration the work of two architecture studios that share a unique background on new methodologies by embracing the digital technology in their own practice. Their work reflects on new design methodologies facing the expansion of digital technology in architectural practice. This paper discusses the possibility of new design thinking methods driven by digital fabrication.
keywords Design thinking; Digital Fabrication; AEC; Collaborative Design; Architectural Practice
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id acadia19_458
id acadia19_458
authors Bartosh, Amber; Anzalone, Phillip
year 2019
title Experimental Applications of Virtual Reality in Design Education
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 458-467
doi https://doi.org/10.52842/conf.acadia.2019.458
summary By introducing rapid reproduction, algorithms, and complex formal configurations, the digital era of architecture began a revolution. Architects incorporated the computational capacity of the computer into the design process both as a tool and as a critical component of the theories and practice of architecture as a whole. As we move into what has been coined “the second digital turn,” a period in which digital integration is considered ubiquitous, how can we consider, prepare, and propel towards the next technological innovation to significantly inform design thinking, representation, and manifestation? What tools are available to investigate this speculative design future and how can they be implemented? If the integration of technology in architecture is now a given, perhaps the next digital design era is not just digital but virtual. As new technologies emerge the potential for integrating the virtual design world with our physical senses affords novel possibilities for interactive design, simulation, analysis and construction. Hybrid reality technologies including virtual reality (VR) and augmented reality (AR), embody the potential to supersede conventional representation methodologies such as drawing, rendering, physical modeling, and animation. As they become increasingly pervasive, they will transform how we communicate ideas and data as spatial concepts. Further, they will reform the construct of the built environment when applied to both materiality and fabrication. This paper will describe the incorporation of VR as a tool in various classroom and laboratory settings, recognize the educational outcomes of this incorporation, and identify the potential relationship of these technologies to future academic exploration and application to practice.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_425
id ecaadesigradi2019_425
authors Betti, Giovanni, Aziz, Saqib and Ron, Gili
year 2019
title Pop Up Factory : Collaborative Design in Mixed Rality - Interactive live installation for the makeCity festival, 2018 Berlin
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 115-124
doi https://doi.org/10.52842/conf.ecaade.2019.3.115
summary This paper examines a novel, integrated and collaborative approach to design and fabrication, enabled through Mixed Reality. In a bespoke fabrication process, the design is controlled and altered by users in holographic space, through a custom, multi-modal interface. Users input is live-streamed and channeled to 3D modelling environment,on-demand robotic fabrication and AR-guided assembly. The Holographic Interface is aimed at promoting man-machine collaboration. A bespoke pipeline translates hand gestures and audio into CAD and numeric fabrication. This enables non-professional participants engage with a plethora of novel technology. The feasibility of Mixed Reality for architectural workflow was tested through an interactive installation for the makeCity Berlin 2018 festival. Participants experienced with on-demand design, fabrication an AR-guided assembly. This article will discuss the technical measures taken as well as the potential in using Holographic Interfaces for collaborative design and on-site fabrication.Please write your abstract here by clicking this paragraph.
keywords Holographic Interface; Augmented Reality; Multimodal Interface; Collaborative Design; Robotic Fabrication; On-Site Fabrication
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id ecaadesigradi2019_473
id ecaadesigradi2019_473
authors Brandao, Filipe, Paio, Alexandra and Lopes, Adriano
year 2019
title Interactive algorithm for generating accurate as-built plans by building owners
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 69-78
doi https://doi.org/10.52842/conf.ecaade.2019.2.069
summary Mass Customization systems in architecture have yet to adequately address the problem of capturing physical context, a fundamental aspect of dealing with building renovation, which has limited their scope of application. Previous research has demonstrated that existing methods of capturing as-built plans of rooms by non-expert users do not produce sufficiently accurate results for digital fabrication. The present paper reports on research into the development of an algorithm for semi-automated survey of convex or non-convex rooms by building owners. The improved workflow is tested by expert and non-expert users in a to-be renovated building and the results are compared with existing methods of survey.
keywords Mass Customization; As-built Plans; Building renovation; Polygon partition;
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_376
id ecaadesigradi2019_376
authors Das, Avishek, Worre Foged, Isak, Jensen, Mads Brath and Hansson, Michael Natapon
year 2019
title Collaborative Robotic Masonry and Early Stage Fatigue Prediction
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 171-178
doi https://doi.org/10.52842/conf.ecaade.2019.3.171
summary The nature of craft has often been dictated by the type and nature of the tool. The authors intend to establish a new relationship between a mechanically articulated tool and a human through the development a symbiotic relationship between them. This study attempts to develop and deploy a framework for collaborative robotic masonry involving one mason and one industrial robotic arm. This study aims to study the harmful posture and muscular stress developed during the construction work and involve a robotic arm to aid the mason to reduce the cumulative damage to one's body. Through utilization of RGBD sensors and surface electromyography procedure the study develops a framework that distributes the task between the mason and robot. The kinematics and electromyography detects the fatigue and harmful postures and activates the robot to collaborate with the mason in the process.
keywords interactive robotic fabrication; human robot collaboration; fatigue and pose estimation; masonry
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_367
id ecaadesigradi2019_367
authors Goti, Kyriaki, Katz, Shir, Baharlou, Ehsan, Vasey, Lauren and Menges, Achim
year 2019
title Jamming Formations - Intuitive design and fabrication process through human-computer interaction
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 669-680
doi https://doi.org/10.52842/conf.ecaade.2019.1.669
summary This paper examines the potential of User Interfaces (UI) and sensor feedback to develop an intuitive design and fabrication process utilizing granular jamming. By taking advantage of the variable stiffness of granular jamming over time, an adaptive fabrication process is presented in which various structures are formed from individual jammed components which can weave or interlock in an overall system. A User Interface (UI) is developed as a design tool which would enable interactive design decisions and operations, based on pre-designed formal and tectonic strategies. The project has four research trajectories that are developed in parallel: (1) material system research; (2) development of an ad hoc digital recording system; (3) creation of a computational library that stores users' iterations; and (4) development of a User Interface (UI) that enables users' interaction with the computational library.
keywords Granular Jamming, Human-computer Interaction, Adaptive Fabrication
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

_id ecaadesigradi2019_552
id ecaadesigradi2019_552
authors Natividade, Verônica and Dias, Silvio
year 2019
title FavLab Maré Edition
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 349-358
doi https://doi.org/10.52842/conf.ecaade.2019.1.349
summary This paper introduces and discusses the first outcome of a recently created digital fabrication laboratory at Favela da Maré, a slum in the North zone of Rio de Janeiro, Brazil. The lab called FavLab is a partnership between the Jo?o e Maria Aleixo Institute, located inside Favela da Maré, and the Department of Architecture and Urbanism of PUC-Rio University. More specifically, it aims to present the lab's first activity: a workshop devoted to create and fabricate meaningful objects to the context of favela exploiting digital design and fabrication methods. Architecture undergraduates and local young residents not enrolled in the educational system participated in the studio. This paper aims to discuss in details the experience of teaching for this particular group of students, as well as the impacts of the collaborative design between university and favela students to create interactive objects in a Brazilian community. The paper aims to reinforce and remark an innovative and inclusive approach to digital design and fabrication. This paper also attempts to discuss further developments and next steps towards more profound and broader collaboration between academia and favelas' representatives.
keywords Fab Labs; Favela; Interactive installation; Parametric design; Digital fabrication
series eCAADeSIGraDi
email
last changed 2022/06/07 07:59

_id ecaade2020_138
id ecaade2020_138
authors Patel, Sayjel Vijay, Tchakerian, Raffi, Lemos Morais, Renata, Zhang, Jie and Cropper, Simon
year 2020
title The Emoting City - Designing feeling and artificial empathy in mediated environments
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 261-270
doi https://doi.org/10.52842/conf.ecaade.2020.2.261
summary This paper presents a theoretical blueprint for implementing artificial empathy into the built environment. Transdisciplinary design principles have oriented the creation of a new model for autonomous environments integrating psychology, architecture, digital media, affective computing and interactive UX design. 'The Emoting City', an interactive installation presented at the 2019 Shenzhen Bi-City Biennale of Urbanism/Architecture, is presented as a first step to explore how to engage AI-driven sensing by integrating human perception, cognition and behaviour in a real-world scenario. The approach described encompasses two main elements: embedded cyberception and responsive surfaces. Its human-AI interface enables new modes of blended interaction that are conducive to self-empathy and insight. It brings forth a new proposition for the development of sensing systems that go beyond social robotics into the field of artificial empathy. The installation innovates in the design of seamless affective computing that combines 'alloplastic' and 'autoplastic' architectures. We believe that our research signals the emergence of a potential revolution in responsive environments, offering a glimpse into the possibility of designing intelligent spaces with the ability to sense, inform and respond to human emotional states in ways that promote personal, cultural and social evolution.
keywords Artificial Intelligence; Responsive Architecture; Affective Computation; Human-AI Interfaces; Artificial Empathy
series eCAADe
email
last changed 2022/06/07 07:59

_id lasg_whitepapers_2019_291
id lasg_whitepapers_2019_291
authors Sabin, Jenny
year 2019
title Lumen
source Living Architecture Systems Group White Papers 2019 [ISBN 978-1-988366-18-0] Riverside Architectural Press: Toronto, Canada 2019. pp.291 - 318
summary This paper documents the computational design methods, digital fabrication strategies, and generative design process for [Lumen], winner of MoMA & MoMA PS1’s 2017 Young Architects Program. The project was installed in the courtyard at MoMA PS1 in Long Island City, New York, during the summer of 2017. Two lightweight 3D digitally knitted fabric canopy structures composed of responsive tubular and cellular components employ recycled textiles, photo-luminescent and solar active yarns that absorb and store UV energy, change color, and emit light. This environment offers spaces of respite, exchange, and engagement as a 150 x 75-foot misting system responds to visitors’ proximity, activating fabric stalactites that produce a refreshing micro-climate. Families of robotically prototyped and woven recycled spool chairs provide seating throughout the courtyard. The canopies are digitally fabricated with over 1,000,000 yards of high tech responsive yarn and are supported by three 40+ foot tensegrity towers and the surrounding matrix of courtyard walls. Material responses to sunlight as well as physical participation are integral parts of our exploratory approach to the 2017 YAP brief. The project is mathematically generated through form-finding simulations informed by the sun, site, materials, program, and the material morphology of knitted cellular components. Resisting a biomimetic approach, [Lumen] employs an analogic design process where complex material behavior and processes are integrated with personal engagement and diverse programs. The comprehensive installation was designed by Jenny Sabin Studio and fabricated by Shima Seiki WHOLEGARMENT, Jacobsson Carruthers, and Dazian with structural engineering by Arup and lighting by Focus Lighting.
keywords living architecture systems group, organicism, intelligent systems, design methods, engineering and art, new media art, interactive art, dissipative systems, technology, cognition, responsiveness, biomaterials, artificial natures, 4DSOUND, materials, virtual projections,
email
last changed 2019/07/29 14:02

_id ecaadesigradi2019_001
id ecaadesigradi2019_001
authors Sousa, JP, Xavier, JP and Castro Henriques, G (eds.)
year 2019
title Architecture in the Age of the 4th Industrial Revolution, Volume 2
source Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, 872 p.
doi https://doi.org/10.52842/conf.ecaade.2019.2
summary Going back in history, the 1st Industrial Revolution occurred between the 18th and 19th centuries, when water and steam power led to the mechanization period. By then, social changes radically transformed cities and, together with manufactured materials like steel and glass, promoted the emergence of new building design typologies like the railway station. In the end of the 19th century, the advent of electrical power triggered mass production systems. This 2nd Revolution affected the building construction industry in many ways, inspiring the birth to the modern movement. For some, standardization emerged as an enemy of arts and crafts, while, for others, it was an opportunity to embrace new design agendas, where construction economy and quality could be controlled in novel ways. More recently, electronics and information technology fostered the 3rd Revolution with the production automation. In architecture, the progressive use of digital design, analysis and fabrication processes started to replace the traditional means of analogical representation. This opened the door for the exploration of a higher degree of design freedom, complexity and customization. The rise of the Internet also changed the way architects communicated and promoted the emergence of global architectural practices in the planet. Today, in the beginning of the 21th century, we are in a moment of profound and accelerated changes in the way we perceive and interact with(in) the world, which many authors, like Klaus Schwab, do not hesitate to call as the Fourth Industrial Revolution. Extraordinary advancements in areas like mobile communication, artificial intelligence, big data, cloud computing, blockchain, nanotechnology, biotechnology, facial recognition, robotics or additive manufacturing are fusing the physical, biological and digital systems of production. Such technological context has triggered a series of disruptive concepts and innovations, like the smart-phone, social networks, online gaming, internet of things, smart materials, interactive environments, personal fabrication, 3D printing, virtual and augmented realities, drones, selfdriving cars or the smart cities, which, all together, are drawing a radically new world.
series eCAADeSIGraDi
last changed 2022/06/07 07:49

_id ecaadesigradi2019_002
id ecaadesigradi2019_002
authors Sousa, JP, Xavier, JP and Castro Henriques, G (eds.)
year 2019
title Architecture in the Age of the 4th Industrial Revolution, Volume 3
source Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, 374 p.
doi https://doi.org/10.52842/conf.ecaade.2019.3
summary Going back in history, the 1st Industrial Revolution occurred between the 18th and 19th centuries, when water and steam power led to the mechanization period. By then, social changes radically transformed cities and, together with manufactured materials like steel and glass, promoted the emergence of new building design typologies like the railway station. In the end of the 19th century, the advent of electrical power triggered mass production systems. This 2nd Revolution affected the building construction industry in many ways, inspiring the birth to the modern movement. For some, standardization emerged as an enemy of arts and crafts, while, for others, it was an opportunity to embrace new design agendas, where construction economy and quality could be controlled in novel ways. More recently, electronics and information technology fostered the 3rd Revolution with the production automation. In architecture, the progressive use of digital design, analysis and fabrication processes started to replace the traditional means of analogical representation. This opened the door for the exploration of a higher degree of design freedom, complexity and customization. The rise of the Internet also changed the way architects communicated and promoted the emergence of global architectural practices in the planet. Today, in the beginning of the 21th century, we are in a moment of profound and accelerated changes in the way we perceive and interact with(in) the world, which many authors, like Klaus Schwab, do not hesitate to call as the Fourth Industrial Revolution. Extraordinary advancements in areas like mobile communication, artificial intelligence, big data, cloud computing, blockchain, nanotechnology, biotechnology, facial recognition, robotics or additive manufacturing are fusing the physical, biological and digital systems of production. Such technological context has triggered a series of disruptive concepts and innovations, like the smart-phone, social networks, online gaming, internet of things, smart materials, interactive environments, personal fabrication, 3D printing, virtual and augmented realities, drones, selfdriving cars or the smart cities, which, all together, are drawing a radically new world.
series eCAADeSIGraDi
last changed 2022/06/07 07:49

_id ecaadesigradi2019_000
id ecaadesigradi2019_000
authors Sousa, JP, Xavier, JP and Castro Henriques, G (eds.)
year 2019
title Architecture in the Age of the 4th Industrial Revolution, Volume 1
source Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, 835 p.
doi https://doi.org/10.52842/conf.ecaade.2019.1
summary Going back in history, the 1st Industrial Revolution occurred between the 18th and 19th centuries, when water and steam power led to the mechanization period. By then, social changes radically transformed cities and, together with manufactured materials like steel and glass, promoted the emergence of new building design typologies like the railway station. In the end of the 19th century, the advent of electrical power triggered mass production systems. This 2nd Revolution affected the building construction industry in many ways, inspiring the birth to the modern movement. For some, standardization emerged as an enemy of arts and crafts, while, for others, it was an opportunity to embrace new design agendas, where construction economy and quality could be controlled in novel ways. More recently, electronics and information technology fostered the 3rd Revolution with the production automation. In architecture, the progressive use of digital design, analysis and fabrication processes started to replace the traditional means of analogical representation. This opened the door for the exploration of a higher degree of design freedom, complexity and customization. The rise of the Internet also changed the way architects communicated and promoted the emergence of global architectural practices in the planet. Today, in the beginning of the 21th century, we are in a moment of profound and accelerated changes in the way we perceive and interact with(in) the world, which many authors, like Klaus Schwab, do not hesitate to call as the Fourth Industrial Revolution. Extraordinary advancements in areas like mobile communication, artificial intelligence, big data, cloud computing, blockchain, nanotechnology, biotechnology, facial recognition, robotics or additive manufacturing are fusing the physical, biological and digital systems of production. Such technological context has triggered a series of disruptive concepts and innovations, like the smart-phone, social networks, online gaming, internet of things, smart materials, interactive environments, personal fabrication, 3D printing, virtual and augmented realities, drones, selfdriving cars or the smart cities, which, all together, are drawing a radically new world.
series eCAADeSIGraDi
last changed 2022/06/07 07:49

_id cf2019_026
id cf2019_026
authors Wibranek, Bastian; Oliver Tessmann, Boris Belousov and Alymbek Sadybakasov
year 2019
title Interactive Assemblies: Man-Machine Collaborations for a Material-Based Modeling Environment
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 186
summary This paper presents our concept, named Interactive Assemblies, which facilitates interaction between man and machine in construction process in which specially designed building components are used as a design interface. In our setup, users physically manipulate and reposition building components. The components, digitized by means of machine sensing, become a part of the design interface. Each of the three experiments included in this paper examines a different robotic sensor approach that helps transfer of data, including the position and shape of each component, back into the digital model. We investigate combinations of material systems (material computation, selfcorrecting assembly) and matching sensors. The accumulated data serves as input for design algorithms and generates robot tool paths for collaborative fabrication. Using real-world geometry to move from virtual design tools directly to physical interaction and back, our research proposes enhanced participation of human actors in robotic construction processes in architecture.
keywords Man-Machine Collaboration, Robotics, Machine Sensing, As-Built Modelling, Interactive Assemblies
series CAAD Futures
email
last changed 2019/07/29 14:15

_id acadia19_246
id acadia19_246
authors Zhang, Viola; Qian, William; Sabin, Jenny
year 2019
title PolyBrickH2.0
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 246-257
doi https://doi.org/10.52842/conf.acadia.2019.246
summary This project emerged from collaborative trans-disciplinary research between architecture, engineering, biology, and materials science to generate novel applications in micro-scale 3D printed ceramics. Specifically, PolyBrick H2.0 adapts internal bone-based hydraulic networks through controlled water flow from 3D printed micro-textures and surface chemistry. Engagement across disciplines produced the PolyBrick series at the Sabin Lab (Sabin, Miller, and Cassab 2014) . The series is a manifestation of novel digital fabrication techniques, bioinspired design, materials inquiry, and contemporary evolutions of building materials. A new purpose for the brick is explored that is not solely focused on the mechanical constraints necessary for built masonry structures. PolyBrick H2.0 interweaves the intricacies of living systems (beings and environments combined) to create a more responsive and interactive material system. The PolyBrick 2.0 series looks at human bone as a design model for foundational research. PolyBrick H2.0 merges the cortical bone hydraulic network with new functionalities as a water filtration and collection system for self-preservation and conservation as well as passive cooling solutions. It also pushes the ability of 3D printing techniques to the microscale. These functionalities are investigated under context for a better construction material, but its use may extend further.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:57

_id cf2019_052
id cf2019_052
authors Abdelmohsen, Sherif ;Passaint Massoud, Rana El-Dabaa, Aly Ibrahim and Tasbeh Mokbel
year 2019
title The Effect of Hygroscopic Design Parameters on the Programmability of Laminated Wood Composites for Adaptive Façades
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 435
summary Typical adaptive façades respond to external conditions to enhance indoor spaces based on complex mechanical actuators and programmable functions. Hygroscopic embedded properties of wood, as low-cost low-tech programmable material, have been utilized to induce passive motion mechanisms. Wood as anisotropic material allows for different passive programmable motion configurations that relies on several hygroscopic design parameters. This paper explores the effect of these parameters on programmability of laminated wood composites through physical experiments in controlled humidity environment. The paper studies variety of laminated configurations involving different grain orientations, and their effect on maximum angle of deflection and its durability. Angle of deflection is measured using image analysis software that is used for continuous tracking of deflection in relation to time. Durability is studied as the number of complete programmable cycles that wood could withstand before reaching point of failure. Results revealed that samples with highest deflection angle have least programmability durability.
keywords Wood, hygroscopic design, lamination, deflection, durability, adaptive façades
series CAAD Futures
email
last changed 2019/07/29 14:18

_id ecaadesigradi2019_514
id ecaadesigradi2019_514
authors de Miguel, Jaime, Villafa?e, Maria Eugenia, Piškorec, Luka and Sancho-Caparrini, Fernando
year 2019
title Deep Form Finding - Using Variational Autoencoders for deep form finding of structural typologies
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 71-80
doi https://doi.org/10.52842/conf.ecaade.2019.1.071
summary In this paper, we are aiming to present a methodology for generation, manipulation and form finding of structural typologies using variational autoencoders, a machine learning model based on neural networks. We are giving a detailed description of the neural network architecture used as well as the data representation based on the concept of a 3D-canvas with voxelized wireframes. In this 3D-canvas, the input geometry of the building typologies is represented through their connectivity map and subsequently augmented to increase the size of the training set. Our variational autoencoder model then learns a continuous latent distribution of the input data from which we can sample to generate new geometry instances, essentially hybrids of the initial input geometries. Finally, we present the results of these computational experiments and lay out the conclusions as well as outlook for future research in this field.
keywords artificial intelligence; deep neural networks; variational autoencoders; generative design; form finding; structural design
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id acadia19_576
id acadia19_576
authors García del Castillo y López, Jose Luis; Bechthold, Martin; Seibold, Zach; Mhatre, Saurabh; Alhadidi, Suleiman
year 2019
title Janus Printing
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 576-585
doi https://doi.org/10.52842/conf.acadia.2019.576
summary The benefits of additive manufacturing technologies for the production of customized construction elements has been well documented for several decades. Multi-material additive manufacturing (MM-AM) enhances these capacities by introducing region-specific characteristics to printed objects. Several examples of the production of multi-material assemblies, including functionally-graded materials (FGMs) exist at the architectural scale, but none are known for ceramics. Factors limiting the development and application of this production method include the cost and complexity of existing MM-AM machinery, and the lack of a suitable computational workflow for the production of MM-AM ceramics, which often relies on a continuous linear toolpath. We present a method for the MM-AM of paste-based ceramics that allows for unique material expressions with relatively simple end-effector design. By borrowing methods of co-extrusion found in other industries and incorporating a 4th axis of motion into the printing process, we demonstrate a precisely controlled MM-AM deposition strategy for paste-based ceramics. We present a computational workflow for the generation of toolpaths, and describe full-body tiles and 3D artifacts that can be produced using this method. Future process refinements include the introduction of more precise control of material gradation and refinements to material composition for increased element functionality.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 11HOMELOGIN (you are user _anon_313235 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002