CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 615

_id caadria2019_171
id caadria2019_171
authors Sammer, Maria, Leitão, António and Caetano, Inês
year 2019
title From Visual Input to Visual Output in Textual Programming
doi https://doi.org/10.52842/conf.caadria.2019.1.645
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 645-654
summary Algorithmic Design is an approach that uses algorithms to generate designs. These algorithms are built using either a Visual Programming Language (VPL) or a Textual Programming Language (TPL). In architecture, there is a clear propensity to the use of VPLs, e.g., Grasshopper or Dynamo, over the use of TPLs, e.g., Python or AutoLisp. In addition to all the user-friendly and interactive features that make VPLs more appealing to architects, most of them already integrate components for textual programming. In contrast, TPLs have not been as successful in incorporating visual features. Given the user-friendliness of VPLs and the relevance of TPLs for large-scale and complex designs, we discuss Visual Input Mechanisms (VIMs) in the context of TPLs. In this paper, we extend previous research in this area by exploring and implementing the most valuable VIMs in a TPL adapted for architectural design.
keywords Algorithmic Design; Metaprogramming; Textual Programming Languages; Visual Input Mechanisms
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_179
id ecaadesigradi2019_179
authors Castelo-Branco, Renata, Leit?o, António and Santos, Guilherme
year 2019
title Immersive Algorithmic Design - Live Coding in Virtual Reality
doi https://doi.org/10.52842/conf.ecaade.2019.2.455
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 455-464
summary As many other areas of human activity, the architectural design process has been recently shaken by Virtual Reality (VR), as it offers new ways to experience and communicate architectural space. In this paper we propose Live Coding in Virtual Reality (LCVR), a design approach that allows architects to benefit from the advantages of VR within an algorithmic design workflow. LCVR integrates a live coding solution, where the architect programs his design intent and immediately receives feedback on the changes applied to the program; and VR, which means this workflow takes place inside the virtual environment, where the architect is immersed in the model that results from the program he is concurrently updating from inside VR. In this paper we discuss the possible impacts of such an approach, as well as the most pressing implementation issues. We offer a critical analysis and comparison of the various solutions available in the context of two different programming paradigms: visual and textual.
keywords Virtual Reality; Algorithmic Design; Live Coding
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id ecaadesigradi2019_216
id ecaadesigradi2019_216
authors Sammer, Maria Jo?o and Leit?o, António
year 2019
title Visual Input Mechanisms in Textual Programming for Architecture
doi https://doi.org/10.52842/conf.ecaade.2019.3.007
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 7-16
summary Algorithmic Design (AD) is no longer foreign to architecture and its methodology embraces one of the most recent technological revolutions in the field. This approach lays on Programming Languages (PLs) to define rules and constraints within an algorithm that, in return, generates geometry in modeling and analysis tools. PLs can either be visual (VPLs) or textual (TPLs). In architecture, there is a clear propensity to the use of VPLs over TPLs, due to all the visual features and mechanisms they provide that make programming more intuitive for architects. Nevertheless, and even though TPLs are less appealing to learn and use, they offer clear advantages when dealing with complex programs. Therefore, in order to bring TPLs closer to their users, we discuss, explore, and implement Visual Input Mechanisms (VIMs) in Khepri, a new textual programming tool for architecture.
keywords Algorithmic Design; Visual Input Mechanisms; Visual Programming Languages; Textual Programming Languages; Metaprogramming; Khepri
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id cf2019_055
id cf2019_055
authors Agirbas, Asli
year 2019
title A proposal for the use of fractal geometry algorithmically in tiling design
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 438-453
summary The design inspired by nature is an ongoing issue from the past to the present. There are many design examples inspired from nature. Fractal geometry formation, which is focused on this study, is a system seen in nature. A model based on fractal growth principle was proposed for tile design. In this proposal made with using Visual Programming Language, a tiling design experiment placed in a hexagonal grid system was carried out. Thus, a base was created for tile designs to be made using the fractal principle. The results of the case study were evaluated and potential future studies were discussed.
keywords Fractals, Tile design, Biomimetic design, Algorithmic design
series CAAD Futures
email
last changed 2019/07/29 14:18

_id ecaadesigradi2019_464
id ecaadesigradi2019_464
authors Santiago, Pedro
year 2019
title Evolutionary Optimization of Building Facade Form for Energy and Comfort in Urban Environment through BIM and Algorithmic Modeling - A case study in Porto, Portugal
doi https://doi.org/10.52842/conf.ecaade.2019.2.153
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 153-160
summary Consolidated urban areas usually present a challenge for the sustainable design decisions for the architect. The site, orientation and surrounding built environment compromise both passive and active systems, shortening the possible optimization measures available, leaving the designer with doubts as far as efficiency is concerned.BIM methodologies and visual programming languages have opened up a very wide range of design and analysis tools allowing the architect to make informed decisions based on data extracted from the models. Nonetheless it's optimization is through a slow process of trial and error, creating a significant limitation. This paper discusses the potentialities of the use of evolutionary algorithms to generate optimized solutions for facade solar orientation. A comparison between three different evolutionary algorithms aiming for solar radiation, inside average temperature allows to conclude the best result versus time consumed. Although under similar results the multi-objective EA represents the best compromise between time and final objective on the case study chosen for the paper. The interconnectivity in real time of BIM and algorithmic modeling softwares represents an advantage for time saving sustainable design decisions.
keywords BIM; Evolutionary Optimization; Sustainable design
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id cf2019_066
id cf2019_066
authors Zheng, Hao ; Zhe Guo and Yang Liang
year 2019
title Iterative Pattern Design via Decodes Python Scripts in Grasshopper
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 526-537
summary With the rapid development of parametric design, Grasshopper, as a visual programming tool for architects, has been widely used. However, although Grasshopper is powerful for data processing, there is a weakness that the data only flows linearly from the first component to the last component, which means it’s impossible to update the data iteratively by loop structure in native Grasshopper. So here, we introduce a Python based scripting plug-in Decodes, adding the function of loop construct into Grasshopper while integrating the basic graphical operations with faster mathematical matrix calculation. What’s more, in order to bring Decodes into play as far as possible, four iterative patterns are researched and designed through Decodes scripting, demonstrating the strength and necessity of loop construct. The patterns include iterative subdivision patterns (center tiling and pinwheel tiling) and iterative growing patterns (semi-regular tiling and swarm behavior). Also, the core parts of their codes are revealed and deciphered in this article.
keywords Algorithmic design; Iterative pattern; Programming;
series CAAD Futures
email
last changed 2019/07/29 14:18

_id acadia19_380
id acadia19_380
authors Özel, Güvenç; Ennemoser, Benjamin
year 2019
title Interdisciplinary AI
doi https://doi.org/10.52842/conf.acadia.2019.380
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 380- 391
summary Architecture does not exist in a vacuum. Its cultural, conceptual, and aesthetic agendas are constantly influenced by other visual and artistic disciplines ranging from film, photography, painting and sculpture to fashion, graphic and industrial design. The formal qualities of the cultural zeitgeist are perpetually influencing contemporary architectural aesthetics. In this paper, we aim to introduce a radical yet methodical approach toward regulating the relationship between human agency and computational form-making by using Machine Learning (ML) as a conceptual design tool for interdisciplinary collaboration and engagement. Through the use of a highly calibrated and customized ML systems that can classify and iterate stylistic approaches that exist outside the disciplinary boundaries of architecture, the technique allows for machine intelligence to design, coordinate, randomize, and iterate external formal and aesthetic qualities as they relate to pattern, color, proportion, hierarchy, and formal language. The human engagement in this design process is limited to the initial curation of input data in the form of image repositories of non-architectural disciplines that the Machine Learning system can extrapolate from, and consequently in regulating and choosing from the iterations of images the Artificial Neural Networks are capable of producing. In this process the architect becomes a curator that samples and streamlines external cultural influences while regulating their significance and weight in the final design. By questioning the notion of human agency in the design process and providing creative license to Artificial Intelligence in the conceptual design phase, we aim to develop a novel approach toward human-machine collaboration that rejects traditional notions of disciplinary autonomy and streamlines the influence of external aesthetic disciplines on contemporary architectural production.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:57

_id acadia19_278
id acadia19_278
authors Ca?izares, Galo
year 2019
title Digital Suprematism
doi https://doi.org/10.52842/conf.acadia.2019.278
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 278-287
summary It is widely held that sometime around 2006, the World Wide Web as we knew it mutated into Web 2.0. This colloquial label signaled a shift from an Internet designed for us to an Internet designed by us. Nowhere was this more explicitly stated than in Time Magazine’s 2006 Person of the Year selection: You. More than a decade later, Internet browsers have evolved into ubiquitous interfaces accessible from mobile devices, tablet computers, public kiosks, workstations, laptops, etc. It would, therefore, not be an overstatement to say that the browser is the most widespread content canvas in the world. Designers frequently use web browsers for their ability to exhibit and organize content. They are the sites for portfolios, announcements, magazines, and at times, discussions. But despite its flexibility and rich infrastructure, rarely is the browser used to generate design elements. Thanks to advanced web development languages like JavaScript and open-source code libraries, such as p5.JS, Matter.JS, and Three.JS, browsers now support interactive and spatial content. Typically, these tools are used to generate gimmicks or visual effects, such as the parallax illusion or the infinite scroll. But if we perceive the browser as a timebased picture plane, we can immediately recognize its architectonic potential. This paper puts forth a method for engaging the creative potential of web-based media and Internet browsers. Through example projects, I argue that the Internet browser is a highly complex spatial plane that warrants more architectural analysis and experimentation.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id caadria2019_396
id caadria2019_396
authors Cao, Rui, Fukuda, Tomohiro and Yabuki, Nobuyoshi
year 2019
title Quantifying Visual Environment by Semantic Segmentation Using Deep Learning - A Prototype for Sky View Factor
doi https://doi.org/10.52842/conf.caadria.2019.2.623
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 623-632
summary Sky view factor (SVF) is the ratio of radiation received by a planar surface from the sky to that received from the entire hemispheric radiating environment, in the past 20 years, it was more applied to urban-climatic areas such as urban air temperature analysis. With the urbanization and the development of cities, SVF has been paid more and more attention on as the important parameter in urban construction and city planning area because of increasing building coverage ratio to promote urban forms and help creating a more comfortable and sustainable urban residential building environment to citizens. Therefore, efficient, low cost, high precision, easy to operate, rapid building-wide SVF estimation method is necessary. In the field of image processing, semantic segmentation based on deep learning have attracted considerable research attention. This study presents a new method to estimate the SVF of residential environment by constructing a deep learning network for segmenting the sky areas from 360-degree camera images. As the result of this research, an easy-to-operate estimation system for SVF based on high efficiency sky label mask images database was developed.
keywords Visual environment; Sky view factor; Semantic segmentation; Deep learning; Landscape simulation
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_342
id ecaadesigradi2019_342
authors Costa Couceiro, Mauro, Lobo, Rui and Monteiro, António
year 2019
title Inserting and Encircling - Two complementary immersive strategies for mixed-reality applied to cultural heritage *
doi https://doi.org/10.52842/conf.ecaade.2019.3.091
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 91-98
summary To accomplish the aims of a three-year research project we are developing, connected to cultural heritage, we became interested in the fusion of Virtual Reality and Augmented Reality, two emergent development fields that gave birth to what was coined as Mixed Reality. Both dimensions have intricate connections with hardware and software improvements related with the so called "4th Industrial Revolution".Virtual Reality (VR), an interactive experience generated by a computer, takes place inside of simulated environments, which can be analogous to the real world or which can be created as imaginary contexts. On the other hand, Augmented Reality (AR) is always based in an interactive experience inside a tangible environment where the elements of that reality are nurtured with digital information, across several senses, to empathize certain aspects of reality. Our research combines both VR and AR to empathize sensory and intellectual experience. To do so, several senses, mainly visual and auditory, are stimulated.We therefore explore two Case-Studies from our research project in order to show two different strategies. The intention of both situations is to create immersive mixed reality environments where the fusion of the digital and analogue elements can be persistently sustained by the visual outputs.
keywords Santa Cruz Monastery; Mixed Reality; VR/AR; 3D scanning; 3D modeling; Lost heritage
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_027
id ecaadesigradi2019_027
authors Erzetic, Catherine, Dobbs, Tiara, Fabbri, Alessandra, Gardner, Nicole, Haeusler, M. Hank and Zavoleas, Yannis
year 2019
title Enhancing User-Engagement in the Design Process through Augmented Reality Applications
doi https://doi.org/10.52842/conf.ecaade.2019.2.423
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 423-432
summary Augmented Reality (AR) technologies are often perceived as the most impactful method to enhance the communication between the designer and the client during the iterative design process. However, the significance of designing the User Interface (UI) and the User Experience (UX) are often underestimated. To intercede, this research aims to employ new and existing techniques to develop UI's, and comparatively assess "the accuracy and completeness with which specified users can achieve specified goals in particular environments" (Stone, 2005) - a notion this research delineates as 'effectiveness'. Prompted by the work of key scholars, the developed UI's were assessed through the lens of existing UI evaluation techniques, including: Usability Heuristics (Nielsen, 1994) and Visual and Cognitive Heuristics (Zuk and Carpendale, 2006). In partnership with PTW Architects, characteristics such as the rapidity and complexity of interactions, in conjunction with the interface's simplicity and intuitiveness, were extracted from 15 trials underwent by architectural practitioners. The outcomes of this research highlights strategies for the effective development of user interface design for mobile augmented reality applications.
keywords User Interface; Human Centered Design; User Experience; Heuristics; Usability Inspection Method
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id acadia19_90
id acadia19_90
authors Forward, Kristen; Taron, Joshua
year 2019
title Waste Ornament
doi https://doi.org/10.52842/conf.acadia.2019.090
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 90-99
summary The emergence of computational design and fabrication tools has escalated the potentials of architectural ornamentation to become innovative, beautiful, and highly sustainable. Historically, ornament has been known to express character and reveal relationships between materiality, technological advances, and societal evolution. But ornament rapidly declined in the late 1800s in large part due to mechanization and modernist ideals of uniform, unadorned façade components. However, ornamentation in architecture has recently reappeared—a development that can be linked closely to advancements in computational design and digital fabrication. While these advancements offer the ability to create expressive architecture, their potential contribution to the improvement of sustainable architecture has largely been overlooked (Augusti-Juan and Habert 2017). This paper provides a brief revisitation to the history of ornament and investigates the impact of computation and automation on the production of contemporary ornament. The paper also attempts to catalog examples of how designers have used computational technologies to address the growing criticality of environmental concerns. Moreover, the paper presents the Waste Ornament project, a research platform that critically examines how we can leverage technology to augment the visual and sustainable performance of facade ornamentation to reduce energy use in buildings. Three sub-projects are identified as territories for further research into sustainable ornamentation, ranging from material sourcing, to high-performance buildings, to the development of a systematic upcycling process that transforms old facades into new ones. While the examples are not exhaustive, they attempt to interlace the general ideas of waste and ornament by addressing particular issues that converge at building envelopes.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id acadia19_346
id acadia19_346
authors Gehron, Luke; Chernick, Adam; Morse, Christopher; Naumovski, Sabrina; Ren, Zeyu
year 2019
title Sound Space
doi https://doi.org/10.52842/conf.acadia.2019.346
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 346-351
summary Sound Space, an interactive virtual reality tool, allows architects and designers to simulate and visualize the acoustic implications of their building designs. By providing designers with the ability to pause, rewind and fast forward a sound wave within a virtual built environment, we empower them to let acoustics influence their design decisions. With a focus on simulation accuracy as well as user experience, we let the user interact with, explore, and curate their own experience while gaining an intuitive understanding of the acoustic implications of their design. Sound Space explores the opportunities that a linked BIM connection may bring within game engine based experiences, and looks at some of the tools we used to try to make that connection. Sound Space focuses on evaluating the acoustic performance of a space in an interactive and visual experience. For buildings such as symphony halls or theaters, acoustic engineers are a part of the design process from the beginning, but the majority of projects such as schools, hospitals, or museums might employ acoustic specialists only near the end, if at all. At this point it is often too late to make meaningful changes to account for the important acoustic characteristics that can make such spaces work better for students, patients, and visitors. Our goal was to create an environment that was visually interesting enough to immerse and retain users in the experience, and accurate enough to give useful results to the users for them to make informed choices about their design decisions.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id caadria2019_637
id caadria2019_637
authors Han, Dongchen, Zhang, Hong, Cui, Weiwen and Huang, Jie
year 2019
title Towards to a Hybrid Model-Making Method based on Translations between Physical and Digital Models - A case study of the freeform architectural design
doi https://doi.org/10.52842/conf.caadria.2019.2.561
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 561-570
summary The extensive applications of digital models might decrease the capacity of physical model-making for perceptual thinking and enlarge the gap between architects and physical space with limited visual experience. This study aims to propose a reverse process for realizing translations between physical and digital model-making methods from which architects could maximize their initial ideas in conceptual design while allowing for rational digitalization in the detailed design. A review of Reverse Engineering architectural applications is presented and the hybrid method is proposed and examined in a freeform design case. The research shows that in the first translation phase, from handmade physical models to parametric digital models, freeform geometry could be better parameterized in a low degree of deformation based on photogrammetry. Meanwhile, in the second translation phase, from detailed digital models to large-scale physical models, the digitally-driven fabrication could be applied more precisely and automatically based on error handling by 3D laser scanning. Moreover, the process and algorithms developed for the hybrid model-making method indicate the possibility of being applied to further freeform architectural design cases.
keywords Physical models; Digital models; RE technologies; Freeform design; Accuracy
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2019_362
id caadria2019_362
authors Lee, Jaejong, Ikeda, Yasushi and Hotta, Kensuke
year 2019
title Comparative Evaluation of Viewing Elements by Visibility Heat Map of 3D Isovist - Urban planning experiment for Shinkiba in Tokyo Bay
doi https://doi.org/10.52842/conf.caadria.2019.1.341
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 341-350
summary This paper presents a visibility analysis for 3D urban environments and its possible applications for urban design. This multi-view visibility analysis tool was generated by 3D isovist in Grasshopper, Rhino. The advantage of this analysis tool is that it can be compared within the measurement area. In addition, setting a visual object different from the existing isovist. The visual object is a landmark of a city space, such as landscape or object. First, the application experimented on the relevance between the calculation time and precision by this analysis tool. Based on the results of this experiment, it applied it to an actual part of an urban space. The multi-view visibility includes confirming the possibility of a comprehensive evaluation on the urban redevelopment and change of the view caused by the building layout plan - by numerical analysis showing the visual characteristics of the area while using 3D isovist theory. The practically applied area is Shinkiba, which is a part of Tokyo's landfill site; and while using the calculated data, multi-view visibility of each plan in the simulation of the visibility map is compared and evaluated.
keywords 3D isovist; Multi-view visibility; Comprehensive integration visibility evaluation; Urban redevelopment; Algorithmic urban design
series CAADRIA
email
last changed 2022/06/07 07:51

_id acadia19_404
id acadia19_404
authors Liu, Henan; Liao, Longtai; Srivastava, Akshay
year 2019
title AN ANONYMOUS COMPOSITION
doi https://doi.org/10.52842/conf.acadia.2019.404
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 404-411
summary Within the context of continuous technology transformations, the way scientists and designers process data is changing dramatically from simplification and explicit defined rules to searching and retrieving. Ideally, such a trending method can eliminate issues including deviation and ambiguity with the help of hypothetically unlimited computational power. To process data in this manner, artificial intelligence is necessary and needs to be integrated into the design process. An experiment of a design process that consists of a generative model, a data library, and a machine learning system (GAN) is introduced to demonstrate its effectiveness. The methodology is further evaluated by comparing its output with its input targets, which proves the possibility of employing machine learning systems to aggressively process data and automate the design process. Further improvement of such methodology, including judging criteria and possible applications, and the sensibility of the machine is also discussed at the end.
keywords Machine Learning, Automation, Variables, Data Processing, Sensibility, Generative Design
series ACADIA
type normal paper
email
last changed 2022/06/07 07:59

_id ijac201917104
id ijac201917104
authors Matthews, Linda and Gavin Perin
year 2019
title Exploiting ambiguity: The diffraction artefact and the architectural surface
source International Journal of Architectural Computing vol. 17 - no. 1, 103-115
summary In the contemporary ‘envisioned’ environment, Internet webcams, low- and high-altitude unmanned aerial vehicles and satellites are the new vantage points from which to construct the image of the city. Armed with hi-resolution digital optical technologies, these vantage points effectively constitute a ubiquitous visioning apparatus serving either the politics of promotion or surveillance. Given the political dimensions of this apparatus, it is important to note that this digital imaging of public urban space refers to the human visual system model. In order to mimic human vision, a set of algorithm patterns are used to direct numerous ‘soft’ and ‘hard’ technologies. Mimicry thus has a cost because this insistence on the human visual system model necessitates multiple transformative moments in the production and transmission pipeline. If each transformative moment opens a potential vulnerability within the visioning apparatus, then every glitch testifies to the artificiality of the image. Moreover, every glitch potentially interrupts the political narratives be communicated in contemporary image production and transmission. Paradoxically, the current use of scripting to create glitch-like images has reimagined glitches as a discrete aesthetic category. This article counters this aestheticisation by asserting glitching as a disruption in communication. The argument will rely on scaled tests produced by one of the authors who show how duplicating the digital algorithmic patterns used within the digital imaging pipeline on any exterior building surface glitches the visual data captured within that image. Referencing image-based techniques drawn from the Baroque and contemporary modes of camouflage, it will be argued that the visual aberrations created by these algorithm-based patterned facades can modify strategically the ‘emission signature’ of selected parts of the urban fabric. In this way, the glitch becomes a way to intercede in the digital portrayal of city.
keywords Surveillance, algorithms, diffraction, pattern, disruptive, optics
series journal
email
last changed 2019/08/07 14:04

_id acadia19_352
id acadia19_352
authors Poustinchi, Ebrahim
year 2019
title Robotically Augmented Imaging (RAI Alpha)
doi https://doi.org/10.52842/conf.acadia.2019.352
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 352-359
summary This paper presents a project-based research study in the design studio context, highlighting the use of robotic technology as a “perspective-machine” to create custom spatial readings/experiences through predetermined and controlled static/dynamic views. The early studies of this method—in this paper referred to as Robotically Augmented Imaging (RAI Alpha), enables architects, designers, and students to micro direct the “spatial experience” and atmospheric effects of the project through visual story-telling and in multiscale set-ups ranging from architectural to product and object scale. Demonstrating the contemporary opportunities of imaging and perspective—as an architectural tool to investigate/define the space—RAI Alpha studies the potentials of robotically controlled/manipulated views as a possible new medium for interacting with form, space, architecture, atmosphere, and performance in a scale-free seamless experience and as both a design tool and a product.
series ACADIA
type normal paper
email
last changed 2022/06/07 08:00

_id acadia19_392
id acadia19_392
authors Steinfeld, Kyle
year 2019
title GAN Loci
doi https://doi.org/10.52842/conf.acadia.2019.392
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 392-403
summary This project applies techniques in machine learning, specifically generative adversarial networks (or GANs), to produce synthetic images intended to capture the predominant visual properties of urban places. We propose that imaging cities in this manner represents the first computational approach to documenting the Genius Loci of a city (Norberg-Schulz, 1980), which is understood to include those forms, textures, colors, and qualities of light that exemplify a particular urban location and that set it apart from similar places. Presented here are methods for the collection of urban image data, for the necessary processing and formatting of this data, and for the training of two known computational statistical models (StyleGAN (Karras et al., 2018) and Pix2Pix (Isola et al., 2016)) that identify visual patterns distinct to a given site and that reproduce these patterns to generate new images. These methods have been applied to image nine distinct urban contexts across six cities in the US and Europe, the results of which are presented here. While the product of this work is not a tool for the design of cities or building forms, but rather a method for the synthetic imaging of existing places, we nevertheless seek to situate the work in terms of computer-assisted design (CAD). In this regard, the project is demonstrative of a new approach to CAD tools. In contrast with existing tools that seek to capture the explicit intention of their user (Aish, Glynn, Sheil 2017), in applying computational statistical methods to the production of images that speak to the implicit qualities that constitute a place, this project demonstrates the unique advantages offered by such methods in capturing and expressing the tacit.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_397
id ecaadesigradi2019_397
authors Cristie, Verina and Joyce, Sam Conrad
year 2019
title 'GHShot': a collaborative and distributed visual version control for Grasshopper parametric programming
doi https://doi.org/10.52842/conf.ecaade.2019.3.035
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 35-44
summary When working with parametric models, architects typically focus on using rather structuring them (Woodbury, 2010). As a result, increasing design complexity typically means a convoluted parametric model, amplifying known problems: 'hard to understand, modify, share and reuse' (Smith 2007; Davis 2011). This practice is in contrast with conventional software-programming where programmers are known to meticulously document and structure their code with versioning tool. In this paper, we argue that versioning tools could help to manage parametric modelling complexity, as it has been showing with software counterparts. Four key features of version control: committing, differentiating, branching, and merging, and how they could be implemented in a parametric design practice are discussed. Initial user test sessions with 5 student designers using GHShot Grasshopper version control plugin (Cristie and Joyce 2018, 2017) revealed that the plugin is useful to record and overview design progression, share model, and provide a fallback mechanism.
keywords Version Control; Parametric Design; Collaborative Design; Design Exploration
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_510045 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002