CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 621

_id caadria2019_625
id caadria2019_625
authors Konieva, Kateryna, Knecht, Katja and Koenig, Reinhard
year 2019
title Collaborative Large-Scale Urban Design with the Focus on the Agent-Based Traffic Simulation
doi https://doi.org/10.52842/conf.caadria.2019.2.221
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 221-230
summary The better integration of the knowledge and expertise from different disciplines into urban design and the creation of more interdisciplinary and collaborative work processes to accommodate this have been under discussion in related research for decades. Nevertheless, many barriers preventing a seamless collaborative work flow still persist. In this paper we present an experiment taking place under real-world conditions, which outlines an alternative way for more efficient collaboration by focusing on the design process rather than the result and thus providing additional insights for all parties involved. A parametric design approach was chosen to help mediate between the areas of expertise involved supporting the smooth transition of data, the mutual translation of design feedback and better informed design decisions as an outcome. The case study presented in this paper exemplifies the application of the approach in a design project on masterplan scale integrating inputs from urban design, economics and mobility experts; and shows the opportunity for transforming the formerly segregated design process into a platform for transparent negotiations.
keywords parametric urban design; urban mobility; collaborative design
series CAADRIA
email
last changed 2022/06/07 07:51

_id sigradi2023_39
id sigradi2023_39
authors Borges, Marina, Karantino, Lucas and Gorges, Diego
year 2023
title Walkability: Digital Parametric Process for Analyzing and Evaluating Walkability Criteria in Peripheral Central Regions of Belo Horizonte
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 397–408
summary According to one of the Sustainable Development Goals (UN, 2018), it is important for cities to be inclusive, safe, resilient, and sustainable. Therefore, it is necessary to value pedestrians and consequently active mobility, giving priority to the concepts of the Transportation Oriented Development (TOD) methodology. Although the Master Plan (BELO HORIZONTE, 2019) proposes that areas located in regional centralities are enhancing active mobility, can residents actually benefit from these resources at a walkable distance to access basic services? Thus, the aim of this research is to utilize digital technologies to visualize, analyze, and assess pedestrians' access conditions to commerce and basic services, identifying areas lacking infrastructure. The goal is for the model to serve as a reference for the development of public policies. To achieve this, metadata was used for parametric modeling to study walkability in the peripheral region of the city of Belo Horizonte.
keywords Walkability, Urban Data Analysis, Urban Design, Parametric Urbanism, Algorithmic Logic
series SIGraDi
email
last changed 2024/03/08 14:07

_id ecaadesigradi2019_176
id ecaadesigradi2019_176
authors Giantini, Guilherme, Negris de Souza, Larissa, Turczyn, Daniel and Celani, Gabriela
year 2019
title Environmental Ceramics - Merging the digital and the physical in the design of a performance -based facade system
doi https://doi.org/10.52842/conf.ecaade.2019.2.749
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 749-758
summary Environmental comfort and space occupancy are essential considerations in architectural design process. Façade systems deeply impact both aspects but are usually standardized. However, performance-based facade systems tackle these issues through computational design to devise non-homogeneous elements. This work proposes a ceramic facade system designed according to a performance-based process grounded on environmental analysis and parametric design to allow adaptation and geometric variation according to specific building demands on environmental comfort and functionality. In this process, the Design Science Research method guided the exploration of both design and evaluation, bridging the gap between theory and practice. Positive facade environmental performance were found from digital and physical models assessment in terms of radiation, illuminance, dampness (with ventilation) and temperature. Computational processes minimized radiation inside the building while maximized illuminance. Their association influenced on operative temperature, which dropped according to local dampness and material absorption. Accordingly, this design process associates not only environmental comfort and functionality concepts but also adaptability, flexibility, mass customization, personal fabrication, additive manufacturing concepts, being an example architectural design changes in the 4th Industrial Revolution.
keywords sustainable design; facade system; computational design; environmental analysis; evolutionary algorithm
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

_id ecaadesigradi2019_305
id ecaadesigradi2019_305
authors Kabošová, Lenka, Worre Foged, Isak, Kme, Stanislav and Katunský, Dušan
year 2019
title Building envelope adapting from and to the wind flow
doi https://doi.org/10.52842/conf.ecaade.2019.2.131
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 131-138
summary The paper presents research for wind-responsive architecture. The main objective is the digital design methodology incorporating the dynamic, fluctuating wind flow into the shape-generating process of architectural envelopes. These computational studies are advanced and informed through physical prototyping models, allowing a hybrid method approach. The negative impacts of the wind at the building scale (wind loads), as well as urban scale (wind discomfort), can be avoided and even transformed into an advantage by incorporating the local wind conditions to the process of creating architectural envelopes with adaptive structures. The paper proposes a tensegrity-membrane system which, when exposed to the dynamic wind flow, enables a local passive shape adaptation. Thus, the action of the wind pressure transforms the shape of the building envelope to an unsmoothed, dimpled surface. As a consequence, the aerodynamic properties of the building are modified, which contributes to reducing wind suction and drag force. Moreover, the slight shape change materializes and articulates the immaterial wind phenomena. For a better understanding of the dynamic geometric properties, one unit of the wind-responsive envelope is tested through simulations, and through physical prototypes. The idea and material-geometric studies are subsequently applied in a specific case study, including a designed building envelope in an industrial silo cluster in Stockholm.
keywords adaptive envelope; tensegrity; wind flow; digital designing; shape-change
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id caadria2020_431
id caadria2020_431
authors Kim, Jong Bum, Balakrishnan, Bimal and Aman, Jayedi
year 2020
title Environmental Performance-based Community Development - A parametric simulation framework for Smart Growth development in the United States
doi https://doi.org/10.52842/conf.caadria.2020.1.873
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 873-882
summary Smart Growth is an urban design movement initiated by Environmental Protection Agency (EPA) in the United States (Smart Growth America, 2019). The regulations of Smart Growth control urban morphologies such as building height, use, position, section configurations, façade configurations, and materials, which have an explicit association with energy performances. This research aims to analyze and visualize the impact of Smart Growth developments on environmental performances. This paper presents a parametric modeling and simulation framework for Smart Growth developments that can model the potential community development scenarios, simulate the environmental footprints of each parcel, and visualize the results of modeling and simulation. We implemented and examined the proposed framework through a case study of two Smart Growth regulations: Columbia Unified Development Code (UDC) in Missouri (City of Columbia Missouri, 2017) and Overland Park Downtown Form-based Code (FBC) in Kansas City (City of Overland Park, 2017, 2019). Last, we discuss the implementation results, the limitations of the proposed framework, and the future work. We anticipate that the proposed method can improve stakeholders' understanding of how Smart Growth developments are associated with potential environmental footprints from an expeditious and thorough exploration of what-if scenarios of the multiple development schemes.
keywords Smart Growth; Building Information Modeling (BIM); Parametric Simulation; Solar Radiation
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2019_362
id caadria2019_362
authors Lee, Jaejong, Ikeda, Yasushi and Hotta, Kensuke
year 2019
title Comparative Evaluation of Viewing Elements by Visibility Heat Map of 3D Isovist - Urban planning experiment for Shinkiba in Tokyo Bay
doi https://doi.org/10.52842/conf.caadria.2019.1.341
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 341-350
summary This paper presents a visibility analysis for 3D urban environments and its possible applications for urban design. This multi-view visibility analysis tool was generated by 3D isovist in Grasshopper, Rhino. The advantage of this analysis tool is that it can be compared within the measurement area. In addition, setting a visual object different from the existing isovist. The visual object is a landmark of a city space, such as landscape or object. First, the application experimented on the relevance between the calculation time and precision by this analysis tool. Based on the results of this experiment, it applied it to an actual part of an urban space. The multi-view visibility includes confirming the possibility of a comprehensive evaluation on the urban redevelopment and change of the view caused by the building layout plan - by numerical analysis showing the visual characteristics of the area while using 3D isovist theory. The practically applied area is Shinkiba, which is a part of Tokyo's landfill site; and while using the calculated data, multi-view visibility of each plan in the simulation of the visibility map is compared and evaluated.
keywords 3D isovist; Multi-view visibility; Comprehensive integration visibility evaluation; Urban redevelopment; Algorithmic urban design
series CAADRIA
email
last changed 2022/06/07 07:51

_id ecaadesigradi2019_462
id ecaadesigradi2019_462
authors Perelli Soto, Bruno and Soza Ruiz, Pedro
year 2019
title CoDesign Spaces - Experiences of EBD research at an industrial design makerspace
doi https://doi.org/10.52842/conf.ecaade.2019.1.417
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 417-422
summary During the last years, insertion of technology accelerates its incursion both in the design process and in the teaching-learning process. Design education has gone through different visions: Some hold the vision of education in design with a look at professional training. Others, have chosen to study the roots and problems of the training process, the ultimate goal is to generate experts in future designers. An element that - consistently - is often absent from such discussions is the role played by prototypes in the teaching-learning process. This research reviews the role that the prototype has played, as a central element, in the process of collecting evidence, with a view to informing the decision making during the development of Project Design. The paper discusses the role that prototypes - from the standpoint of CoDesign, Evidence Design, and evolutionary design - have played in the teaching experiences of the last four semesters within a Computer Lab for students of Industrial Design. The systematization of information extracted from the research experiences has evolved from the Lab model to the Maker-space experience.
keywords Prototype; FSB Framework; Makerspace; Industrial Design
series eCAADeSIGraDi
email
last changed 2022/06/07 08:00

_id caadria2019_202
id caadria2019_202
authors Yang, Chunxia, Gu, Zhuoxing and Yao, Ziying
year 2019
title Adaptive Urban Design Research based on Multi-Agent System - Taking The Urban Renewal Design Of Shanghai Hongkou Port Area As An Example
doi https://doi.org/10.52842/conf.caadria.2019.1.225
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 225-234
summary Utilizing digital method to establish a multi-agent simulation platform and establish an interactive simulation between site elements and agents particles behavior. In this study, urban space could not have the absolute frozen state, it is always evolving and self-renewing. We hope to integrate such unstable relationships into urban design methods and programs. By constructing various type of agent particles and the interaction behaviors, we not only directly simulate the flow of people or traffic, but also simulate the public space relationship such as line of sight space, waterfront space accessibility, commercial supporting function layout, and historical and cultural block attraction from a more abstract level. From macro to micro, the result of spatial simulation has an intrinsic close causal relationship with the site's landform, building status, site function, and planning pattern, can be the basis for space generation.
keywords Self-organization; Multi-agent System; Cluster City; Particle Personality; Site Elements
series CAADRIA
email
last changed 2022/06/07 07:57

_id cf2019_058
id cf2019_058
authors Zandoná Pazini, Ernani and Andrea Quadrado Mussi
year 2019
title Parametric Design: measuring learning states
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 485-498
summary Project teaching and learning comprises properties, strategies and procedures that currently involve computational thinking and logical reasoning. In general, this problem arises from the possibilities offered by the new software and the increase of the level of dominion of the project by the designer. In this context, this study aims to estimate how much the student profile contemporary of architecture is motivated and engaged in learning new project processes that use computational reasoning and logical reasoning, characteristic of parametric design. Methodologically, the research is based on the theory of Flow, presents results of an investigation of engagement and learning of students of a school of Architecture and Urbanism in Brazil, referring to the themes and uses of parametric drawing. This study contributed to the practice and use of parametric design in the educational environment, besides allowing the integration of computational thinking in the creative process of the project.
keywords Parametric Design, Project Processes, Learning, Computational Thinking
series CAAD Futures
email
last changed 2019/07/29 14:18

_id caadria2019_211
id caadria2019_211
authors Globa, Anastasia, Wang, Rui and Beza, Beau B.
year 2019
title Sensory Urbanism and Placemaking - Exploring Virtual Reality and the Creation of Place
doi https://doi.org/10.52842/conf.caadria.2019.2.737
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 737-746
summary Sensory Urbanism is an experimental prototyping project exploring the potential of immersive Virtual Reality (VR) environments to support the incorporation of sensory and intangible aspects of place. The study investigates how sensory exploration of urban places can be integrated into decision making regarding the future of cities. In the past, numerous studies reported various sophisticated 'livability' measures, deeming to determine what makes a city a great place to live in. While a part of these measures can be quantified and be represented as text, graphs or images, most of the qualitative aspects of place are inherently abstract and sensory. These aspects have to be experienced to be understood and therefore they are extremely difficult to communicate using conventional representation means. The proposition explored in this study is that the increasing ubiquity of VR and Augmented Reality (AR) technologies can provide new opportunities to engage with the multi-sensory and temporal aspects of urban place. A mixed media approach was adopted, tapping into a temporal dimension as well as visual, aural and kinesthetic range of human senses. The paper reports on the development of the VR sensory urbanism prototype and the initial pilot study that demonstrated the proof-of-concept.
keywords Sensory Urbanism; Immersive Environments; Virtual Reality; Design Evaluation; Placemaking
series CAADRIA
email
last changed 2022/06/07 07:51

_id ijac201917206
id ijac201917206
authors Ackerman, Aidan; Jonathan Cave, Chien-Yu Lin and Kyle Stillwell
year 2019
title Computational modeling for climate change: Simulating and visualizing a resilient landscape architecture design approach
source International Journal of Architectural Computing vol. 17 - no. 2, 125-147
summary Coastlines are changing, wildfires are raging, cities are getting hotter, and spatial designers are charged with the task of designing to mitigate these unknowns. This research examines computational digital workflows to understand and alleviate the impacts of climate change on urban landscapes. The methodology includes two separate simulation and visualization workflows. The first workflow uses an animated particle fluid simulator in combination with geographic information systems data, Photoshop software, and three-dimensional modeling and animation software to simulate erosion and sedimentation patterns, coastal inundation, and sea level rise. The second workflow integrates building information modeling data, computational fluid dynamics simulators, and parameters from EnergyPlus and Landsat to produce typologies and strategies for mitigating urban heat island effects. The effectiveness of these workflows is demonstrated by inserting design prototypes into modeled environments to visualize their success or failure. The result of these efforts is a suite of workflows which have the potential to vastly improve the efficacy with which architects and landscape architects use existing data to address the urgency of climate change.
keywords Modeling, simulation, environment, ecosystem, landscape, climate change, sea level rise, urban heat island
series journal
email
last changed 2019/08/07 14:04

_id caadria2019_234
id caadria2019_234
authors Bamborough, Chris
year 2019
title The Nature of Data in Early Modern Architectural Practice.
doi https://doi.org/10.52842/conf.caadria.2019.2.343
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 343-352
summary In contemporary data-driven society, forces of capital increasingly seek risk-averse decision making through data and digital calculation, aligned to this the discourse around design intelligence in architecture has begun to embrace the role of data and the technical non-human as much as the human. In parallel, the cultural understanding of data, in technologically mediated societies, has become tied to the digital representation of information experienced in everyday life, which in turn influences human practices. A problem exists in the dominance of scientific thought around data in architecture that exerts disciplinary bias towards quantity rather than quality. In contemporary digital practice, data is assumed to offer an objective characterisation of the world and have faithful representation through the mechanisms of the computer. From this shift, a macro question exists concerning the influence of data's conceptualisation on the physical products of architecture. To contribute to this overall question this paper considers the register of data in early modernism identified as a moment when scientific abstraction and the mapping capacity of the machine combine to afford recognisable data practices and infrastructures.
keywords Data; Design Practice; Infrastructure; History; Theory
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_449
id ecaadesigradi2019_449
authors Becerra Santacruz, Axel
year 2019
title The Architecture of ScarCity Game - The craft and the digital as an alternative design process
doi https://doi.org/10.52842/conf.ecaade.2019.3.045
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 45-52
summary The Architecture of ScarCity Game is a board game used as a pedagogical tool that challenges architecture students by involving them in a series of experimental design sessions to understand the design process of scarcity and the actual relation between the craft and the digital. This means "pragmatic delivery processes and material constraints, where the exchange between the artisan of handmade, representing local skills and technology of the digitally conceived is explored" (Huang 2013). The game focuses on understanding the different variables of the crafted design process of traditional communities under conditions of scarcity (Michel and Bevan 1992). This requires first analyzing the spatial environmental model of interaction, available human and natural resources, and the dynamic relationship of these variables in a digital era. In the first stage (Pre-Agency), the game set the concept of the craft by limiting students design exploration from a minimum possible perspective developing locally available resources and techniques. The key elements of the design process of traditional knowledge communities have to be identified (Preez 1984). In other words, this stage is driven by limited resources + chance + contingency. In the second stage (Post-Agency) students taking the architects´ role within this communities, have to speculate and explore the interface between the craft (local knowledge and low technological tools), and the digital represented by computation data, new technologies available and construction. This means the introduction of strategy + opportunity + chance as part of the design process. In this sense, the game has a life beyond its mechanics. This other life challenges the participants to exploit the possibilities of breaking the actual boundaries of design. The result is a tool to challenge conventional methods of teaching and leaning controlling a prescribed design process. It confronts the rules that professionals in this field take for granted. The game simulates a 'fake' reality by exploring in different ways with surveyed information. As a result, participants do not have anything 'real' to lose. Instead, they have all the freedom to innovate and be creative.
keywords Global south, scarcity, low tech, digital-craft, design process and innovation by challenge.
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id caadria2019_396
id caadria2019_396
authors Cao, Rui, Fukuda, Tomohiro and Yabuki, Nobuyoshi
year 2019
title Quantifying Visual Environment by Semantic Segmentation Using Deep Learning - A Prototype for Sky View Factor
doi https://doi.org/10.52842/conf.caadria.2019.2.623
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 623-632
summary Sky view factor (SVF) is the ratio of radiation received by a planar surface from the sky to that received from the entire hemispheric radiating environment, in the past 20 years, it was more applied to urban-climatic areas such as urban air temperature analysis. With the urbanization and the development of cities, SVF has been paid more and more attention on as the important parameter in urban construction and city planning area because of increasing building coverage ratio to promote urban forms and help creating a more comfortable and sustainable urban residential building environment to citizens. Therefore, efficient, low cost, high precision, easy to operate, rapid building-wide SVF estimation method is necessary. In the field of image processing, semantic segmentation based on deep learning have attracted considerable research attention. This study presents a new method to estimate the SVF of residential environment by constructing a deep learning network for segmenting the sky areas from 360-degree camera images. As the result of this research, an easy-to-operate estimation system for SVF based on high efficiency sky label mask images database was developed.
keywords Visual environment; Sky view factor; Semantic segmentation; Deep learning; Landscape simulation
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_179
id ecaadesigradi2019_179
authors Castelo-Branco, Renata, Leit?o, António and Santos, Guilherme
year 2019
title Immersive Algorithmic Design - Live Coding in Virtual Reality
doi https://doi.org/10.52842/conf.ecaade.2019.2.455
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 455-464
summary As many other areas of human activity, the architectural design process has been recently shaken by Virtual Reality (VR), as it offers new ways to experience and communicate architectural space. In this paper we propose Live Coding in Virtual Reality (LCVR), a design approach that allows architects to benefit from the advantages of VR within an algorithmic design workflow. LCVR integrates a live coding solution, where the architect programs his design intent and immediately receives feedback on the changes applied to the program; and VR, which means this workflow takes place inside the virtual environment, where the architect is immersed in the model that results from the program he is concurrently updating from inside VR. In this paper we discuss the possible impacts of such an approach, as well as the most pressing implementation issues. We offer a critical analysis and comparison of the various solutions available in the context of two different programming paradigms: visual and textual.
keywords Virtual Reality; Algorithmic Design; Live Coding
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id acadia19_642
id acadia19_642
authors Chua, Pamela Dychengbeng; Hui, Lee Fu
year 2019
title Compliant Laminar Assemblies
doi https://doi.org/10.52842/conf.acadia.2019.642
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 642-653
summary This paper presents an innovative approach to the design and fabrication of three-dimensional objects from single-piece flat sheets, inspired by the origami technique of twist-closing. While in origami twist-closing is merely used to stabilize a cylindrical or spherical structure, ensuring it maintains its shape, this research investigates the potential of twist-closing as a multi-functional mechanism that also activates and controls the transformation of a planar surface into a predesigned three-dimensional form. This exploration is directed towards an intended application to stiff and brittle sheet materials that are difficult to shape through other processes. The methods we have developed draw mainly upon principles of lattice kirigami and laminar reciprocal structures. These are reflected in a workflow that integrates digital form-generation and fabrication-rationalization techniques to reference and apply these principles at every stage. Significant capabilities of the developed methodology include: (1) achievement of pseudo-double-curvature with brittle, stiff sheet materials; (2) stabilization in a 3D end-state as a frameless self-contained single-element laminar reciprocal structure—essentially a compliant mechanism; and (3) an ability to pre-encode 3D assembly constraints in a 2D cutout pattern, which guides a moldless fabrication process. The paper reviews the precedent geometric techniques and principles that comprise this method of 3D surface fabrication and describes a sample deployment of the method as applied to the design of laminar modules made of high-pressure laminate (HPL).
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_342
id ecaadesigradi2019_342
authors Costa Couceiro, Mauro, Lobo, Rui and Monteiro, António
year 2019
title Inserting and Encircling - Two complementary immersive strategies for mixed-reality applied to cultural heritage *
doi https://doi.org/10.52842/conf.ecaade.2019.3.091
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 91-98
summary To accomplish the aims of a three-year research project we are developing, connected to cultural heritage, we became interested in the fusion of Virtual Reality and Augmented Reality, two emergent development fields that gave birth to what was coined as Mixed Reality. Both dimensions have intricate connections with hardware and software improvements related with the so called "4th Industrial Revolution".Virtual Reality (VR), an interactive experience generated by a computer, takes place inside of simulated environments, which can be analogous to the real world or which can be created as imaginary contexts. On the other hand, Augmented Reality (AR) is always based in an interactive experience inside a tangible environment where the elements of that reality are nurtured with digital information, across several senses, to empathize certain aspects of reality. Our research combines both VR and AR to empathize sensory and intellectual experience. To do so, several senses, mainly visual and auditory, are stimulated.We therefore explore two Case-Studies from our research project in order to show two different strategies. The intention of both situations is to create immersive mixed reality environments where the fusion of the digital and analogue elements can be persistently sustained by the visual outputs.
keywords Santa Cruz Monastery; Mixed Reality; VR/AR; 3D scanning; 3D modeling; Lost heritage
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id caadria2021_089
id caadria2021_089
authors Cristie, Verina, Ibrahim, Nazim and Joyce, Sam Conrad
year 2021
title Capturing and Evaluating Parametric Design Exploration in a Collaborative Environment - A study case of versioning for parametric design
doi https://doi.org/10.52842/conf.caadria.2021.2.131
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 131-140
summary Although parametric modelling and digital design tools have become ubiquitous in digital design, there is a limited understanding of how designers apply them in their design processes (Yu et al., 2014). This paper looks at the use of GHShot versioning tool developed by the authors (Cristie & Joyce, 2018; 2019) used to capture and track changes and progression of parametric models to understand early-stage design exploration and collaboration empirically. We introduce both development history graph-based metrics (macro-process) and parametric model and geometry change metric (micro-process) as frameworks to explore and understand the captured progression data. These metrics, applied to data collected from three cohorts of classroom collaborative design exercises, exhibited students' distinct modification patterns such as major and complex creation processes or minor parameter explorations. Finally, with the metrics' applicability as an objective language to describe the (collaborative) design process, we recommend using versioning for more data-driven insight into parametric design exploration processes.
keywords Design exploration; parametric design; history recording; version control; collaborative design
series CAADRIA
email
last changed 2022/06/07 07:56

_id acadia19_156
id acadia19_156
authors Dahy, Hanaa; Baszyñski, Piotr; Petrš, Jan
year 2019
title Experimental Biocomposite Pavilion
doi https://doi.org/10.52842/conf.acadia.2019.156
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 156-165
summary Excessive use of aggregate materials and metals in construction should be balanced by increasing use of construction materials from annually renewable resources based on natural lignocellulosic fibers. Parametric design tools gave here a possibility of using an alternative newly developed biocomposite material, for realization of complex geometries. Contemporary digital fabrication tools have enabled precise manufacturing possibilities and sophisticated geometry-making to take place that helped in obtaining high structural behavior of the overall global geometry of the discussed project. This paper presents a process of realizing an experimental structure made from Natural Fiber-Reinforced Polymers (NFRP)- also referred to as biocomposites, which were synthesized from lignocellulosic flexible core reinforced by 3D-veneer layers in a closed-moulding vacuum-assisted process. The biocomposite sandwich panels parameters were developed and defined before the final properties were imbedded in the parametric model. This paper showcases the multi-disciplinarity work between architects, structural engineers and material developers. It allowed the architects to work on the material development themselves and enabled to apply a new created design philosophy by the first author, namely applying ‘Materials as a Design-Tool’. The erected biocomposite segmented shell construction allowed a 1:1 validation for the whole design process, material development and the digital fabrication processes applied. The whole development has been reached after merging an ongoing industrial research project results with academic education at the school of architecture in Stuttgart-Germany.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_309
id ecaadesigradi2019_309
authors Dokonal, Wolfgang and Medeiros, Marina Lima
year 2019
title I Want To Ride My Bicycle – I Want To Ride My Bike - Using low cost interfaces for Virtual reality
doi https://doi.org/10.52842/conf.ecaade.2019.2.465
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 465-472
summary The paper will give an overview of our experiments in the past years in developing different interfaces and workflows for the use of low cost Head Mounted Displays (HMD) for Virtual Reality solution. We are mainly interested in using VR tools for designers in the early phases of their design. In our opinion VR tools can help to bring back a better understanding of space and scale which have been lost a little bit in the last century with the change from analogue to digital tools. After teaching architectural and urban design for many years we can clearly say that this effect is still ongoing and it is time that we develop digital tools that try to reverses thi effect. We will then concentrate within this paper on discussing some aspects of data reduction that are important to be able to use these tools in the design process. We are also showing how we use our interfaces presenting some results of student projects for a design in Hong Kong and the strategies and methods for using VR for a ongoing work on a project about the establishment of a so called "bicycle highway" in the city of Graz in Austria.
keywords Virtual Reality; Head Mounted Displays; Low Cost Interfaces; EeZee click
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_681745 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002