CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 623

_id ecaadesigradi2019_360
id ecaadesigradi2019_360
authors Wei, Likai, Ta, La, Li, Liang, Han, Yang, Feng, Yingying, Wang, Xin and Xu, Zhen
year 2019
title RAF: Robot Aware Fabrication - Hand-motion Augmented Robotic Fabrication Workflow and Case Study
doi https://doi.org/10.52842/conf.ecaade.2019.2.241
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 241-250
summary Fabricating process with robotic awareness and creativity makes architect able to explore the new boundary between digital and material world. Although parametric and generative design method make diverse processing of materials possible for robots, it's still necessary to establish a new design-fabrication framework, where we could simultaneously deal with designers, robots, data, sensor technology and material natural characters. In order to develop a softer system without gap between preset program and robot's varying environments, this paper attempts to establish an environment-computer-robot workflow and transform traditional robotic fabrication from linear to more tangible and suitable for architects' and designers' intuitive motion and gesture. RAF (Robotic Aware Fabrication), a concept of real-time external enhancement fabrication is proposed, and a new workflow of HARF (Hand-motion Augmented Robotic Fabrication) is developed, where motion sensor captures designer's hand-motion, filter algorithm recognizes the intention and update the preset program, robotic controller and RSI (Robotic Sensor Interface) adjusts robot's TCP (Tool Center Point) path in real time. With HARF workflow, two case studies of Hand-motion robotic dance and Free-form concrete wall are made.
keywords RAF; HARF; Hand-motion Sensor; Styrofoam Mold; Concrete Wall; RSI
series eCAADeSIGraDi
email
last changed 2022/06/07 07:58

_id ecaadesigradi2019_210
id ecaadesigradi2019_210
authors Castriotto, Caio, Giantini, Guilherme and Celani, Gabriela
year 2019
title Biomimetic Reciprocal Frames - A design investigation on bird's nests and spatial structures
doi https://doi.org/10.52842/conf.ecaade.2019.1.613
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 613-620
summary Reciprocal Frame (RF) is a constructive system typically applied with timber, since it is composed by discrete elements with short dimensions. It allows the construction of large spans and complex geometries. This kind of structure has been addressed by recent research projects that aim to produce it using computational tools and digital fabrication techniques. Moreover, the enhancement of these technologies enabled the integration of simulations of biological processes into the design process as a way to obtain better and optimal results, which is known as Biomimetics. This paper describes the development of a spatial structure that combines the principles of RF and the assembly process of natural agents, such as birds, in a digital environment. The tools used for the generation of the structure were Rhinoceros, Grasshopper and different add-ons, such as Culebra, Kangaroo, Pufferfish and Weaverbird.
keywords Biomimetics; Reciprocal Frame; Nexorade; Computational Design; Agent-Based System
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id acadia19_168
id acadia19_168
authors Adilenidou, Yota; Ahmed, Zeeshan Yunus; Freek, Bos; Colletti, Marjan
year 2019
title Unprintable Forms
doi https://doi.org/10.52842/conf.acadia.2019.168
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp.168-177
summary This paper presents a 3D Concrete Printing (3DCP) experiment at the full scale of virtualarchitectural bodies developed through a computational technique based on the use of Cellular Automata (CA). The theoretical concept behind this technique is the decoding of errors in form generation and the invention of a process that would recreate the errors as a response to optimization (Adilenidou 2015). The generative design process established a family of structural and formal elements whose proliferation is guided through sets of differential grids (multi-grids) leading to the build-up of large span structures and edifices, for example, a cathedral. This tooling system is capable of producing, with specific inputs, a large number of outcomes in different scales. However, the resulting virtual surfaces could be considered as "unprintable" either due to their need of extra support or due to the presence of many cavities in the surface topology. The above characteristics could be categorized as errors, malfunctions, or undesired details in the geometry of a form that would need to be eliminated to prepare it for printing. This research project attempts to transform these "fabrication imprecisions" through new 3DCP techniques into factors of robustness of the resulting structure. The process includes the elimination of the detail / "errors" of the surface and their later reinsertion as structural folds that would strengthen the assembly. Through this process, the tangible outputs achieved fulfill design and functional requirements without compromising their structural integrity due to the manufacturing constraints.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id caadria2019_491
id caadria2019_491
authors Cai, Chenyi, Tang, Peng and Li, Biao
year 2019
title Intelligent Generation of Architectural layout inheriting spatial features of Chinese Garden Based on Prototype and Multi-agent System - A Case Study on Lotus Teahouse in Yixing
doi https://doi.org/10.52842/conf.caadria.2019.1.291
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 291-300
summary This study presents an approach for the intelligent generation of architectural layout, in which partial space inherits Chinese garden spatial features. The approach combines spatial prototype analysis and evolutionary optimization process. On one hand, from the perspective of shape grammar, this paper both analyzes and abstracts the spatial prototype that describes the spatial characteristics of Chinese gardens, including the organization system of architecture and landscape, with the spatial sequences along the tourism orientation. On the other hand, taking the design task of Lotus teahouse as an example, a typical spatial prototype is selected to develop the generative intelligent experiment to achieve the architectural layout, in which the spatial prototype is inherited. Through rule-making and parameter adjustment, the spatial prototype will eventually be transformed into a computational model based on the multi-agent system. Hence, the experiment of intelligent generation of architectural layout is carried out under the influence of the function, form and environmental factors; and a three-dimensional conceptual model that inherits the Chinese garden spatial prototype is obtained ultimately.
keywords Chinese garden; Architectural layout; Spatial prototype; Multi-agent system; Intelligent generation
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_350
id ecaadesigradi2019_350
authors Cheng, Chi-Li and Hou, June-Hao
year 2019
title A highly integrated Horizontal coordinate-based tool for architecture
doi https://doi.org/10.52842/conf.ecaade.2019.3.305
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 305-312
summary In this research, we attempt to develop a tool which integrates certain common geographic information from OpenStreetMap and OpenTopography into Grasshopper. We name it as OSMKIT temporarily. Besides, in order to make the integration in the design process easier, this tool includes the bilateral conversion function of coordinate in Rhinoceros 3D and the coordinate of the World Geodetic System. These characteristics bring about several possibilities for further usage. This paper contains explanations of functions and examples. For instance, it can be employed for data visualization on a map when these data contain coordinate information. Additionally, since this tool is simple and intuitive to convert points into GPS coordinates, it can make users plan drone for photogrammetry and deal with other related tasks on the rhinoceros 3D interface, helping them to gain most current urban models. Moreover, architects or designers can be not only users but also contributors for open source map system such as OpenStreetMap; the process of sharing the mode which user measure is demonstrated in this paper. To sum up, this coordinate system based tool is designed to be multifunctional and suitable for interdisciplinary usages in grasshopper.
keywords open-source maps; data visualization; geographic information system; urban research; parametric design; interdisciplinary
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id ecaadesigradi2019_191
id ecaadesigradi2019_191
authors Engel, Pedro
year 2019
title CONTROLING DESIGN VARIATIONS - DESIGNING A SEMANTIC CONTROLER FOR A GENERATIVE SYSTEM
doi https://doi.org/10.52842/conf.ecaade.2019.2.369
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 369-376
summary This article will describe the recent steps in the development of a computational generative system based on the selection and combination of ordinary architectural elements. Built as a Grasshopper definition, the system was conceived to generate designs of architectural façades and to produce models, physical and digital, for didactic use. More specifically, The paper will address the conception of controlling devices, that is, the parts of the computational system that govern design variations. This process involved two complementary actions: first, the definition of a clear organizational logic, where elements can be represented as a data structure that encompasses classes, sub-classes, sets, libraries and attributes; secondly, the establishment of means to operate the variations through the use of filters and heuristics based on visual patterns, allowing varying degrees of automation and user control. It will be argued that such organizational model paves the way to increase the number of design possibilities in the future and to and provide means to integrate of architectural criteria into the generation process. This research has received the support of CNPq.
keywords Algorithm; Parametric Design; Architectural Design; Teaching ; Physical Model
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id ecaadesigradi2019_367
id ecaadesigradi2019_367
authors Goti, Kyriaki, Katz, Shir, Baharlou, Ehsan, Vasey, Lauren and Menges, Achim
year 2019
title Jamming Formations - Intuitive design and fabrication process through human-computer interaction
doi https://doi.org/10.52842/conf.ecaade.2019.1.669
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 669-680
summary This paper examines the potential of User Interfaces (UI) and sensor feedback to develop an intuitive design and fabrication process utilizing granular jamming. By taking advantage of the variable stiffness of granular jamming over time, an adaptive fabrication process is presented in which various structures are formed from individual jammed components which can weave or interlock in an overall system. A User Interface (UI) is developed as a design tool which would enable interactive design decisions and operations, based on pre-designed formal and tectonic strategies. The project has four research trajectories that are developed in parallel: (1) material system research; (2) development of an ad hoc digital recording system; (3) creation of a computational library that stores users' iterations; and (4) development of a User Interface (UI) that enables users' interaction with the computational library.
keywords Granular Jamming, Human-computer Interaction, Adaptive Fabrication
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

_id ecaadesigradi2019_078
id ecaadesigradi2019_078
authors Kim, Eonyong, Jeon, Hyunwoo, Jun, Hanjong and Lee, Seongjoon
year 2019
title The Development of Architectural Design Environment for BIPV using BIM
doi https://doi.org/10.52842/conf.ecaade.2019.1.223
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 223-232
summary BIPV is a building integrated photovoltaic power generation system, which is used for building finishing materials, roof, and wall, so there is no need for separate installation space, and the usability is continuously increasing in urban areas with relatively small installation space. And continues to increase. BIPV is a building-integrated type, but the application plan should be made from the early stage of design. However, there is a lack of BIPV related design information. As a result, the possibility of integrating BIPV and building design is reduced and BIPV is applied in a limited range. Method: BIM-based BIPV design process, BIPV installable location, BIPV elevation design factor. And the theory necessary to implement the support model. Lastly, usability was examined using the support model. Result: This study describes a BIM-based design support model for BIPV installed elevation design that designers can apply BIPV installation location planning and design in a BIM environment.
keywords Building Integrated Photovoltaic System ; Building Information Modelling ; Shadow Analysis ; Array design
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id caadria2019_449
id caadria2019_449
authors Lin, Yuqiong, Yao, Jiawei, Huang, Chenyu and Yuan, Philip F.
year 2019
title The Future of Environmental Performance Architectural Design Based on Human-Computer Interaction - Prediction Generation Based on Physical Wind Tunnel and Neural Network Algorithms
doi https://doi.org/10.52842/conf.caadria.2019.2.633
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 633-642
summary As the medium of the environment, a building's environment performance-based generative design cannot be separated from intelligent data processing. Sustainable building design should seek an optimized form of environmental performance through a complete set of intelligent induction, autonomous analysis and feedback systems. This paper analyzed the trends in architectural design development in the era of algorithms and data and the status quo of building generative design based on environmental performance, as well as highlighting the importance of physical experiments. Furthermore, a design method for self-generating environmental performance of urban high-rise buildings by applying artificial intelligence neural network algorithms to a customized physical wind tunnel is proposed, which mainly includes a morphology parameter control and environmental data acquisition system, code translation of environmental evaluation rules and architecture of a neural network algorithm model. The design-oriented intelligent prediction can be generated directly from the target environmental requirements to the architectural forms.
keywords Physical wind tunnel; neural network algorithms; dynamic model; environmental performance; building morphology self-generation
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaadesigradi2019_530
id ecaadesigradi2019_530
authors Salsi, Matteo and Erioli, Alessio
year 2019
title Foam Making Sense - behavioral additive deposition and stigmergic agency for integrated surface tectonics
doi https://doi.org/10.52842/conf.ecaade.2019.2.531
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 531-540
summary This thesis research deals with the architectural project from an interdisciplinary point of view, integrating biomimetics, additive fabrication, computer vision, and robotics. The work focuses on the feedback interaction loop among robotic additive fabrication, a stigmergic agent-based system and the self-organizing properties of the material. The aim is to explore the morphological, constructive and expressive potentials generated by the mutual influence of computational design, construction behavioral rules, and physical material behavior (whose complexity exceeds current simulation capacity).The proposed approach leads to the creation of surface-based tectonics, enhanced with a fiberglass-coated dendritic ridge formation that integrates functional, ornamental and structural performances. The process can be extended to larger architectural scales with the creation of bespoke EPS molds via robotic hot wire cutting; the presented case study leverages the aforementioned process on ruled surfaces for the generation of translucent delimiters, used to create heterogeneous spatial organization.
keywords behavioral fabrication; stigmergy; agent-based system; robotic hot-wire-cutting; additive fabrication; sensors
series eCAADeSIGraDi
email
last changed 2022/06/07 08:00

_id caadria2019_535
id caadria2019_535
authors Song, Jaeyeol, Kim, Jinsung and Lee, Jin-Kook
year 2019
title Converting KBimCode into an Executable Code for the Automated Design Rule Checking System
doi https://doi.org/10.52842/conf.caadria.2019.1.795
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 795-804
summary This research aims to describe an implementation approach for a translator of KBimCode as a part of a BIM-enabled automated design rule checking system. KBimCode is an explicit and computer-readable form written in a scripting language to represent Korea Building Act sentences. KBimCode separates the rule-making process that conventionally dependent on rule-checking software. Based on the approach, KBimCode implemented with its own logic rule components and has been managed with the database. On the other hand, there are several rule-checking software executed with their own rule set. Translating natural language rules into the rule set of each software and translating a rule of specific software into others require a lot of manual effort. The manual translation also hinders interoperability between rule checking software. We address the problem with developing the KBimCode translator for each rule checking software. In this research, we focused on translating KBimCode into an executable code of specific rule checking software, named KBimAssess. KBimCode translator will integrate the rule-making and rule-checking process, which means various stakeholders, even who are not familiar with programming, can easily conduct BIM-enabled rule checking by utilizing KBimCode. Furthermore, the implementation of KBimCode translator is expected to contribute to the enhancement of interoperability between various rule-checking applications.
keywords Automated design rule checking; Building information modeling (BIM); Executable code; Language translator; KBimCode
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2019_202
id caadria2019_202
authors Yang, Chunxia, Gu, Zhuoxing and Yao, Ziying
year 2019
title Adaptive Urban Design Research based on Multi-Agent System - Taking The Urban Renewal Design Of Shanghai Hongkou Port Area As An Example
doi https://doi.org/10.52842/conf.caadria.2019.1.225
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 225-234
summary Utilizing digital method to establish a multi-agent simulation platform and establish an interactive simulation between site elements and agents particles behavior. In this study, urban space could not have the absolute frozen state, it is always evolving and self-renewing. We hope to integrate such unstable relationships into urban design methods and programs. By constructing various type of agent particles and the interaction behaviors, we not only directly simulate the flow of people or traffic, but also simulate the public space relationship such as line of sight space, waterfront space accessibility, commercial supporting function layout, and historical and cultural block attraction from a more abstract level. From macro to micro, the result of spatial simulation has an intrinsic close causal relationship with the site's landform, building status, site function, and planning pattern, can be the basis for space generation.
keywords Self-organization; Multi-agent System; Cluster City; Particle Personality; Site Elements
series CAADRIA
email
last changed 2022/06/07 07:57

_id ecaadesigradi2019_088
id ecaadesigradi2019_088
authors Sardenberg, Victor, Burger, Theron and Becker, Mirco
year 2019
title Aesthetic Quantification as Search Criteria in Architectural Design - Archinder
doi https://doi.org/10.52842/conf.ecaade.2019.1.017
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 17-24
summary The paper describes a research experiment of incorporating quantitative aesthetic evaluation and feeding the metric back into a parametric model to steer the search within the design space for a high-ranking design solution. The experiment is part of a longer-standing interest and research in quantitative aesthetics. A web platform inspired by dating apps was developed to retrieve an aesthetic score of images (drawings and photographs of architectural projects). The app and scoring system was tested for functionality against an existing dataset of aesthetic measure (triangles, polygon nets). In the actual experiment, an evolutionary algorithm generated images of design candidates (phenotypes) and used the aesthetic score retrieved by the "crowd" of app users as a fitness function for the next generation/population. The research is in the tradition of empirical aesthetics of G. T. Fechner (Fechner, 1876), using a web app to crowdsource aesthetic scores and using these to evolve design candidates. The paper describes how the system is set up and presents its results in four distinct exercises.
keywords Quantitative Aesthetics; Social Media; Crowdsourcing; Collaborative Design; Human-Computer interaction
series eCAADeSIGraDi
email
last changed 2022/06/07 07:57

_id caadria2019_283
id caadria2019_283
authors Rosenberg, Daniel and Tsamis, Alexandros
year 2019
title Human-Building Collaboration - A Pedagogical Framework for Smart Building Design
doi https://doi.org/10.52842/conf.caadria.2019.2.171
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 171-180
summary We introduce Human-Building Collaboration (HBC), a pedagogical framework for the design of next-generation smart buildings in architecture. Using the framework's philosophy, model, and tools we show designers how to enhance smart building performance by increasing and diversifying the ways humans have to share their intelligence with that of the building. We apply this framework through design exercises and present the result of two projects: (1) a tangible wall interface for lighting co-optimization and (2) a shape display facade interface for rainwater purification and reuse. Preliminary findings demonstrate that the framework helped designers proposing new means for humans to collaborate with smart buildings.
keywords Smart Buildings; Artificial Intelligence ; Tangible Interfaces; Human-Building Interaction ; User Experience Design
series CAADRIA
email
last changed 2022/06/07 07:56

_id acadia19_258
id acadia19_258
authors Bar-Sinai, Karen Lee; Shaked, Tom; Sprecher, Aaron
year 2019
title Informing Grounds
doi https://doi.org/10.52842/conf.acadia.2019.258
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 258-265
summary Advancements in robotic fabrication are enabling on-site construction in increasingly larger scales. In this paper, we argue that as autonomous tools encounter the territorial scale, they open new ways to embed information into it. To define the new practice, this paper introduces a protocol combining a theoretical framework and an iterative process titled Informing Grounds. This protocol mediates and supports the exchange of knowledge between a digital and a physical environment and is applicable to a variety of materials with uncertain characteristics in a robotic manufacturing scenario. The process is applied on soil and demonstrated through a recent design-to-fabrication workshop that focused on simulating digital groundscaping of distant lunar grounds employing robotic sand-forming. The first stage is ‘sampling’—observing the physical domain both as an initial step as well as a step between the forming cycles to update the virtual model. The second stage is ‘streaming’—the generation of information derived from the digital model and its projection onto the physical realm. The third stage is ‘transforming’—the shaping of the sand medium through a physical gesture. The workshop outcomes serve as the basis for discussion regarding the challenges posed by applying autonomous robotic tools on materials with uncertain behavior at a large-scale.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ijac201917404
id ijac201917404
authors Erdolu, Emek
year 2019
title Lines, triangles, and nets: A framework for designing input technologies and interaction techniques for computer-aided design
source International Journal of Architectural Computing vol. 17 - no. 4, 357-381
summary This article serves to the larger quest for increasing our capacities as designers, researchers, and scholars in understanding and developing human-computer interaction in computer-aided design. The central question is on how to ground the related research work in input technologies and interaction techniques for computer-aided design applications, which primarily focus on technology and implementation, within the actual territories of computer-aided design processes. To discuss that, the article first reviews a collection of research studies and projects that present input technologies and interaction techniques developed as alternative or complimentary to the mouse as used in computer-aided design applications. Based on the mode of interaction, these studies and projects are traced in four categories: hand-mediated systems that involve gesture- and touch-based techniques, multimodal systems that combine various ways of interaction including speech-based techniques, experimental systems such as brain-computer interaction and emotive-based techniques, and explorations in virtual reality- and augmented reality-based systems. The article then critically examines the limitations of these alternative systems related to the ways they have been envisioned, designed, and situated in studies as well as of the two existing research bases in human-computer interaction in which these studies could potentially be grounded and improved. The substance of examination is what is conceptualized as “frameworks of thought”—on variables and interrelations as elements of consideration within these efforts. Building upon the existing frameworks of thought, the final part discusses an alternative as a vehicle for incorporating layers of the material cultures of computer-aided design in designing, analyzing, and evaluating computer-aided design-geared input technologies and interaction techniques. The alternative framework offers the potential to help generate richer questions, considerations, and avenues of investigation.
keywords Computer-aided design (CAD), human-computer interaction (HCI), input technologies and interaction techniques, material culture of computer-aided design (CAD), architectural design, engineering design, computational design
series journal
email
last changed 2020/11/02 13:34

_id ecaadesigradi2019_239
id ecaadesigradi2019_239
authors Garrido, Federico and Meyer, Joost
year 2019
title Dexterity-controlled Design Procedures
doi https://doi.org/10.52842/conf.ecaade.2019.1.659
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 659-668
summary This paper explores the development of design procedures in relationship to their digital proceedings, in order to interface human movement and parametric design procedures. The research studied the use of Leap Motion controller, a gesture recognition device using infrared sensors combined with time-based generative tools in Rhinoceros Grasshopper. A physical, artistic procedure was used as a reference to model a digital design procedure, including a series of parametric definitions combined with them in an attempt to produce complex three-dimensional designs in real time. In a later stage of this research, a modular, open source, digitizing arm was developed to capture hand movement and interact with an autonomous parametric definition, augmenting even more the range of applications of dexterity-based digital design. The challenge of this experimental investigation lies in the negotiation of the designer's needs for a complex yet open design process and the possibilities of defined soft- and hardware solutions.
keywords digital design; dexterity; parametric design; motion detection
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

_id caadria2019_403
id caadria2019_403
authors Lin, Xuhui and Muslimin, Rizal
year 2019
title RESHAPE - Rapid forming and simulation system using unmanned aerial vehicles for architectural representation
doi https://doi.org/10.52842/conf.caadria.2019.1.413
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 413-422
summary As digital technology advances, multiple ways of repre-senting objects interactively in space, architects and designers begin to use Virtual Reality (VR) and Immersive Digital Environ-ments (IDE) to communicate their ideas. However, these technolo-gies are bounded with their spatial limitations. In responding to this issue, our paper introduces ReShape, a digital-physical spatial representation system supported by Unmanned Aerial Vehicle (UAV) swarm technology that allows a user to project their unbuilt design and interact with them in real space, unattached by headset, fixed cameras or screen. ReShape can be controlled by user orien-tation and gesture as an input, where the real-time feedback is provided by UAV spatial arrangement in space, augmented by computational simulation. Spatial data is transmitted between the UAV agents for the user to experience the digital model, creating a versatile and computationally efficient platform to edit and en-hance the design in real-space. This paper outlines four systems in ReShape, i.e., (1) detection system to identify and locate the user position and orientation; (2) task-arrangement system to provide spatial information to the UAV agents; (3) UAV's communicating system to control the UAV position and task in space; and (4) Physical-Digital forming system, to project digital simulation by the UAV agents.
keywords UAV system; Spatial representation; a detecting sys-tem; human-computation interaction
series CAADRIA
email
last changed 2022/06/07 07:59

_id cf2019_055
id cf2019_055
authors Agirbas, Asli
year 2019
title A proposal for the use of fractal geometry algorithmically in tiling design
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 438-453
summary The design inspired by nature is an ongoing issue from the past to the present. There are many design examples inspired from nature. Fractal geometry formation, which is focused on this study, is a system seen in nature. A model based on fractal growth principle was proposed for tile design. In this proposal made with using Visual Programming Language, a tiling design experiment placed in a hexagonal grid system was carried out. Thus, a base was created for tile designs to be made using the fractal principle. The results of the case study were evaluated and potential future studies were discussed.
keywords Fractals, Tile design, Biomimetic design, Algorithmic design
series CAAD Futures
email
last changed 2019/07/29 14:18

_id caadria2019_413
id caadria2019_413
authors Ahrens, Chandler, Chamberlain, Roger, Mitchell, Scott, Barnstorff, Adam and Gelbard, Joshua
year 2019
title Controlling Daylight Reflectance with Cyber-physical Systems
doi https://doi.org/10.52842/conf.caadria.2019.1.433
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 433-442
summary Cyber-physical systems increasingly inform and alter the perception of atmospheric conditions within interior environments. The Catoptric Surface research project uses computation and robotics to precisely control the location of reflected daylight through a building envelope to form an image-based pattern of light on the building interior's surfaces. In an attempt to amplify or reduce spatial perception, the daylighting reflected onto architectural surfaces within a built environment generates atmospheric effects. The modification of light patterns mapped onto existing or new surfaces enables the perception of space to not rely on form alone. The mapping of a new pattern that is independent of architectural surfaces creates a visual effect of a formless atmosphere and holds the potential to affect the way people interact with the space. People need different amounts and quality of daylight depending on physiological differences due to age or the types of tasks they perform. This research argues for an informed luminous and atmospheric environment that is relative both to the user and more conceptual architectural aspirations of spatial perception controlled by a cyber-physical robotic façade system.
keywords Contextual; Computation
series CAADRIA
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_194165 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002