CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 6 of 6

_id cf2019_055
id cf2019_055
authors Agirbas, Asli
year 2019
title A proposal for the use of fractal geometry algorithmically in tiling design
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 438-453
summary The design inspired by nature is an ongoing issue from the past to the present. There are many design examples inspired from nature. Fractal geometry formation, which is focused on this study, is a system seen in nature. A model based on fractal growth principle was proposed for tile design. In this proposal made with using Visual Programming Language, a tiling design experiment placed in a hexagonal grid system was carried out. Thus, a base was created for tile designs to be made using the fractal principle. The results of the case study were evaluated and potential future studies were discussed.
keywords Fractals, Tile design, Biomimetic design, Algorithmic design
series CAAD Futures
email
last changed 2019/07/29 14:18

_id ijac201917103
id ijac201917103
authors Bejarano, Andres; and Christoph Hoffmann
year 2019
title A generalized framework for designing topological interlocking configurations
source International Journal of Architectural Computing vol. 17 - no. 1, 53-73
summary A topological interlocking configuration is an arrangement of pieces shaped in such a way that the motion of any piece is blocked by its neighbors. A variety of interlocking configurations have been proposed for convex pieces that are arranged in a planar space. Published algorithms for creating a topological interlocking configuration start from a tessellation of the plane (e.g. squares colored as a checkerboard). For each square S of one color, a plane P through each edge E is considered, tilted by a given angle ? against the tessellated plane. This induces a face F supported by P and limited by other such planes nearby. Note that E is interior to the face. By adjacency, the squares of the other color have similarly delimiting faces. This algorithm generates a topological interlocking configuration of tetrahedra or antiprisms. When checked for correctness (i.e. for no overlap), it rests on the tessellation to be of squares. If the tessellation consists of rectangles, then the algorithm fails. If the tessellation is irregular, then the tilting angle is not uniform for each edge and must be determined, in the worst case, by trial and error. In this article, we propose a method for generating topological interlocking configurations in one single iteration over the tessellation or mesh using a height value and a center point type for each tile as parameters. The required angles are a function of the given height and selected center; therefore, angle choices are not required as an initial input. The configurations generated using our method are compared against the configurations generated using the angle-choice approach. The results show that the proposed method maintains the alignment of the pieces and preserves the co-planarity of the equatorial sections of the pieces. Furthermore, the proposed method opens a path of geometric analysis for topological interlocking configurations based on non-planar tessellations.
keywords Topological interlocking, surface tessellation, irregular geometry, parametric design, convex assembly
series journal
email
last changed 2019/08/07 14:04

_id caadria2019_462
id caadria2019_462
authors Koh, Immanuel, Amorim, Pedro and Huang, Jeffrey
year 2019
title Machinic Design Inference: from Pokémon to Architecture - A Probabilistic Machine Learning Model for Generative Design using Game Levels Abstractions
doi https://doi.org/10.52842/conf.caadria.2019.2.421
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 421-430
summary In this paper, we use a probabilistic machine learning model, trained with a corpus of existing game levels tile-maps, to study the potential of an inference design system for architectural design. Our system is able to extract implicit spatial patterns and generate new spatial configurations with similar semantics of perception and navigation.
keywords Machine Learning; Artificial Intelligence; Generative Design
series CAADRIA
email
last changed 2022/06/07 07:51

_id acadia19_606
id acadia19_606
authors Russo, Rhett
year 2019
title Lithophanic Dunes: The Dunejars
doi https://doi.org/10.52842/conf.acadia.2019.606
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 606-615
summary The design of masonry, tile, and ceramics is an integral part of architectural history. High fired clays are unique in that they are amorphous, vitreous, and translucent. Similar types of light transmission through minerals and clays has been achieved in window panes using alabaster or marble, but unlike porcelain these cannot be cast, and they are susceptible to moisture. Additionally, glass and metal are commonly used to glaze ceramics, and this provides further possibility for the combination of translucency with surface ornamentation and decaling. It is within this architectural lineage, of compound stone and glass objects, that the Dunejars are situated. The Dunejars are translucent porcelain vessels that are designed as lenses to transmit different wavelengths of light into intricate and unexpected patterns. Similar recipes for porcelain were developed using wax positives during the 19th century to manufacture domestic Lithophanes; picturesque screens made of translucent porcelain, often displayed in windows or produced as candle shades (Maust 1966). The focus of the research involves pinpointing the lithophanic qualities of the clay so that they can be repeated by recipe, and refined through a digital workflow. The methods outlined here are the product of an interdisciplinary project residency at The European Ceramic Workcenter (Sundaymorning@EKWC) in 2018 to make tests, and obtain technical precision in the areas of, plaster mold design, slip-casting, finishing, firing, and glazing of the Dunejars. The modular implementation of these features at the scale of architecture can be applied across a range of scales, including fixtures, finishes and envelopes, all of which merit further investigation.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_599
id ecaadesigradi2019_599
authors Özkar, Mine, Hamzao?lu, Begüm and Özgan, Sibel Yasemin
year 2019
title A Historical Perspective to Fabrication in Architecture for Preserving Heritage
doi https://doi.org/10.52842/conf.ecaade.2019.2.619
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 619-624
summary Digital technologies have recently been at the forefront of the causal link between making and design. A growing number of architecture programs of universities incorporates fabrication to the educational environment, and even to the curriculum. Fabrication technology is now considered among the set of tools students are expected to acquire a basic knowledge of and skills in. Nevertheless, the pedagogical potential of fabrication in communicating traditions of making is underused in an oversight of the continuity of the relevant know-how. Our position is that traditions of making can be the subject matter of fabrication with the objective to remedy the role of fabrication tools in architectural history, sustainable architectural production, and in the field of digital heritage. In this paper, we report on two comparative studies that illustrate how the instrumental factors of two historical crafts can be articulated using fabrication.
keywords computational design; craft; stone carving; tile mosaic
series eCAADeSIGraDi
email
last changed 2022/06/07 07:57

_id ijac201917301
id ijac201917301
authors Webb, Nicholas and Alexandrina Buchanan
year 2019
title Digitally aided analysis of medieval vaults in an English cathedral, using generative design tools
source International Journal of Architectural Computing vol. 17 - no. 3, 241-259
summary Medieval masons relied on a ruler and compass to generate designs of increasing complexity in both two and three dimensions. They understood that arcs and lines could be used for proportioning, working with halves, thirds, fifths and so on, rather than specific dimensions. Geometric rules enabled them to create vaulted bays, high up in church and cathedral interiors. In recent years, the influence of digital generative design tools can be seen in our built environment. We will explore generative design to reverse engineer and better understand the design and computational processes that the medieval masons might have employed at our case study site of Exeter Cathedral, England. Our focus is on a run of bays along the nave, which at first appear consistent in their design, yet in reality are subtly different. We will investigate the capacity for changes in the generative process while preserving the overall medieval design concept.
keywords Reverse engineering, generative design, algorithms-aided design, laser scanning, Exeter Cathedral, medieval design, pre-digital computing
series journal
email
last changed 2020/11/02 13:34

No more hits.

HOMELOGIN (you are user _anon_965938 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002