CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 163

_id ecaadesigradi2019_182
id ecaadesigradi2019_182
authors Argin, Gorsev, Pak, Burak and Turkoglu, Handan
year 2019
title Post-flâneur in Public Space - Altering walking behaviour in the era of smartphones
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 649-658
doi https://doi.org/10.52842/conf.ecaade.2019.1.649
summary Smartphones have become an ordinary accompanier of our walks and created new modes of appropriation of public space. This study aims to research these modes by observing the altering visual attention and walking behavior of people using smartphones in public space, and in this way, to reveal the emergence of different types of post-flâneurs. In order to address these aims, 346 (195 females, 151 males) smartphone users were observed in a central public square in Ghent, Belgium for seven days in 10-minute time intervals. Each person's gender, age, number of accompanies and their dominant mode of smartphone usage(s) were identified. Afterward, each person's walking timeline was organized into seconds and coded according to their focus of visual attention in 24 different modes which grouped under the three gaze types; visual attention on the environment, on the environment through the smartphone screen, and on the smartphone screen. Results of the descriptive statistics, multivariate graph, and rhythm-based in-depth analysis show that different types of smartphone activities affect visual attention and speed differently. Different types of post-flâneurs such as navigators and photo takers were identified based upon their high percentage of visual attention on the environment and slower walking speed. The study also revealed the frequent presence of phone-walkers (who walk while only holding the smartphone) and smartphone zombies (who walk slowly and without attention to their surrounding) in public space. In addition to these, our research revealed rapid smartphone zombies who walk faster than the average walking speed, a finding contrary to the former studies reviewed.
keywords visual attention; public space; smartphone; walking behaviour; post-flâneur
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id acadia19_642
id acadia19_642
authors Chua, Pamela Dychengbeng; Hui, Lee Fu
year 2019
title Compliant Laminar Assemblies
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 642-653
doi https://doi.org/10.52842/conf.acadia.2019.642
summary This paper presents an innovative approach to the design and fabrication of three-dimensional objects from single-piece flat sheets, inspired by the origami technique of twist-closing. While in origami twist-closing is merely used to stabilize a cylindrical or spherical structure, ensuring it maintains its shape, this research investigates the potential of twist-closing as a multi-functional mechanism that also activates and controls the transformation of a planar surface into a predesigned three-dimensional form. This exploration is directed towards an intended application to stiff and brittle sheet materials that are difficult to shape through other processes. The methods we have developed draw mainly upon principles of lattice kirigami and laminar reciprocal structures. These are reflected in a workflow that integrates digital form-generation and fabrication-rationalization techniques to reference and apply these principles at every stage. Significant capabilities of the developed methodology include: (1) achievement of pseudo-double-curvature with brittle, stiff sheet materials; (2) stabilization in a 3D end-state as a frameless self-contained single-element laminar reciprocal structure—essentially a compliant mechanism; and (3) an ability to pre-encode 3D assembly constraints in a 2D cutout pattern, which guides a moldless fabrication process. The paper reviews the precedent geometric techniques and principles that comprise this method of 3D surface fabrication and describes a sample deployment of the method as applied to the design of laminar modules made of high-pressure laminate (HPL).
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_561
id ecaadesigradi2019_561
authors Cress, Kevan and Beesley, Philip
year 2019
title Architectural Design in Open-Source Software - Developing MeasureIt-ARCH, an Open Source tool to create Dimensioned and Annotated Architectural drawings within the Blender 3D creation suite.
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 621-630
doi https://doi.org/10.52842/conf.ecaade.2019.1.621
summary MeasureIt-ARCH is A GNU GPL licensed, dimension, annotation, and drawing tool for use in the open source software Blender. By providing free and open tools for the reading and editing of architectural drawings, MeasurIt-ARCH allows works of architecture to be shared, read, and modified by anyone. The digitization of architectural practice over the last 3 decades has brought with it a new set of inter-disciplinary discourses for the profession. An attempt to utilise 'Open-Source' methodologies, co-opted from the world of software development, in order to make high quality design more affordable, participatory and responsible has emerged. The most prominent of these discussions are embodied in Carlo Raitti and Mathew Claudel's manifesto 'Open-Source Architecture' (Ratti 2015) and affordable housing initiatives like the Wikihouse project (Parvin 2016). MeasurIt-ARCH aims to be the first step towards creating a completely Open-Source design pipeline, by augmenting Blender to a level where it can be used produce small scale architectural works without the need for any proprietary software, serving as an exploratory critique on the user experience and implementations of industry standard dimensioning tools that exist on the market today.
keywords Blender; Open-Source; Computer Aided Design ; OSArc
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id acadia19_156
id acadia19_156
authors Dahy, Hanaa; Baszyñski, Piotr; Petrš, Jan
year 2019
title Experimental Biocomposite Pavilion
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 156-165
doi https://doi.org/10.52842/conf.acadia.2019.156
summary Excessive use of aggregate materials and metals in construction should be balanced by increasing use of construction materials from annually renewable resources based on natural lignocellulosic fibers. Parametric design tools gave here a possibility of using an alternative newly developed biocomposite material, for realization of complex geometries. Contemporary digital fabrication tools have enabled precise manufacturing possibilities and sophisticated geometry-making to take place that helped in obtaining high structural behavior of the overall global geometry of the discussed project. This paper presents a process of realizing an experimental structure made from Natural Fiber-Reinforced Polymers (NFRP)- also referred to as biocomposites, which were synthesized from lignocellulosic flexible core reinforced by 3D-veneer layers in a closed-moulding vacuum-assisted process. The biocomposite sandwich panels parameters were developed and defined before the final properties were imbedded in the parametric model. This paper showcases the multi-disciplinarity work between architects, structural engineers and material developers. It allowed the architects to work on the material development themselves and enabled to apply a new created design philosophy by the first author, namely applying ‘Materials as a Design-Tool’. The erected biocomposite segmented shell construction allowed a 1:1 validation for the whole design process, material development and the digital fabrication processes applied. The whole development has been reached after merging an ongoing industrial research project results with academic education at the school of architecture in Stuttgart-Germany.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id cdrf2023_526
id cdrf2023_526
authors Eric Peterson, Bhavleen Kaur
year 2023
title Printing Compound-Curved Sandwich Structures with Robotic Multi-Bias Additive Manufacturing
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_44
summary A research team at Florida International University Robotics and Digital Fabrication Lab has developed a novel method for 3d-printing curved open grid core sandwich structures using a thermoplastic extruder mounted on a robotic arm. This print-on-print additive manufacturing (AM) method relies on the 3d modeling software Rhinoceros and its parametric software plugin Grasshopper with Kuka-Parametric Robotic Control (Kuka-PRC) to convert NURBS surfaces into multi-bias additive manufacturing (MBAM) toolpaths. While several high-profile projects including the University of Stuttgart ICD/ITKE Research Pavilions 2014–15 and 2016–17, ETH-Digital Building Technologies project Levis Ergon Chair 2018, and 3D printed chair using Robotic Hybrid Manufacturing at Institute of Advanced Architecture of Catalonia (IAAC) 2019, have previously demonstrated the feasibility of 3d printing with either MBAM or sandwich structures, this method for printing Compound-Curved Sandwich Structures with Robotic MBAM combines these methods offering the possibility to significantly reduce the weight of spanning or cantilevered surfaces by incorporating the structural logic of open grid-core sandwiches with MBAM toolpath printing. Often built with fiber reinforced plastics (FRP), sandwich structures are a common solution for thin wall construction of compound curved surfaces that require a high strength-to-weight ratio with applications including aerospace, wind energy, marine, automotive, transportation infrastructure, architecture, furniture, and sports equipment manufacturing. Typical practices for producing sandwich structures are labor intensive, involving a multi-stage process including (1) the design and fabrication of a mould, (2) the application of a surface substrate such as FRP, (3) the manual application of a light-weight grid-core material, and (4) application of a second surface substrate to complete the sandwich. There are several shortcomings to this moulded manufacturing method that affect both the formal outcome and the manufacturing process: moulds are often costly and labor intensive to build, formal geometric freedom is limited by the minimum draft angles required for successful removal from the mould, and customization and refinement of product lines can be limited by the need for moulds. While the most common material for this construction method is FRP, our proof-of-concept experiments relied on low-cost thermoplastic using a specially configured pellet extruder. While the method proved feasible for small representative examples there remain significant challenges to the successful deployment of this manufacturing method at larger scales that can only be addressed with additional research. The digital workflow includes the following steps: (1) Create a 3D digital model of the base surface in Rhino, (2) Generate toolpaths for laminar printing in Grasshopper by converting surfaces into lists of oriented points, (3) Generate the structural grid-core using the same process, (4) Orient the robot to align in the direction of the substructure geometric planes, (5) Print the grid core using MBAM toolpaths, (6) Repeat step 1 and 2 for printing the outer surface with appropriate adjustments to the extruder orientation. During the design and printing process, we encountered several challenges including selecting geometry suitable for testing, extruder orientation, calibration of the hot end and extrusion/movement speeds, and deviation between the computer model and the physical object on the build platen. Physical models varied from their digital counterparts by several millimeters due to material deformation in the extrusion and cooling process. Real-time deviation verification studies will likely improve the workflow in future studies.
series cdrf
email
last changed 2024/05/29 14:04

_id caadria2019_004
id caadria2019_004
authors Janssen, Patrick, Pung, Derek and Chen, Kian Wee
year 2019
title Visual Programming for Geo-COmputation - Towards Tools for Tool Makers
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 665-674
doi https://doi.org/10.52842/conf.caadria.2019.2.665
summary The paper presents the Möbius Geospatial Modeller, a web-based visual programming tool developed by the authors for creating interactive 3D geospatial datasets. As an evaluation of the modeller, the results of a five-day workshop are presented. The paper ends with a discussion, proposing the creation of customised visual programming environments that provide users with the ability to create their own customised high-level domain-specific functions, as opposed to trying to creating hundreds of functions to cater for all possible used case.
keywords visual programming; geo-computation; geospatial visualization; dataflow and control flow
series CAADRIA
email
last changed 2022/06/07 07:52

_id cf2019_042
id cf2019_042
authors Khan, Sumbul; Bige Tuncer, Ramanathan Subramanian and Lucienne Blessing
year 2019
title 3D CAD modeling using gestures and speech: Investigating CAD legacy and non-legacy procedures
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 347-366
summary 3D CAD modeling using natural interaction techniques necessitates greater research into the modeling procedures employed by users. In a previously conducted experiment, we elicited speech and gestures input for 3D CAD modeling tasks for conceptual design. In this paper, we examine the 3D modeling procedures articulated by the participants, using gestures and speech, for creating basic 3D models of increasing complexity. We identified 3D modeling procedures and characterized them as CAD legacy and non-legacy procedures. Results show that (1) non-legacy procedures were employed by a considerable number of participants who had fair and high proficiency in CAD and (2) Non-legacy procedures with fewer steps were rated favorably by participants. Based on the results, we provide recommendations on key aspects of non-legacy procedures that need to be incorporated in CAD modeling programs to facilitate speech and gestural input.
keywords Gestures, 3D CAD modeling, Human Computer Interaction, computer aided design, natural interaction
series CAAD Futures
email
last changed 2019/07/29 14:15

_id acadia20_176p
id acadia20_176p
authors Lok, Leslie; Zivkovic, Sasa
year 2020
title Ashen Cabin
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 176-181
summary Ashen Cabin, designed by HANNAH, is a small building 3D-printed from concrete and clothed in a robotically fabricated envelope made of irregular ash wood logs. From the ground up, digital design and fabrication technologies are intrinsic to the making of this architectural prototype, facilitating fundamentally new material methods, tectonic articulations, forms of construction, and architectural design languages. Ashen Cabin challenges preconceived notions about material standards in wood. The cabin utilizes wood infested by the Emerald Ash Borer (EAB) for its envelope, which, unfortunately, is widely considered as ‘waste’. At present, the invasive EAB threatens to eradicate most of the 8.7 billion ash trees in North America (USDA, 2019). Due to their challenging geometries, most infested ash trees cannot be processed by regular sawmills and are therefore regarded as unsuitable for construction. Infested and dying ash trees form an enormous and untapped material resource for sustainable wood construction. By implementing high precision 3D scanning and robotic fabrication, the project upcycles Emerald-Ash-Borer-infested ‘waste wood’ into an abundantly available, affordable, and morbidly sustainable building material for the Anthropocene. Using a KUKA KR200/2 with a custom 5hp band saw end effector at the Cornell Robotic Construction Laboratory (RCL), the research team can saw irregular tree logs into naturally curved boards of various and varying thicknesses. The boards are arrayed into interlocking SIP façade panels, and by adjusting the thickness of the bandsaw cut, the robotically carved timber boards can be assembled as complex single curvature surfaces or double-curvature surfaces. The undulating wooden surfaces accentuate the building’s program and yet remain reminiscent of the natural log geometry which they are derived from. The curvature of the wood is strategically deployed to highlight moments of architectural importance such as windows, entrances, roofs, canopies, or provide additional programmatic opportunities such as integrated shelving, desk space, or storage.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id ecaadesigradi2019_467
id ecaadesigradi2019_467
authors Petrš, Jan, Dahy, Hanaa and Florián, Miloš
year 2019
title From MoleMOD to MoleSTRING - Design of self-assembly structures actuated by shareable soft robots
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 179-188
doi https://doi.org/10.52842/conf.ecaade.2019.3.179
summary This paper proposes a self-assembling system for architectural application. It is a reaction to current building crisis and high energy consumption by building industry. This Unique system is based on a reconfiguration of passive elements by low-cost soft robots able to move inside as well as configure them into 2D/3D structures similar to recent Modular robots. A goal is to significantly reduce the high price and complexity of state of the art modular robots by minimization of mechatronic parts and using soft materials. The concept focuses on life-cycle management when one system can achieve assembly, reconfiguration, and disassembly with a minimum of waste. The paper compares three different versions of a self-assembly system called MoleMOD: MoleCUBE, MoleCHAIN, and MoleSTRING.
keywords Self-assembly; Soft robotics; Modular robotics; Reconfigurable string; Adaptive architecture
series eCAADeSIGraDi
email
last changed 2022/06/07 08:00

_id lasg_whitepapers_2019_291
id lasg_whitepapers_2019_291
authors Sabin, Jenny
year 2019
title Lumen
source Living Architecture Systems Group White Papers 2019 [ISBN 978-1-988366-18-0] Riverside Architectural Press: Toronto, Canada 2019. pp.291 - 318
summary This paper documents the computational design methods, digital fabrication strategies, and generative design process for [Lumen], winner of MoMA & MoMA PS1’s 2017 Young Architects Program. The project was installed in the courtyard at MoMA PS1 in Long Island City, New York, during the summer of 2017. Two lightweight 3D digitally knitted fabric canopy structures composed of responsive tubular and cellular components employ recycled textiles, photo-luminescent and solar active yarns that absorb and store UV energy, change color, and emit light. This environment offers spaces of respite, exchange, and engagement as a 150 x 75-foot misting system responds to visitors’ proximity, activating fabric stalactites that produce a refreshing micro-climate. Families of robotically prototyped and woven recycled spool chairs provide seating throughout the courtyard. The canopies are digitally fabricated with over 1,000,000 yards of high tech responsive yarn and are supported by three 40+ foot tensegrity towers and the surrounding matrix of courtyard walls. Material responses to sunlight as well as physical participation are integral parts of our exploratory approach to the 2017 YAP brief. The project is mathematically generated through form-finding simulations informed by the sun, site, materials, program, and the material morphology of knitted cellular components. Resisting a biomimetic approach, [Lumen] employs an analogic design process where complex material behavior and processes are integrated with personal engagement and diverse programs. The comprehensive installation was designed by Jenny Sabin Studio and fabricated by Shima Seiki WHOLEGARMENT, Jacobsson Carruthers, and Dazian with structural engineering by Arup and lighting by Focus Lighting.
keywords living architecture systems group, organicism, intelligent systems, design methods, engineering and art, new media art, interactive art, dissipative systems, technology, cognition, responsiveness, biomaterials, artificial natures, 4DSOUND, materials, virtual projections,
email
last changed 2019/07/29 14:02

_id ecaade2023_259
id ecaade2023_259
authors Sonne-Frederiksen, Povl Filip, Larsen, Niels Martin and Buthke, Jan
year 2023
title Point Cloud Segmentation for Building Reuse - Construction of digital twins in early phase building reuse projects
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 327–336
doi https://doi.org/10.52842/conf.ecaade.2023.2.327
summary Point cloud processing has come a long way in the past years. Advances in computer vision (CV) and machine learning (ML) have enabled its automated recognition and processing. However, few of those developments have made it through to the Architecture, Engineering and Construction (AEC) industry. Here, optimizing those workflows can reduce time spent on early-phase projects, which otherwise could be spent on developing innovative design solutions. Simplifying the processing of building point cloud scans makes it more accessible and therefore, usable for design, planning and decision-making. Furthermore, automated processing can also ensure that point clouds are processed consistently and accurately, reducing the potential for human error. This work is part of a larger effort to optimize early-phase design processes to promote the reuse of vacant buildings. It focuses on technical solutions to automate the reconstruction of point clouds into a digital twin as a simplified solid 3D element model. In this paper, various ML approaches, among others KPConv Thomas et al. (2019), ShapeConv Cao et al. (2021) and Mask-RCNN He et al. (2017), are compared in their ability to apply semantic as well as instance segmentation to point clouds. Further it relies on the S3DIS Armeni et al. (2017), NYU v2 Silberman et al. (2012) and Matterport Ramakrishnan et al. (2021) data sets for training. Here, the authors aim to establish a workflow that reduces the effort for users to process their point clouds and obtain object-based models. The findings of this research show that although pure point cloud-based ML models enable a greater degree of flexibility, they incur a high computational cost. We found, that using RGB-D images for classifications and segmentation simplifies the complexity of the ML model but leads to additional requirements for the data set. These can be mitigated in the initial process of capturing the building or by extracting the depth data from the point cloud.
keywords Point Clouds, Machine Learning, Segmentation, Reuse, Digital Twins
series eCAADe
email
last changed 2023/12/10 10:49

_id caadria2019_198
id caadria2019_198
authors Teo, Elizabeth, Pang, Yun Jie, Xie, Yu, Ratchakitprakarn, Pheeraphat, Low, Rebekah and Dritsas, Stylianos
year 2019
title Stereolithography with Randomized Aggregates
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 323-332
doi https://doi.org/10.52842/conf.caadria.2019.2.323
summary The paper documents the design and development of an additive manufacturing process based on stone aggregates. Unlike conventional 3D printing technologies which target miniaturization of the material grain and deposition layers to achieve as high resolution as possible, our process deploys sizeable and randomized grains of stone. The objective of this is to leverage between physical scale of the particulate and time it takes to produce large enough artefacts, fast enough to potentially evoke spatial qualities. Perhaps unavoidably, due to its materiality, the process revisits one of the most archaic methods of building technology, namely masonry, and suggests for a unique digital perspective for structures and landscapes made from stone.
keywords Digital Fabrication; Additive Manufacturing; Aggregate Assemblies
series CAADRIA
email
last changed 2022/06/07 07:58

_id cdrf2021_286
id cdrf2021_286
authors Yimeng Wei, Areti Markopoulou, Yuanshuang Zhu,Eduardo Chamorro Martin, and Nikol Kirova
year 2021
title Additive Manufacture of Cellulose Based Bio-Material on Architectural Scale
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_27
summary There are severe environmental and ecological issues once we evaluate the architecture industry with LCA (Life Cycle Assessment), such as emission of CO2 caused by necessary high temperature for producing cement and significant amounts of Construction Demolition Waste (CDW) in deteriorated and obsolete buildings. One of the ways to solve these problems is Bio-Material. CELLULOSE and CHITON is the 1st and 2nd abundant substance in nature (Duro-Royo, J.: Aguahoja_ProgrammableWater-based Biocomposites for Digital Design and Fabrication across Scales. MIT, pp. 1–3 (2019)), which means significantly potential for architectural dimension production. Meanwhile, renewability and biodegradability make it more conducive to the current problem of construction pollution. The purpose of this study is to explore Cellulose Based Biomaterial and bring it into architectural scale additive manufacture that engages with performance in the material development, with respect to time of solidification and control of shrinkage, as well as offering mechanical strength. At present, the experiments have proved the possibility of developing a cellulose-chitosan- based composite into 3D-Printing Construction Material (Sanandiya, N.D., Vijay, Y., Dimopoulou, M., Dritsas, S., Fernandez, J.G.: Large-scale additive manufacturing with bioinspired cellulosic materials. Sci. Rep. 8(1), 1–5 (2018)). Moreover, The research shows that the characteristics (Such as waterproof, bending, compression, tensile, transparency) of the composite can be enhanced by different additives (such as xanthan gum, paper fiber, flour), which means it can be customized into various architectural components based on Performance Directional Optimization. This solution has a positive effect on environmental impact reduction and is of great significance in putting the architectural construction industry into a more environment-friendly and smart state.
series cdrf
email
last changed 2022/09/29 07:53

_id caadria2019_045
id caadria2019_045
authors Zheng, Hao, Darweesh, Barrak, Lee, Heewon and Yang, Li
year 2019
title Caterpillar - A Gcode translator in Grasshopper
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 253-262
doi https://doi.org/10.52842/conf.caadria.2019.2.253
summary Additive manufacturing has widely been spread in the digital fabrication and design fields, allowing designers to rapidly manufacture complex geometry. In the additive process of Fused Deposition Modelling (FDM), machine movements are provided in the form of Gcode - A language of spatial coordinates controlling the position of the 3D printing extruder. Slicing software use closed mesh models to create Gcode from planar contours of the imported mesh, which raises limitations in the geometry types accepted by slicing software as well as machine control freedom. This paper presents a framework that makes full use of three degrees of freedom of Computer Numerically Controlled (CNC) machines through the generation of Gcode in the Rhino and Grasshopper environment. Eliminating the need for slicing software, Gcode files are generated through user-defined toolpaths that allow for higher levels of control over the CNC machine and a wider range of possibilities for non-conventional 3D printing applications. Here, we present Caterpillar, a Grasshopper plug-in providing architects and designers with high degrees of customizability for additive manufacturing. Core codes are revealed, application examples of printing with user-defined toolpaths are shown.
keywords 3D Printing; Gcode; Grasshopper; Modelling; Simulation
series CAADRIA
email
last changed 2022/06/07 07:57

_id acadia20_202p
id acadia20_202p
authors Battaglia, Christopher A.; Verian, Kho; Miller, Martin F.
year 2020
title DE:Stress Pavilion
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 202-207
summary Print-Cast Concrete investigates concrete 3D printing utilizing robotically fabricated recyclable green sand molds for the fabrication of thin shell architecture. The presented process expedites the production of doubly curved concrete geometries by replacing traditional formwork casting or horizontal corbeling with spatial concrete arching by developing a three-dimensional extrusion path for deposition. Creating robust non-zero Gaussian curvature in concrete, this method increases fabrication speed for mass customized elements eliminating two-part mold casting by combining robotic 3D printing and extrusion casting. Through the casting component of this method, concrete 3D prints have greater resolution along the edge condition resulting in tighter assembly tolerances between multiple aggregated components. Print-Cast Concrete was developed to produce a full-scale architectural installation commissioned for Exhibit Columbus 2019. The concrete 3D printed compression shell spanned 12 meters in length, 5 meters in width, and 3 meters in height and consisted of 110 bespoke panels ranging in weight of 45 kg to 160 kg per panel. Geometrical constraints were determined by the bounding box of compressed sand mold blanks and tooling parameters of both CNC milling and concrete extrusion. Using this construction method, the project was able to be assembled and disassembled within the timeframe of the temporary outdoor exhibit, produce <1% of waste mortar material in fabrication, and utilize 60% less material to construct than cast-in-place construction. Using the sand mold to contain geometric edge conditions, the Print-Cast technique allows for precise aggregation tolerances. To increase the pavilions resistance to shear forces, interlocking nesting geometries are integrated into each edge condition of the panels with .785 radians of the undercut. Over extruding strategically during the printing process casts the undulating surface with accuracy. When nested together, the edge condition informs both the construction logic of the panel’s placement and orientation for the concrete panelized shell.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id caadria2019_194
id caadria2019_194
authors Leitão, António, Castelo-Branco, Renata and Santos, Guilherme
year 2019
title Game of Renders - The Use of Game Engines for Architectural Visualization
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 655-664
doi https://doi.org/10.52842/conf.caadria.2019.1.655
summary Good visualization mechanisms offer architects, and their clients, a better grasp of how their designs are going to turn out when built, and the experience one might have inside the constructions. This also helps the architect orient the design in a more informed manner. However, typically used modeling tools do not offer satisfactory visualization solutions. The operations available to view and navigate through the 3D space are flawed in terms of speed, interactivity, and real-time rendering quality. To solve this issue, we propose the coupling of a portable algorithmic design framework with a Game Engine (GE) to support interactive visualization of architectural models and increase the rendering performance of the framework. We explain in detail this integration, and we evaluate this workflow by implementing a case study and comparing the performance of the GE to architectural modeling tools.
keywords Algorithmic Design; Game Engine; Interactive Visualization
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaadesigradi2019_389
id ecaadesigradi2019_389
authors Mohite, Ashish, Kochneva, Mariia and Kotnik, Toni
year 2019
title Speed of Deposition - Vehicle for structural and aesthetic expression in CAM
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 729-738
doi https://doi.org/10.52842/conf.ecaade.2019.1.729
summary This paper presents intermediate results of an experimental research directed towards development of a method that uses additive manufacturing technology as a generative agent in architectural design process. The primary technique is to variate speed of material deposition of a 3D printer in order to produce undetermined textural effects. These effects demonstrate local variation of material distribution, which is treated as a consequence of interaction between machining parameters and material properties. Current stage of inquiry is concerned with studying the impact of these textural artefacts on structure. Experiments demonstrate that manipulating distribution of matter locally results in more optimal structural performance, it solves printability issues of overhanging geometry without the need for additional supports and provides variation to the surface. The research suggests aesthetic and structural benefits of applying the developed method for mass-customized fabrication. It questions the linear thinking that is predominant in the field of 3D printing and provides an approach that articulates interaction between digital and material logics as it directs the formation of an object that is informed by both.
keywords digital fabrication; digital craft; texture; ceramic 3D printing
series eCAADeSIGraDi
email
last changed 2022/06/07 07:58

_id acadia23_v1_196
id acadia23_v1_196
authors Bao, Ding Wen; Yan, Xin; Min Xie, Yi
year 2023
title Intelligent Form
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 196-201.
summary InterLoop employs previously developed workflows that enable multi-planar robotic bending of metal tubes with high accuracy and repeatability (Huang and Spaw 2022). The scale and complexity is managed by employing augmented reality (AR) technology in two capacities, fabrication and assembly (Jahn et al. 2018; Jahn, Newnham, and Berg 2022). The AR display overlays part numbers, bending sequences, expected geometry, and robot movements in real time as the robot fabrication is occurring. For assembly purposes, part numbers, centerlines, and their expected positional relationships are projected via quick response (QR) codes spatially tracked by the Microsoft Hololens 2 (Microsoft 2019). This is crucial due to the length and self-similarity of complex multi-planar parts that make them difficult to distinguish and orient correctly. Leveraging augmented reality technology and robotic fabrication uncovers a novel material expression in tubular structures with bundles, knots, and interweaving (Figure 1).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id caadria2019_196
id caadria2019_196
authors Bekele, Mafkereseb Kassahun and Champion, Erik
year 2019
title Redefining Mixed Reality: User-Reality-Virtuality and Virtual Heritage Perspectives
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 675-684
doi https://doi.org/10.52842/conf.caadria.2019.2.675
summary The primary objective of this paper is to present a redefinition of Mixed Reality from a perspective emphasizing the relationship between users, virtuality and reality as a fundamental component. The redefinition is motivated by three primary reasons. Firstly, current literature in which Augmented Reality is the focus appears to approach Augmented Reality as an alternative to Mixed Reality. Secondly, Mixed Reality is often considered to encompass Augmented Reality and Virtual Reality rather than specifying it as a segment along the reality-virtuality continuum. Thirdly, most common definitions of Augmented Reality (AR), Augmented Virtuality (AV), Virtual Reality (VR) and Mixed Reality (MxR) in current literature are based on outdated display technologies, and a relationship between virtuality and reality, neglecting the importance of the users necessarily complicit sense of immersion from the relationship. The focus of existing definitions is thus currently technological, rather than experiential. We resolve this by redefining the continuum and MxR, taking into consideration the experiential symbiotic relationship and interaction between users, reality, and current immersive reality technologies. In addition, the paper will suggest some high-level overview of the redefinition's contextual applicability to the Virtual Heritage (VH) domain.
keywords Mixed Reality; Reality-Virtuality Continuum; Virtual Heritage
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_555
id ecaadesigradi2019_555
authors Bomfim, Kyane and Tavares, Felipe
year 2019
title Building facade optimization for maximizing the incident solar radiation
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 171-180
doi https://doi.org/10.52842/conf.ecaade.2019.2.171
summary The technological breakthrough on photovoltaic facades and the high potential for installing photovoltaic (PV) systems in the city of Salvador are the motivation for this article. This case study explores the feasibility of implementing solar energy technology on a building facade, proposing a design method for optimizing insolation performance by the form-finding process in a parameterized shape. The goal was to generate a parametric design workflow, in which it could be found some facade shapes, generating triangle and quadrilateral supporting grids, leading to better results in the total amount of radiation in comparison to the basic flat facade. In these supporting grids were evaluated also the fitting in the distribution of quadrilateral commercial PV cells, measuring its geometric compatibility. By the results, it could be verified the gains and losses in PV potential in several instances obtained by the form-finding process, as the potentials to consider this in the design of every building.
keywords Radiation skydome; Shape parameterization; Form-finding; Genetic Algorithm; PV facade
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 8HOMELOGIN (you are user _anon_573449 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002