CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 614

_id cf2019_014
id cf2019_014
authors Ferrando, Cecilia; Niccolo Dalmasso, Jiawei Mai, Daniel Cardoso Llach
year 2019
title Architectural Distant Reading Using Machine Learning to Identify Typological Traits Across Multiple Buildings
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 114-127
summary This paper introduces an approach to architectural “distant reading”: the use of computational methods to analyze architectural data in order to derive spatial insights from—and explore new questions concerning—large collections of architectural work. Through a case study comprising a dataset of religious buildings, we show how we may use machine learning techniques to identify typological and functional traits from building plans. We find that spatial structure, rather than local features, is particularly effective in supporting this type of analysis. Further, we speculate on the potential of this computational method to enrich architectural design, research, and criticism by, for example, enabling new ways of thinking about architectural concepts such as typology in ways that reflect gradual variations, rather than sharp distinctions.
keywords Architectural Analytics, Machine Learning, Classification, Religious buildings, Space Syntax
series CAAD Futures
email
last changed 2019/07/29 14:08

_id caadria2019_663
id caadria2019_663
authors Gaudilliere, Nadja
year 2019
title Towards an History of Computational Tools in Automated Architectural Design - The Seroussi Pavilion Competition as a Case Study
doi https://doi.org/10.52842/conf.caadria.2019.2.581
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 581-590
summary The present research proposes a method to analyse computational tools at the architect's disposal and the potential technical bias they induce in architectural design. Six case studies will be used as a demonstration of the method's ability to highlight those biases and how architects and designers manipulate those tools to translate their architectural expertise into algorithmic design. Those case studies are the six answers to the Seroussi Pavilion competition, organized in 2007 by Natalie Seroussi, a Parisian gallery owner. Having a keen interest into computational design, she invited six architectural practices specializing in this field. As the six case studies answer the same design brief, it represents a particularly suitable opportunity to analyse the intricate relationship between architectural constraints, their translation into computational data and instructions and the programming tools used to do so. Through the analysis of four different aspects of the project - algorithmic tools/method, computational set-up, organizational chart and architectural design - several issues of the computational turn in architecture are discussed.
keywords digital heritage; computational design tools; architectural constraints; programming-based spatial design; Seroussi pavilion competition
series CAADRIA
email
last changed 2022/06/07 07:51

_id acadia19_72
id acadia19_72
authors Pertigkiozoglou, Eliza
year 2019
title Pattern Mapping
doi https://doi.org/10.52842/conf.acadia.2019.072
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 72-80
summary Current computer-aided-design tools tend to focus on technical descriptions of objects and processes, while disregarding the agency of the designer in the creative process. This research shifts the focus to explore how computational tools could embrace the designer’s perception and trigger design exploration. In this direction, Pattern Mapping is presented as a prototypical software for the designing, making, and learning of a geometric material system: free-form surfaces created by the deformation of thin aluminum with auxetic-pattern slits. Along with the development of the software, the paper reports on a new methodology towards visual exploration in computational tools. Texture mapping—a computer-graphics algorithm—is utilized to bridge intuitive visualizations of form and materiality with geometric analysis. Informed by recent studies on design creativity, visual perception, and a precedent of an artist’s workflow, the proposed software facilitates learning through multiple modes of representations and drawing-like operations. Ultimately, Pattern Mapping is a provocation for the fusion of computational analysis with perception, drawing, and making.
keywords
series ACADIA
type normal paper
email
last changed 2022/06/07 08:00

_id acadia19_122
id acadia19_122
authors Yavaribajestani, Yasaman; Schleicher, Simon
year 2019
title Bio-Inspired Lamellar Structures
doi https://doi.org/10.52842/conf.acadia.2019.122
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 122-129
summary Gaining rigidity and strength from malleable and flexible parts is the key challenge in the emerging field of bending-active structures. The goal of this construction approach is to use the large elastic deformations of planar elements for the building of complex curved structures. Aiming to contribute to this research and to make new discoveries, the authors of this paper will look at nature for inspiration and explore how structures in the plant kingdom successfully combine high flexibility with high resilience. The focus of this study are the structural principles found in fibrous cactus skeletons. Not only do the cactus skeletons show impressive structural behavior, but also their optimized form, fiber orientation, and material distribution can inspire the further development of bending-active structures. Learning from these models, the authors will present key cactus-inspired design principles and test their practical feasibility in a prototypical installation made from millimeter-thin strips of carbon fiber reinforced polymers (CFRP). Similar to the biological role model, this 6-meter-tall lamellar structure takes advantage of clever cross-bracing strategies that significantly increase stability and improve resilience. The authors explain in more detail the underlying design and construction methods and discuss the possible impact this research may have on the further development of bending-active structures.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:57

_id ecaadesigradi2019_153
id ecaadesigradi2019_153
authors Gomez-Zamora, Paula, Bafna, Sonit, Zimring, Craig, Do, Ellen and Romero Vega, Mario
year 2019
title Spatiotemporal Occupancy for Building Analytics
doi https://doi.org/10.52842/conf.ecaade.2019.2.111
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 111-120
summary Numerous studies on Space Syntax and Evidence-based Design explored occupancy and movements in the built environment using traditional methods for behavior mapping, such as observation and surveys. This approach, however, has majorly focused on studying such behaviors as aggregated results -totals or averages- to corroborate the idea that people's interactions are outcomes of the influence of space. The research presented in this paper focuses on capturing human occupancy with a high spatiotemporal data resolution of 1 sq.ft per second (0.1 sq.mt./s). This research adapts computer vision to obtain large occupancy datasets in a hospitalization setting for one week, providing opportunities to explore correlations among spatial configurations, architectural programs, organizational activities planned and unplanned, and time. The vision is to develop new analytics for building occupancy dynamics, with the purpose of endorsing the integration of a temporal dimension into architectural research. This study introduces the "Isovist-minute"; a metric that captures the relationship between space and occupancy, towards a point of interest, in a dynamic sequence.
keywords Spatiotemporal Occupancy; Occupancy Analytics; Occupancy Patterns; Building-Organizational Performance; Healthcare Settings
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

_id caadria2019_259
id caadria2019_259
authors Soltani, Sahar, Gu, Ning, Ochoa Paniagua, Jorge, Sivam, Alpana and McGinley, Tim
year 2019
title A Computational Approach to Measuring Social Impact of Urban Density through Mixed Methods Using Spatial Analysis
doi https://doi.org/10.52842/conf.caadria.2019.1.321
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 321-330
summary While there is a growing interest in using spatial network analysis methods such as Space Syntax to explore the socio-spatial aspects of the built form, some scholars refer to its main limitation of missing the measurements of buildings' fabric and density. Furthermore, new approaches that attempt to address these shortcomings, such as Urban Network Analysis toolbox, do not provide as comprehensive explorations as what Space Syntax does for the street network. Therefore, this paper proposes that a mixed-method applying both the tools in a complementary way enables a deeper understanding of the socio-spatial design metrics addressing density. Employing both tools on two cases of low and high-density neighbourhoods, the results demonstrate that the combination of these tools can minimise the shortcomings of each method individually, and lead to a more comprehensive understanding of socio-spatial design factors in relation with density.
keywords Urban Network Analysis ; Social Impact; Space Syntax ; UNA Toolbox; Urban Density
series CAADRIA
email
last changed 2022/06/07 07:56

_id cf2019_048
id cf2019_048
authors Argota Sanchez-Vaquerizo, Javier and Daniel Cardoso Llach
year 2019
title The Social Life of Small Urban Spaces 2.0 Three Experiments in Computational Urban Studies
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 430
summary This paper introduces a novel framework for urban analysis that leverages computational techniques, along with established urban research methods, to study how people use urban public space. Through three case studies in different urban locations in Europe and the US, it demonstrates how recent machine learning and computer vision techniques may assist us in producing unprecedently detailed portraits of the relative influence of urban and environmental variables on people’s use of public space. The paper further discusses the potential of this framework to enable empirically-enriched forms of urban and social analysis with applications in urban planning, design, research, and policy.
keywords Data Analytics, Urban Design, Machine Learning, Artificial Intelligence, Big Data, Space Syntax
series CAAD Futures
email
last changed 2019/07/29 14:18

_id acadia19_458
id acadia19_458
authors Bartosh, Amber; Anzalone, Phillip
year 2019
title Experimental Applications of Virtual Reality in Design Education
doi https://doi.org/10.52842/conf.acadia.2019.458
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 458-467
summary By introducing rapid reproduction, algorithms, and complex formal configurations, the digital era of architecture began a revolution. Architects incorporated the computational capacity of the computer into the design process both as a tool and as a critical component of the theories and practice of architecture as a whole. As we move into what has been coined “the second digital turn,” a period in which digital integration is considered ubiquitous, how can we consider, prepare, and propel towards the next technological innovation to significantly inform design thinking, representation, and manifestation? What tools are available to investigate this speculative design future and how can they be implemented? If the integration of technology in architecture is now a given, perhaps the next digital design era is not just digital but virtual. As new technologies emerge the potential for integrating the virtual design world with our physical senses affords novel possibilities for interactive design, simulation, analysis and construction. Hybrid reality technologies including virtual reality (VR) and augmented reality (AR), embody the potential to supersede conventional representation methodologies such as drawing, rendering, physical modeling, and animation. As they become increasingly pervasive, they will transform how we communicate ideas and data as spatial concepts. Further, they will reform the construct of the built environment when applied to both materiality and fabrication. This paper will describe the incorporation of VR as a tool in various classroom and laboratory settings, recognize the educational outcomes of this incorporation, and identify the potential relationship of these technologies to future academic exploration and application to practice.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_081
id ecaadesigradi2019_081
authors Costa, Phillipe
year 2019
title Grey Box City - Building cybernetic urban systems for smarter simulations
doi https://doi.org/10.52842/conf.ecaade.2019.1.767
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 767-774
summary In this paper we approach the concept of grey box model to understand the subjectivity and objectivity of urban design. From the beginning of the insertion of computational systems in the systems management, we understand that some simulations and the understanding of the city itself were partial: we do not understand the city and its spatial complexity and we have the pretension to do urban design thinking that we understand the urban life . Here we will address some categories of how we can simulate and create our urban systems using a more tactile cybernetics.
keywords Grey Box; Cybernetics; Smart City; Information Technology
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id caadria2019_241
id caadria2019_241
authors Cristie, Verina and Joyce, Sam Condrad
year 2019
title Capturing Parametric Design Exploration Process - Emperical insights from user activity and design states data
doi https://doi.org/10.52842/conf.caadria.2019.2.491
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 491-500
summary Computational design, especially parametric associative modelling tools, have opened a whole new world of possibility in design exploration. However, their now established use poses further questions regarding how they effect design process and ultimately the quality of the outcomes. Answering those questions requires a better understanding of parametric design process through empirical data. In this paper, we extend a method to systematically capture the design process into a structured data of designer's activity and design states. Analysis of design sessions reveal a unique pattern of parametric modelling and exploration strategies produced by each designer. Capability to save design process into structured design states shows potential to improve process.
keywords Design exploration; Parametric Design; History Recording; Version control; Conceptual Design
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_250
id ecaadesigradi2019_250
authors Czyńska, Klara
year 2019
title Visual Impact Analysis of Large Urban Investments on the Cityscape
doi https://doi.org/10.52842/conf.ecaade.2019.3.297
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 297-304
summary The article presents the assessment method for large (horizontally spread) urban investment and its visual impact on the cityscape using digital analyses. The visual impact assessment is often used in relation to facilities which dominate in the cityscape, mainly tall buildings. Various studies, however, examine the impact of wide but relatively low-rising buildings and their impact on the cityscape. The article presents a methodology for the assessment of the visual impact and a case study for a building facility comprising several tightly developed and medium height blocks of buildings in a city center of a significant historical value in Gdańsk, Poland. The research has been based on the Visual Impact Size method (VIS) and a city model consisting of a regular cloud of points (Digital Surface Model). The simulation has been developed using a dedicated C++ software (developed by author). The study aimed at assessing the following: a) to what degree such an urban investment can influence the cityscape; b) how the impact can be analyzed using digital techniques, and c) what input parameters of the analysis are crucial for satisfactory accuracy of its results.
keywords digital cityscape analysis; urban skyline; large urban investments; visual impact; VIS method
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id acadia19_90
id acadia19_90
authors Forward, Kristen; Taron, Joshua
year 2019
title Waste Ornament
doi https://doi.org/10.52842/conf.acadia.2019.090
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 90-99
summary The emergence of computational design and fabrication tools has escalated the potentials of architectural ornamentation to become innovative, beautiful, and highly sustainable. Historically, ornament has been known to express character and reveal relationships between materiality, technological advances, and societal evolution. But ornament rapidly declined in the late 1800s in large part due to mechanization and modernist ideals of uniform, unadorned façade components. However, ornamentation in architecture has recently reappeared—a development that can be linked closely to advancements in computational design and digital fabrication. While these advancements offer the ability to create expressive architecture, their potential contribution to the improvement of sustainable architecture has largely been overlooked (Augusti-Juan and Habert 2017). This paper provides a brief revisitation to the history of ornament and investigates the impact of computation and automation on the production of contemporary ornament. The paper also attempts to catalog examples of how designers have used computational technologies to address the growing criticality of environmental concerns. Moreover, the paper presents the Waste Ornament project, a research platform that critically examines how we can leverage technology to augment the visual and sustainable performance of facade ornamentation to reduce energy use in buildings. Three sub-projects are identified as territories for further research into sustainable ornamentation, ranging from material sourcing, to high-performance buildings, to the development of a systematic upcycling process that transforms old facades into new ones. While the examples are not exhaustive, they attempt to interlace the general ideas of waste and ornament by addressing particular issues that converge at building envelopes.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id acadia19_40
id acadia19_40
authors Garcia del Castillo y López, Jose Luis
year 2019
title Robot Ex Machina
doi https://doi.org/10.52842/conf.acadia.2019.040
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 40-49
summary Industrial robotic arms are increasingly present in digital fabrication workflows due to their robustness, degrees of freedom, and potentially large scale. However, the range of possibilities they provide is limited by their typical software control paradigms, specifically offline programming. This model requires all the robotic instructions to be pre-defined before execution, a possibility only affordable in highly predictable environments. But in the context of architecture, design and art, it can hardly accommodate more complex forms of control, such as responding to material feedback, adapting to changing conditions on a construction site, or on-the-fly decision-making. We present Robot Ex Machina, an open-source computational framework of software tools for real-time robot programming and control. The contribution of this framework is a paradigm shift in robot programming models, systematically providing a platform to enable real-time interaction and control of mechanical actuators. Furthermore, it fosters programming styles that are reactive to, rather than prescriptive about, the state of the robot. We argue that this model is, compared to traditional offline programming, beneficial for creative individuals, as its concurrent nature and immediate feedback provide a deeper and richer set of possibilities, facilitates experimentation, flow of thought, and creative inquiry. In this paper, we introduce the framework, and discuss the unifying model around which all its tools are designed. Three case studies are presented, showcasing how the framework provides richer interaction models and novel outcomes in digital making. We conclude by discussing current limitations of the model and future work.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id caadria2019_369
id caadria2019_369
authors Hirschberg, Urs
year 2019
title Harmonielehre for Architects - Exploring the relationship between music and architecture by scripting
doi https://doi.org/10.52842/conf.caadria.2019.2.757
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 757-766
summary This paper reports on an introductory scripting class that, whilst teaching the basics of algorithmic design to a large number of architecture students, also explored the commonalities between architecture and music. Historical and recent precedents as well as the theoretical and the practical aspect of the project and its pedagogical outcomes are discussed. The technical section includes a detailed description of the setup created for the students. The musical data format used was MIDI (Musical Instrument Digital Interface), which was read into the 3D computer graphics package MAYA and turned into 3D geometries using the scripting language MEL (Maya Embedded Language). The paper also discusses the resulting student works and in how far the musical nature of the data is visible in them.
keywords Computational Design Education; Generative & Algorithmic Design; Scripting; Architecture and Music; MIDI
series CAADRIA
email
last changed 2022/06/07 07:50

_id acadia19_510
id acadia19_510
authors Leder, Samuel; Weber, Ramon; Wood, Dylan; Bucklin, Oliver; Menges, Achim
year 2019
title Distributed Robotic Timber Construction
doi https://doi.org/10.52842/conf.acadia.2019.510
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 510-519
summary Advances in computational design and robotic building methods have the potential to enable architects to author more sustainable, efficient, and geometrically varied systems that shape our built environment. To fully harness this potential, the inherent relationship of design and building processes requires a fundamental shift in the way we design and how we build. High degree of customization in architectural projects and constantly changing conditions of construction environments pose significant challenges for the implementation of automated construction machines. Beyond traditional, human-inspired, industrial robotic building methods, we present a distributed robotic system where the robotic builders are designed in direct relationship with the material and architecture they assemble. Modular, collaborative, single axis robots are designed to utilize standardized timber struts as a basic building material, and as a part of their locomotion system, to create large-scale timber structures with high degrees of differentiation. The decentralized, multi-robot system uses a larger number of simple machines that collaborate in teams to work in parallel on varying tasks such as material transport, placement, and fixing. The research explores related architectural and robotic typologies to create timber structures with novel aesthetics and performances.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id ecaadesigradi2019_114
id ecaadesigradi2019_114
authors Lee, Gyueun and Lee, Ji-hyun
year 2019
title Sustainable Design Framework for the Anthropocene - Preliminary research of integrating the urban data with building information
doi https://doi.org/10.52842/conf.ecaade.2019.2.561
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 561-568
summary In terms of the efficiency and informatization in the architecture and construction industry, the Fourth Industrial Revolution presents positive aspects of technological development, but we need to discuss the expanded concept, the Anthropocene. The era of the human-made environment having a powerful influence on the global system is called Anthropocene. Since the 1950s, many indicators representing human activity and earth system have shown the 'Great acceleration'. Currently, lots of urban data including building information, construction waste, and GHG emission ratio is indicating how much the urban area was contaminated with artifacts. So, the integrated planning and design approach are needed for sustainable design with data integration. This paper examines the GIS, LCA and BIM tools focusing on building information and environmental load. With the literature review, the computational system for sustainable design is demonstrated to integrate into one holistic framework for the Anthropocene. There were some limitations that data was simplified during the statistical processing, and the framework has limitations that must be demonstrated by actual data in the future. However, this could be an early approach to integrating geospatial and environmental analysis with the design framework. And it can be applied to another urban area for sustainable urban models for the Anthropocene
keywords Anthropocene; Sustainable Design Framework; Urban Data Analysis; GIS; LCA; BIM
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

_id acadia19_266
id acadia19_266
authors MacDonald, Katie; Schumann, Kyle; Hauptman, Jonas
year 2019
title Digital Fabrication of Standardless Materials
doi https://doi.org/10.52842/conf.acadia.2019.266
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 266-275
summary Digital fabrication techniques have long been aimed at creating unique geometries and forms from standardized, often industrially produced or processed material. These materials have predictable, uniform geometries which allow the fabrication process to be aimed at producing variation through Computer Numerically Controlled (CNC) milling of topological surfaces from volumetric stock or profiles from sheet material. More recently, digital fabrication techniques have been expanded and categorized to address the inherent variation in a found material. Digital materiallurgy defines an approach where standard techniques are applied to non-standard materials; in form-searching, non-standard materials such as unmilled timber members or chunks of concrete waste are analyzed for optimization within a digital fabrication process. Processes of photogrammetry, 3D scanning, and parametric analysis have been used to advance these methods and minimize part reduction and material waste. In this paper, we explore how such methods may be applied to materials without traditional standards—allowing for materials that are inherently variable in geometry to be made usable and for such eccentricities to be leveraged within a design. This paper uses bamboo as a case study for standardless material, and proposes an integrated digital fabrication method for using such material: (1) material stock analysis using sensing technology, (2) parametric best-fit part selection that optimizes a given piece of material within an assembly, and (3) parametric feedback between available material and the design of an assembly which allows for the assembly to adjust its geometry to a set of available parts.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:59

_id caadria2019_345
id caadria2019_345
authors Marschall, Max and Burry, Jane
year 2019
title Can the Use of Stochastic Models of Occupants' Environmental Control Behavior Influence Architectural Design Outcomes? - How field data can influence design outcomes
doi https://doi.org/10.52842/conf.caadria.2019.1.715
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 715-724
summary Thermal comfort research has shown that natural ventilation can reduce energy consumption while increasing comfort. However, giving occupants control over their environment introduces uncertainty into building performance which is challenging to emulate using current simulation techniques. Traditionally, window operation is modelled deterministically, for instance by assuming windows to be opened at a predefined temperature. Studies have shown this to be inaccurate, often causing large discrepancies between simulated and actual performance; instead, probabilistic models have emerged based on field study data. The literature on this topic is currently limited to building science and lacks an analysis of how these insights may affect architecture. In a design study, we used evolutionary computation to determine comfort-optimized housing designs for various climates, each time comparing the results of both window operation models. The resulting designs varied considerably; most notably, using the stochastic approach resulted in more shading elements, especially in warmer climates.
keywords window operation model; stochastic; natural ventilation; thermal comfort; occupant behavior
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2019_632
id caadria2019_632
authors Raspall, Felix, Banon, Carlos and Tay, Jenn Chong
year 2019
title AirTable - Stainless steel printing for functional space frames
doi https://doi.org/10.52842/conf.caadria.2019.1.113
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 113-122
summary In architecture, the use of Additive Manufacturing (AM) technologies has been typically undermined by the long production time, elevated cost to manufacture parts and the low mechanical properties of 3D printed components. As AM becomes faster cheaper and stronger, opportunities for architectures that make creative use of AM to produce functional architectural pieces are emerging. In this paper, we propose and discuss the application of metal AM in complex space frames and the theoretical and practical implications. A functional lightweight metal table by the authors support our hypothesis that AM has a clear application in architecture and furniture design, and that space frames constitutes a promising structural typology. Specifically, we investigate how AM using metal as a material can be used in the application of fabrication of complex space frame structure components and connection details. The paper presents background research and our contribution to the digital design tools, the manufacturing and assembly processes, and the analysis of the performances of a parametrically designed and digitally fabricated large meeting table. Insights from this paper are deployed in an architectural scale project, AIRMesh, a metal 3D-printed pavilion set in the greenery of Gardens by the Bay, Singapore.
keywords Metal Additive Manufacturing; Space Frame; 3D Printing; Furniture Design
series CAADRIA
email
last changed 2022/06/07 08:00

_id caadria2021_053
id caadria2021_053
authors Rhee, Jinmo and Veloso, Pedro
year 2021
title Generative Design of Urban Fabrics Using Deep Learning
doi https://doi.org/10.52842/conf.caadria.2021.1.031
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 31-40
summary This paper describes the Urban Structure Synthesizer (USS), a research prototype based on deep learning that generates diagrams of morphologically consistent urban fabrics from context-rich urban datasets. This work is part of a larger research on computational analysis of the relationship between urban context and morphology. USS relies on a data collection method that extracts GIS data and converts it to diagrams with context information (Rhee et al., 2019). The resulting dataset with context-rich diagrams is used to train a Wasserstein GAN (WGAN) model, which learns how to synthesize novel urban fabric diagrams with the morphological and contextual qualities present in the dataset. The model is also trained with a random vector in the input, which is later used to enable parametric control and variation for the urban fabric diagram. Finally, the resulting diagrams are translated to 3D geometric entities using computer vision techniques and geometric modeling. The diagrams generated by USS suggest that a learning-based method can be an alternative to methods that rely on experts to build rule sets or parametric models to grasp the morphological qualities of the urban fabric.
keywords Deep Learning; Urban Fabric; Generative Design; Artificial Intelligence; Urban Morphology
series CAADRIA
email
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_776515 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002