CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 623

_id caadria2019_611
id caadria2019_611
authors Yap, Sarah, Ha, Gloria and Muslimin, Rizal
year 2019
title Space Semantics - An investigation into the numerical codification of space
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 431-440
doi https://doi.org/10.52842/conf.caadria.2019.2.431
summary "Space-Semantics" is a computational design proposition that interrogates how architectural spaces can be interpreted and codified within an adaptable semantic framework. The investigation seeks to view space through an alternate lens, abstracting architectural spaces into a set of numerical descriptions that can either be used to interpret the qualities of an existing space, or as a seed to generate a coherent network of spaces based on identified spatial patterns within a chosen site. The article comprises of two parts: a theoretical investigation into representing spaces through numerically expressed semantic descriptions and a case study in the form of a proposal for an underground metro station within an urban context.
keywords space; semantics; grammar; code; generative
series CAADRIA
email
last changed 2022/06/07 07:57

_id cf2019_048
id cf2019_048
authors Argota Sanchez-Vaquerizo, Javier and Daniel Cardoso Llach
year 2019
title The Social Life of Small Urban Spaces 2.0 Three Experiments in Computational Urban Studies
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 430
summary This paper introduces a novel framework for urban analysis that leverages computational techniques, along with established urban research methods, to study how people use urban public space. Through three case studies in different urban locations in Europe and the US, it demonstrates how recent machine learning and computer vision techniques may assist us in producing unprecedently detailed portraits of the relative influence of urban and environmental variables on people’s use of public space. The paper further discusses the potential of this framework to enable empirically-enriched forms of urban and social analysis with applications in urban planning, design, research, and policy.
keywords Data Analytics, Urban Design, Machine Learning, Artificial Intelligence, Big Data, Space Syntax
series CAAD Futures
email
last changed 2019/07/29 14:18

_id ijac201917404
id ijac201917404
authors Erdolu, Emek
year 2019
title Lines, triangles, and nets: A framework for designing input technologies and interaction techniques for computer-aided design
source International Journal of Architectural Computing vol. 17 - no. 4, 357-381
summary This article serves to the larger quest for increasing our capacities as designers, researchers, and scholars in understanding and developing human-computer interaction in computer-aided design. The central question is on how to ground the related research work in input technologies and interaction techniques for computer-aided design applications, which primarily focus on technology and implementation, within the actual territories of computer-aided design processes. To discuss that, the article first reviews a collection of research studies and projects that present input technologies and interaction techniques developed as alternative or complimentary to the mouse as used in computer-aided design applications. Based on the mode of interaction, these studies and projects are traced in four categories: hand-mediated systems that involve gesture- and touch-based techniques, multimodal systems that combine various ways of interaction including speech-based techniques, experimental systems such as brain-computer interaction and emotive-based techniques, and explorations in virtual reality- and augmented reality-based systems. The article then critically examines the limitations of these alternative systems related to the ways they have been envisioned, designed, and situated in studies as well as of the two existing research bases in human-computer interaction in which these studies could potentially be grounded and improved. The substance of examination is what is conceptualized as “frameworks of thought”—on variables and interrelations as elements of consideration within these efforts. Building upon the existing frameworks of thought, the final part discusses an alternative as a vehicle for incorporating layers of the material cultures of computer-aided design in designing, analyzing, and evaluating computer-aided design-geared input technologies and interaction techniques. The alternative framework offers the potential to help generate richer questions, considerations, and avenues of investigation.
keywords Computer-aided design (CAD), human-computer interaction (HCI), input technologies and interaction techniques, material culture of computer-aided design (CAD), architectural design, engineering design, computational design
series journal
email
last changed 2020/11/02 13:34

_id ecaadesigradi2019_114
id ecaadesigradi2019_114
authors Lee, Gyueun and Lee, Ji-hyun
year 2019
title Sustainable Design Framework for the Anthropocene - Preliminary research of integrating the urban data with building information
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 561-568
doi https://doi.org/10.52842/conf.ecaade.2019.2.561
summary In terms of the efficiency and informatization in the architecture and construction industry, the Fourth Industrial Revolution presents positive aspects of technological development, but we need to discuss the expanded concept, the Anthropocene. The era of the human-made environment having a powerful influence on the global system is called Anthropocene. Since the 1950s, many indicators representing human activity and earth system have shown the 'Great acceleration'. Currently, lots of urban data including building information, construction waste, and GHG emission ratio is indicating how much the urban area was contaminated with artifacts. So, the integrated planning and design approach are needed for sustainable design with data integration. This paper examines the GIS, LCA and BIM tools focusing on building information and environmental load. With the literature review, the computational system for sustainable design is demonstrated to integrate into one holistic framework for the Anthropocene. There were some limitations that data was simplified during the statistical processing, and the framework has limitations that must be demonstrated by actual data in the future. However, this could be an early approach to integrating geospatial and environmental analysis with the design framework. And it can be applied to another urban area for sustainable urban models for the Anthropocene
keywords Anthropocene; Sustainable Design Framework; Urban Data Analysis; GIS; LCA; BIM
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

_id caadria2019_640
id caadria2019_640
authors Zhang, Ruocheng, Tong, Hanshuang, Huang, Weixin and Zhang, Runzhou
year 2019
title A Generative Design Method for the Functional Layout of Town Planning based on Multi-Agent System
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 231-240
doi https://doi.org/10.52842/conf.caadria.2019.2.231
summary In recent years, with the development of artificial intelligence and digital architecture, more architects begin to wonder how to generate urban planning and urban design through computational method. For the purpose of generating urban planning digitally using computational algorithms, we design a series of algorithms to develop a system that evaluates initial features of the site such as the strength of sunlight, water, landscape. These parameters related to the function zoning of the town were determined based on the data extracted from case studies. These data were integrated into a Markov chain mathematical model for the sake of analyzing the function of grid points. Finally, an algorithm of a multi-agent system was used to optimize the function that could evaluate the grade of each raster point of the town, which could be used to decide the function of a specific region.
keywords Generative design, Town planning,Multi-agent system, Data analysis
series CAADRIA
email
last changed 2022/06/07 07:57

_id acadia19_630
id acadia19_630
authors Ahlquist, Sean
year 2019
title Expanding the Systematic Agencyof a Material System
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 630-641
doi https://doi.org/10.52842/conf.acadia.2019.630
summary Computational design and fabrication have reached an accomplished level of ubiquity and proficiency in the field of architecture, in both academia and practice. Materiality driving structure, responsiveness, and spatial organization can be seen to evolve, in kind, with the capabilities to fabricate deeper material hierarchies. Such maturity of a procedural material-driven approach spurs a need to shift from the dictations of how to explorations of why material efficiencies, bespoke aesthetics, and performativity are critical to a particular architecture, requiring an examination of linkages between approach, techniques, and process. The material system defines a branch of architectural research utilizing bespoke computational techniques to generate performative material capacities that are inextricably linked to both internal and external forces and energies. This paper examines such a self-referential view to define an expanded ecological approach that integrates new modes of design agency and shift the material system from closed-loop relationship with site to open-ended reciprocation with human behavior. The critical need for this capacity is shown in applications of novel textile hybrid material systems—as sensorially-responsive environments for children with the neurological autism spectrum disorder—in ongoing research titled Social Sensory Architectures. Through engaging fabrication across all material scales, manners of elastic responsivity are shown, through a series of feasibility studies, to exhibit a capacity for children to become design agents in exploring the beneficial interrelationship of sensorimotor agency and social behavior. The paper intends to contribute a theoretical approach by which novel structural capacities of a material system can support a larger ecology of social and behavioral agency.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia19_490
id acadia19_490
authors Alvarez, Martín; Wagner, Hans Jakob; Groenewolt, Abel; Krieg, Oliver David; Kyjanek, Ondrej; Sonntag, Daniel; Bechert, Simon; Aldinger, Lotte; Menges, Achim; Knippers, Jan
year 2019
title The Buga Wood Pavilion
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 490-499
doi https://doi.org/10.52842/conf.acadia.2019.490
summary Platforms that integrate developments from multiple disciplines are becoming increasingly relevant as the complexity of different technologies increases day by day. In this context, this paper describes an integrative approach for the development of architectural projects. It portrays the benefits of applying such an approach by describing its implementation throughout the development and execution of a building demonstrator. Through increasing the agility and extending the scope of existing computational tools, multiple collaborators were empowered to generate innovative solutions across the different phases of the project´s cycle. For this purpose, novel solutions for planar segmented wood shells are showcased at different levels. First, it is demonstrated how the application of a sophisticated hollow-cassette building system allowed the optimization of material use, production time, and mounting logistics due to the modulation of the parameters of each construction element. Second, the paper discusses how the articulation of that complexity was crucial when negotiating between multiple professions, interacting with different contractors, and complying with corresponding norms. Finally, the innovative architectural features of the resulting building are described, and the accomplishments are benchmarked through comparison with typological predecessor.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id caadria2019_388
id caadria2019_388
authors Beattie, Hamish, Brown, Daniel and Kindon, Sara
year 2019
title Functional Fiction to Collective Action - Values-Based Participatory Urban Design Gaming
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 737-746
doi https://doi.org/10.52842/conf.caadria.2019.1.737
summary This paper discusses the methodology and results of the Maslow's Palace workshops project, which engages with current debates surrounding the democratisation of digital urban design technology and stakeholder decision making, through the implementation of a speculative oriented approach to serious gaming. The research explores how serious games might be used to help marginalised communities consider past, future and present community experiences, reconcile dissimilar assumptions, generate social capital building and design responses and prime participants for further long term design engagement processes. Empirical material for this research was gathered from a range of case study workshops prepared with three landfill-based communities and external partners throughout 2017. Results show the approach helped participants develop shared norms, values and understandings of sensitive topics and develop ideas for future action through "collective tinkering".
keywords Participatory design; urban design; social capital; serious games; slum upgrading
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_081
id ecaadesigradi2019_081
authors Costa, Phillipe
year 2019
title Grey Box City - Building cybernetic urban systems for smarter simulations
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 767-774
doi https://doi.org/10.52842/conf.ecaade.2019.1.767
summary In this paper we approach the concept of grey box model to understand the subjectivity and objectivity of urban design. From the beginning of the insertion of computational systems in the systems management, we understand that some simulations and the understanding of the city itself were partial: we do not understand the city and its spatial complexity and we have the pretension to do urban design thinking that we understand the urban life . Here we will address some categories of how we can simulate and create our urban systems using a more tactile cybernetics.
keywords Grey Box; Cybernetics; Smart City; Information Technology
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_648
id ecaadesigradi2019_648
authors Eisenstadt, Viktor, Langenhan, Christoph and Althoff, Klaus-Dieter
year 2019
title Generation of Floor Plan Variations with Convolutional Neural Networks and Case-based Reasoning - An approach for transformative adaptation of room configurations within a framework for support of early conceptual design phases
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 79-84
doi https://doi.org/10.52842/conf.ecaade.2019.2.079
summary We present an approach for computer-aided generation of different variations of floor plans during the early phases of conceptual design in architecture. The early design phases are mostly characterized by the processes of inspiration gaining and search for contextual help in order to improve the building design at hand. The generation method described in this work uses the novel as well as established artificial intelligence methods, namely, generative adversarial nets and case-based reasoning, for creation of possible evolutions of the current design based on the most similar previous designs. The main goal of this approach is to provide the designer with information on how the current floor plan can evolve over time in order to influence the direction of the design process. The work described in this paper is part of the methodology FLEA (Find, Learn, Explain, Adapt) whose task is to provide a holistic structure for support of the early conceptual phases in architecture. The approach is implemented as the adaptation component of the framework MetisCBR that is based on FLEA.
keywords room configuration; adaptation; case-based reasoning; convolutional neural networks; conceptual design
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id cf2019_005
id cf2019_005
authors Eisenstadt, Viktor; Klaus-Dieter Althoff and Christoph Langenhan
year 2019
title Supporting Architectural Design Process with FLEA A Distributed AI Methodology for Retrieval, Suggestion, Adaptation, and Explanation of Room Configurations
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 24
summary The artificial intelligence methods, such as case-based reasoning and artificial neural networks were already applied to the task of architectural design support in a multitude of specific approaches and tools. However, modern AI trends, such as Explainable AI (XAI), and additional features, such as providing contextual suggestions for the next step of the design process, were rarely considered an integral part of these approaches or simply not available. In this paper, we present an application of a distributed AI-based methodology FLEA (Find, Learn, Explain, Adapt) to the task of room configuration during the early conceptual phases of architectural design. The implementation of the methodology in the framework MetisCBR applies CBR-based methods for retrieval of similar floor plans to suggest possibly inspirational designs and to explain the returned results with specific explanation patterns. Furthermore, it makes use of a farm of recurrent neural networks to suggest contextually suitable next configuration steps and to present design variations that show how the designs may evolve in the future. The flexibility of FLEA allows for variational use of its components in order to activate the currently required modules only. The methodology was initialized during the basic research project Metis (funded by German Research Foundation) during which the architectural semantic search patterns and a family of corresponding floor plan representations were developed. FLEA uses these patterns and representations as the base for its semantic search, explanation, next step suggestion, and adaptation components. The methodology implementation was iteratively tested during quantitative evaluations and user studies with multiple floor plan datasets.
keywords Room con?guration, Distributed AI, Case-based reasoning, Neural networks, Explainable AI
series CAAD Futures
type normal paper
email
last changed 2019/07/29 14:11

_id cf2019_014
id cf2019_014
authors Ferrando, Cecilia; Niccolo Dalmasso, Jiawei Mai, Daniel Cardoso Llach
year 2019
title Architectural Distant Reading Using Machine Learning to Identify Typological Traits Across Multiple Buildings
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 114-127
summary This paper introduces an approach to architectural “distant reading”: the use of computational methods to analyze architectural data in order to derive spatial insights from—and explore new questions concerning—large collections of architectural work. Through a case study comprising a dataset of religious buildings, we show how we may use machine learning techniques to identify typological and functional traits from building plans. We find that spatial structure, rather than local features, is particularly effective in supporting this type of analysis. Further, we speculate on the potential of this computational method to enrich architectural design, research, and criticism by, for example, enabling new ways of thinking about architectural concepts such as typology in ways that reflect gradual variations, rather than sharp distinctions.
keywords Architectural Analytics, Machine Learning, Classification, Religious buildings, Space Syntax
series CAAD Futures
email
last changed 2019/07/29 14:08

_id acadia19_40
id acadia19_40
authors Garcia del Castillo y López, Jose Luis
year 2019
title Robot Ex Machina
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 40-49
doi https://doi.org/10.52842/conf.acadia.2019.040
summary Industrial robotic arms are increasingly present in digital fabrication workflows due to their robustness, degrees of freedom, and potentially large scale. However, the range of possibilities they provide is limited by their typical software control paradigms, specifically offline programming. This model requires all the robotic instructions to be pre-defined before execution, a possibility only affordable in highly predictable environments. But in the context of architecture, design and art, it can hardly accommodate more complex forms of control, such as responding to material feedback, adapting to changing conditions on a construction site, or on-the-fly decision-making. We present Robot Ex Machina, an open-source computational framework of software tools for real-time robot programming and control. The contribution of this framework is a paradigm shift in robot programming models, systematically providing a platform to enable real-time interaction and control of mechanical actuators. Furthermore, it fosters programming styles that are reactive to, rather than prescriptive about, the state of the robot. We argue that this model is, compared to traditional offline programming, beneficial for creative individuals, as its concurrent nature and immediate feedback provide a deeper and richer set of possibilities, facilitates experimentation, flow of thought, and creative inquiry. In this paper, we introduce the framework, and discuss the unifying model around which all its tools are designed. Three case studies are presented, showcasing how the framework provides richer interaction models and novel outcomes in digital making. We conclude by discussing current limitations of the model and future work.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id ecaadesigradi2019_142
id ecaadesigradi2019_142
authors Gün, Ahmet, Demir, Yüksel and Pak, Burak
year 2019
title Understanding Design Empowerment through ICT-based Platforms in European Cities
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 819-827
doi https://doi.org/10.52842/conf.ecaade.2019.2.819
summary The use of ICT-based participation tools in urban design has gained importance in the last decade. In order to enable the citizens and other stakeholders to participate in city-making processes, a wide range of ICT-enabled participatory tools, techniques, and applications have been developed.. Many studies have reported that the use of these participatory platforms has led to positive outcomes but the platforms' potentials and limits for facilitating different levels of design empowerment still remain unknown. In this context, this study aims to determine how these platforms empower citizens' engagement and identify the key factors that can facilitate better participation practices. This research analyses 25 ICT-based participation platforms by focusing on 4 key criteria:(1) their objectives, (2) the design action phases in which they are designated to be used, (3) their desired levels of design empowerment, and (4) offered functions. Our study reveals that more than three-fourth of analysed platforms still complemented by off-line participation activities. Empowering citizens to design independently is still a challenging task so just three platforms (12%) allow users to create their own plans and visions. Finally, we identify several influence factors for better ICT-based participatory design practices.
keywords citizen empowerment; participatory design; ICT-based participation; urban design
series eCAADeSIGraDi
email
last changed 2022/06/07 07:50

_id ecaadesigradi2019_100
id ecaadesigradi2019_100
authors Henriques, Gonçalo Castro, Bueno, Ernesto, Lenz, Daniel and Sardenberg, Victor
year 2019
title Generative Systems:Intertwining Physical, Digital and Biological Processes, a case study
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 25-34
doi https://doi.org/10.52842/conf.ecaade.2019.1.025
summary The fourth Industrial Revolution is characterised by the computational fusion of physical, digital and biological systems. Increasing information in terms of size, speed and scope exponentially. This fusion requires improved, if not new, tools and methods to deal with complexity and information processing. By opening Generative Systems to interact with the context, we believe that they can develop solutions that are more adequate for our time. This research began with a literature review about generative systems and their application to solve problems. We then selected the tools, Cellular Automata, L-Systems, Genetic Algorithms and Shape Grammar, and thought about how to translate these original mathematical tools to specific design situations. We tested the application of these tools and methods in a workshop, implementing recursive loops to open these techniques to interference. Analysing the empirical results made us revise our design thinking, relying on the study of complexity to understand how these techniques can be more context-aware, so we can make design evolve. Finally, we present a comparative framework analyses that interlaces techniques and methods, so in the future we can merge physical, digital and biological information.
keywords generative systems; design thinking; complexity; context interaction; recursion
series eCAADeSIGraDi
email
last changed 2022/06/07 07:49

_id acadia20_382
id acadia20_382
authors Hosmer, Tyson; Tigas, Panagiotis; Reeves, David; He, Ziming
year 2020
title Spatial Assembly with Self-Play Reinforcement Learning
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 382-393.
doi https://doi.org/10.52842/conf.acadia.2020.1.382
summary We present a framework to generate intelligent spatial assemblies from sets of digitally encoded spatial parts designed by the architect with embedded principles of prefabrication, assembly awareness, and reconfigurability. The methodology includes a bespoke constraint-solving algorithm for autonomously assembling 3D geometries into larger spatial compositions for the built environment. A series of graph-based analysis methods are applied to each assembly to extract performance metrics related to architectural space-making goals, including structural stability, material density, spatial segmentation, connectivity, and spatial distribution. Together with the constraint-based assembly algorithm and analysis methods, we have integrated a novel application of deep reinforcement (RL) learning for training the models to improve at matching the multiperformance goals established by the user through self-play. RL is applied to improve the selection and sequencing of parts while considering local and global objectives. The user’s design intent is embedded through the design of partial units of 3D space with embedded fabrication principles and their relational constraints over how they connect to each other and the quantifiable goals to drive the distribution of effective features. The methodology has been developed over three years through three case study projects called ArchiGo (2017–2018), NoMAS (2018–2019), and IRSILA (2019-2020). Each demonstrates the potential for buildings with reconfigurable and adaptive life cycles.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaadesigradi2019_402
id ecaadesigradi2019_402
authors Karali, Penelopi F., Grisiute, Ayda and Werner, Liss C.
year 2019
title Bio-Modules - Cyber-physical modular responsive variations for dark urban areas using bio-degradable materials
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 495-504
doi https://doi.org/10.52842/conf.ecaade.2019.2.495
summary This paper documents the design and fabrication process of modular responsive lighting installation. The design and research led to a modular and transformable urban lighting concept, combining unique material behaviour and cyber-physical system. The main goal was to investigate how material characteristics, composition and performance could be programmed in order to generate a range of modular components. Modular tiles and joints combination designed of sustainable materials - bioplastics and cork sheets - were created and used together with number of sensors and micro-controllers. Furthermore, the installation concept links technical and psychological aspects that potentially could be used for the benefits of city dwellers. Paper consists of two parts. First part is the introduction of a broader urban night lighting design context to which the project belongs. This includes covering existing social issues related to urban darkness, as well as the need to increase biodiversity within built environment, through introducing new materials. The second part of the paper describes the design and fabrication process, that employs the conclusions discovered in the first part through set of material experimentations, design project and the reflections on the results.
keywords modularity; material behavior; lighting installation; cyber-physical systems; perception
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id caadria2020_431
id caadria2020_431
authors Kim, Jong Bum, Balakrishnan, Bimal and Aman, Jayedi
year 2020
title Environmental Performance-based Community Development - A parametric simulation framework for Smart Growth development in the United States
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 873-882
doi https://doi.org/10.52842/conf.caadria.2020.1.873
summary Smart Growth is an urban design movement initiated by Environmental Protection Agency (EPA) in the United States (Smart Growth America, 2019). The regulations of Smart Growth control urban morphologies such as building height, use, position, section configurations, façade configurations, and materials, which have an explicit association with energy performances. This research aims to analyze and visualize the impact of Smart Growth developments on environmental performances. This paper presents a parametric modeling and simulation framework for Smart Growth developments that can model the potential community development scenarios, simulate the environmental footprints of each parcel, and visualize the results of modeling and simulation. We implemented and examined the proposed framework through a case study of two Smart Growth regulations: Columbia Unified Development Code (UDC) in Missouri (City of Columbia Missouri, 2017) and Overland Park Downtown Form-based Code (FBC) in Kansas City (City of Overland Park, 2017, 2019). Last, we discuss the implementation results, the limitations of the proposed framework, and the future work. We anticipate that the proposed method can improve stakeholders' understanding of how Smart Growth developments are associated with potential environmental footprints from an expeditious and thorough exploration of what-if scenarios of the multiple development schemes.
keywords Smart Growth; Building Information Modeling (BIM); Parametric Simulation; Solar Radiation
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaadesigradi2019_501
id ecaadesigradi2019_501
authors Papanikolaou, Kyratsoula Tereza, Liapi, Katherine A. and Sibetheros, Ioannis A.
year 2019
title Embedding sustainable storm water management in urban blocks - Towards an Urban Water Model for architects
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 575-582
doi https://doi.org/10.52842/conf.ecaade.2019.2.575
summary The paper describes an urban storm water management model under development designed specifically for architects, allowing the visualization of storm water management scenarios in urban blocks, as well as the quantitative comparison of their impact to the microclimate. It seeks to answer the question of how computational technologies can help architects integrate storm water management into the design process and engage with water sensitive design principles through the development of an "architect-friendly" model. The model is expected to function as a simulation tool that will support design decisions on storm water management retrofitting measures in urban blocks, by allowing the evaluation of an urban water improvement project at its initial design stage, as well as the generation and comparison of alternate water integration design solutions. Selected urban blocks in Greece will be used as case studies to test and evaluate the urban water model during the model development stage.
keywords Water Sensitive Urban Design; storm water management model; “architect-friendly” model; simulation tool
series eCAADeSIGraDi
email
last changed 2022/06/07 08:00

_id acadia19_532
id acadia19_532
authors Retsin, Gilles
year 2019
title Toward Discrete Architecture: Automation Takes Command
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 532-541
doi https://doi.org/10.52842/conf.acadia.2019.532
summary This paper describes a framework for discrete computational design and fabrication in the context of automation. Whereas digital design and fabrication are technical notions, automation immediately has societal and political repercussions. Automation relates to industrialization and mechanisation—allowing to historically reconnect the digital while bypassing the post-modern, deconstructivist, or parametric decades. Using a series of built prototypes making use of timber, this paper will describe how the combined technologies of automation and discreteness enable both technical efficiencies and new architectural interest. Both projects are based on timber sheet materials, cut and folded into larger elements that are then assembled into functional structures. Both projects are also fragments of larger housing blocks. Discrete building blocks are presented from a technical perspective as occupying a space in between programmable matter and modular prefabrication. Timber is identified as an ideal material for automated discrete construction. From an architectural perspective, the paper discusses the implications of an architecture based on parts that remain autonomous from the whole.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_838098 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002