CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 613

_id caadria2019_399
id caadria2019_399
authors Houda, Maryam and Dias-da-Costa, Daniel
year 2019
title Data Informed Branch Typologies for Structurally Optimised Curvilinear Surfaces - 3D Printed Mesh Density System (MDS) as Formwork for Concrete Shell Structures.
doi https://doi.org/10.52842/conf.caadria.2019.2.401
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 401-410
summary This research sheds light on the advancement of additive fabrication and its relevance to the construction of curvilinear surfaces. The Mesh Density System (MDS) explored in this paper, is a novel 3D printed dual formwork and reinforcement system for free-form complex concrete geometries. It offers an alternate method to current formwork systems, essentially for thin shell structures. By using multi-cellular distribution and optimised branch structural arrangements, the system optimises form and concrete flow.
keywords Additive Fabrication; Concrete Shells; Evolutionary Algorithms; Permanent Formwork; Structural Optimisation
series CAADRIA
email
last changed 2022/06/07 07:50

_id acadia19_470
id acadia19_470
authors Meyboom, AnnaLisa; Correa, David; Krieg, Oliver David
year 2019
title Stressed Skin Wood Surface Structure
doi https://doi.org/10.52842/conf.acadia.2019.470
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 470-477
summary Innovation in parametric design and robotic fabrication is in reciprocal relationship with the investigation of new structural types that facilitated by this technology. The stressed skin structure has historically been used to create lightweight curved structures, mainly in engineering applications such as naval vessels, aircraft, and space shuttles. Stressed skin structures were first referred to by Fairbairn in 1849. In England, the first use of the structure was in the Mosquito night bomber of World War II. In the United States, stressed skin structures were used at the same time, when the Wright Patterson Air Force Base designed and fabricated the Vultee BT-15 fuselage using fiberglass-reinforced polyester as the face material and both glass-fabric honeycomb and balsa wood core. With the renewed interest in wood as a structural building material, due to its sustainable characteristics, new potentials for the use of stressed skin structures made from wood on building scales are emerging. The authors present a material informed system that is characterized by its adaptability to freeform curvature on exterior surfaces. A stressed skin system can employ thinner materials that can be bent in their elastic bending range and then fixed into place, leading to the ability to be architecturally malleable, structurally highly efficient, as well as easily buildable. The interstitial space can also be used for services. Advanced digital fabrication and robotic manufacturing methods further enhance this capability by enabling precisely fabricated tolerances and embedded assembly instructions; these are essential to fabricate complex, multi-component forms. Through a prototypical installation, the authors demonstrate and discuss the technology of the stressed skin structure in wood considering current digital design and fabrication technologies.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id lasg_whitepapers_2019_291
id lasg_whitepapers_2019_291
authors Sabin, Jenny
year 2019
title Lumen
source Living Architecture Systems Group White Papers 2019 [ISBN 978-1-988366-18-0] Riverside Architectural Press: Toronto, Canada 2019. pp.291 - 318
summary This paper documents the computational design methods, digital fabrication strategies, and generative design process for [Lumen], winner of MoMA & MoMA PS1’s 2017 Young Architects Program. The project was installed in the courtyard at MoMA PS1 in Long Island City, New York, during the summer of 2017. Two lightweight 3D digitally knitted fabric canopy structures composed of responsive tubular and cellular components employ recycled textiles, photo-luminescent and solar active yarns that absorb and store UV energy, change color, and emit light. This environment offers spaces of respite, exchange, and engagement as a 150 x 75-foot misting system responds to visitors’ proximity, activating fabric stalactites that produce a refreshing micro-climate. Families of robotically prototyped and woven recycled spool chairs provide seating throughout the courtyard. The canopies are digitally fabricated with over 1,000,000 yards of high tech responsive yarn and are supported by three 40+ foot tensegrity towers and the surrounding matrix of courtyard walls. Material responses to sunlight as well as physical participation are integral parts of our exploratory approach to the 2017 YAP brief. The project is mathematically generated through form-finding simulations informed by the sun, site, materials, program, and the material morphology of knitted cellular components. Resisting a biomimetic approach, [Lumen] employs an analogic design process where complex material behavior and processes are integrated with personal engagement and diverse programs. The comprehensive installation was designed by Jenny Sabin Studio and fabricated by Shima Seiki WHOLEGARMENT, Jacobsson Carruthers, and Dazian with structural engineering by Arup and lighting by Focus Lighting.
keywords living architecture systems group, organicism, intelligent systems, design methods, engineering and art, new media art, interactive art, dissipative systems, technology, cognition, responsiveness, biomaterials, artificial natures, 4DSOUND, materials, virtual projections,
email
last changed 2019/07/29 14:02

_id ecaadesigradi2019_126
id ecaadesigradi2019_126
authors Szabo, Anna, Lloret-Fritschi, Ena, Reiter, Lex, Gramazio, Fabio, Kohler, Matthias and J. Flatt, Robert
year 2019
title Revisiting Folded Forms with Digital Fabrication
doi https://doi.org/10.52842/conf.ecaade.2019.2.191
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 191-200
summary This paper discusses the potential of emerging digital fabrication techniques to produce material-efficient thin folded concrete structures. Although in the 50s and 60s folded structures provided a common optimal solution for spanning large distances without additional vertical supports, today, the number of these projects decreased significantly due to their complicated formworks and labour-intensive realization. Digital fabrication methods for concrete hold the promise to efficiently produce intricate folded mass-customized shapes with enhanced load-bearing capacity. This paper focuses on a robotic slip-forming process, Smart Dynamic Casting (SDC), to produce various thin-walled folded concrete elements with the same formwork providing smooth surface finish and gradual variations along the height. An empirical research methodology was applied to evaluate the fabrication feasibility of digitally designed thin folded geometries with one-to-one scale prototypes. Despite the discovered design limitations due to fabrication and material constraints, the exploration led to a new promising research direction, termed 'Digital Casting'.
keywords folded structures; digital concrete; Smart Dynamic Casting; set on demand; Digital Casting
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id acadia19_168
id acadia19_168
authors Adilenidou, Yota; Ahmed, Zeeshan Yunus; Freek, Bos; Colletti, Marjan
year 2019
title Unprintable Forms
doi https://doi.org/10.52842/conf.acadia.2019.168
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp.168-177
summary This paper presents a 3D Concrete Printing (3DCP) experiment at the full scale of virtualarchitectural bodies developed through a computational technique based on the use of Cellular Automata (CA). The theoretical concept behind this technique is the decoding of errors in form generation and the invention of a process that would recreate the errors as a response to optimization (Adilenidou 2015). The generative design process established a family of structural and formal elements whose proliferation is guided through sets of differential grids (multi-grids) leading to the build-up of large span structures and edifices, for example, a cathedral. This tooling system is capable of producing, with specific inputs, a large number of outcomes in different scales. However, the resulting virtual surfaces could be considered as "unprintable" either due to their need of extra support or due to the presence of many cavities in the surface topology. The above characteristics could be categorized as errors, malfunctions, or undesired details in the geometry of a form that would need to be eliminated to prepare it for printing. This research project attempts to transform these "fabrication imprecisions" through new 3DCP techniques into factors of robustness of the resulting structure. The process includes the elimination of the detail / "errors" of the surface and their later reinsertion as structural folds that would strengthen the assembly. Through this process, the tangible outputs achieved fulfill design and functional requirements without compromising their structural integrity due to the manufacturing constraints.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia19_208
id acadia19_208
authors Baghi, Ali; Baghi, Aryan; Kalantari, Saleh
year 2019
title FLEXI-NODE
doi https://doi.org/10.52842/conf.acadia.2019.207
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 207-218
summary This paper is part of an ongoing research project on flexible molds for use in concrete fabrication. It continues and advances the concept of adjustable molds by creating a flexible system to produce a variety of concrete grid-joints. This reusable and adaptive mold streamlines the process of fabricating inherently diverse nodal joints without the need for cost-intensive mass-customization methods. The paper also proposes a novel way to cope with some of the significant drawbacks of similar mold techniques that have been explored and found wanting in similar projects. The technique used for the mold in the current research is inspired by a flexible mechanism that has been implemented in other manufacturing contexts, such as expansion joints and bendable straws. The outcomes of the project are a platform called “Flexi-node” and relevant software components that allow users to computationally design and fabricate a great variety of concrete joints for grid structures, using just one mold, with minimum material waste and no distortion from hydrostatic pressure.
keywords flexible molds, nodal joints, computational design, concrete fabrication, mass customization, grid structures
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia23_v1_196
id acadia23_v1_196
authors Bao, Ding Wen; Yan, Xin; Min Xie, Yi
year 2023
title Intelligent Form
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 196-201.
summary InterLoop employs previously developed workflows that enable multi-planar robotic bending of metal tubes with high accuracy and repeatability (Huang and Spaw 2022). The scale and complexity is managed by employing augmented reality (AR) technology in two capacities, fabrication and assembly (Jahn et al. 2018; Jahn, Newnham, and Berg 2022). The AR display overlays part numbers, bending sequences, expected geometry, and robot movements in real time as the robot fabrication is occurring. For assembly purposes, part numbers, centerlines, and their expected positional relationships are projected via quick response (QR) codes spatially tracked by the Microsoft Hololens 2 (Microsoft 2019). This is crucial due to the length and self-similarity of complex multi-planar parts that make them difficult to distinguish and orient correctly. Leveraging augmented reality technology and robotic fabrication uncovers a novel material expression in tubular structures with bundles, knots, and interweaving (Figure 1).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id acadia20_202p
id acadia20_202p
authors Battaglia, Christopher A.; Verian, Kho; Miller, Martin F.
year 2020
title DE:Stress Pavilion
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 202-207
summary Print-Cast Concrete investigates concrete 3D printing utilizing robotically fabricated recyclable green sand molds for the fabrication of thin shell architecture. The presented process expedites the production of doubly curved concrete geometries by replacing traditional formwork casting or horizontal corbeling with spatial concrete arching by developing a three-dimensional extrusion path for deposition. Creating robust non-zero Gaussian curvature in concrete, this method increases fabrication speed for mass customized elements eliminating two-part mold casting by combining robotic 3D printing and extrusion casting. Through the casting component of this method, concrete 3D prints have greater resolution along the edge condition resulting in tighter assembly tolerances between multiple aggregated components. Print-Cast Concrete was developed to produce a full-scale architectural installation commissioned for Exhibit Columbus 2019. The concrete 3D printed compression shell spanned 12 meters in length, 5 meters in width, and 3 meters in height and consisted of 110 bespoke panels ranging in weight of 45 kg to 160 kg per panel. Geometrical constraints were determined by the bounding box of compressed sand mold blanks and tooling parameters of both CNC milling and concrete extrusion. Using this construction method, the project was able to be assembled and disassembled within the timeframe of the temporary outdoor exhibit, produce <1% of waste mortar material in fabrication, and utilize 60% less material to construct than cast-in-place construction. Using the sand mold to contain geometric edge conditions, the Print-Cast technique allows for precise aggregation tolerances. To increase the pavilions resistance to shear forces, interlocking nesting geometries are integrated into each edge condition of the panels with .785 radians of the undercut. Over extruding strategically during the printing process casts the undulating surface with accuracy. When nested together, the edge condition informs both the construction logic of the panel’s placement and orientation for the concrete panelized shell.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id ecaadesigradi2019_628
id ecaadesigradi2019_628
authors Borunda, Luis, Ladron de Guevara, Manuel and Anaya, Jesus
year 2019
title Design Method for Optimized Infills in Additive Manufacturing Thermoplastic Components
doi https://doi.org/10.52842/conf.ecaade.2019.1.493
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 493-502
summary The following article extends and tests computational methodologies of design to consider Finite Element Analysis in the creation of optimized infill structures based on regular and semi-regular patterns that comply with the geometrical constraints of deposition. The Stress-Deformation relationship manifested in Finite Element Analysis is structured in order to influence the geometrical arrangement of the complex spatial infill. The research presents and discusses a program of performance informed infill design, and validates the generalizability of a method of internalizing and automating Finite Element Method (FEM) processing in Fused Deposition Modeling (FDM) workflows, and tests manufacturability of the methods through its ability to handle the FDM process constraints of FEM influenced intricate geometries.
keywords Additive Manufacturing; Finite Element Analysis; Fused Deposition Modeling; 3D infill
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_210
id ecaadesigradi2019_210
authors Castriotto, Caio, Giantini, Guilherme and Celani, Gabriela
year 2019
title Biomimetic Reciprocal Frames - A design investigation on bird's nests and spatial structures
doi https://doi.org/10.52842/conf.ecaade.2019.1.613
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 613-620
summary Reciprocal Frame (RF) is a constructive system typically applied with timber, since it is composed by discrete elements with short dimensions. It allows the construction of large spans and complex geometries. This kind of structure has been addressed by recent research projects that aim to produce it using computational tools and digital fabrication techniques. Moreover, the enhancement of these technologies enabled the integration of simulations of biological processes into the design process as a way to obtain better and optimal results, which is known as Biomimetics. This paper describes the development of a spatial structure that combines the principles of RF and the assembly process of natural agents, such as birds, in a digital environment. The tools used for the generation of the structure were Rhinoceros, Grasshopper and different add-ons, such as Culebra, Kangaroo, Pufferfish and Weaverbird.
keywords Biomimetics; Reciprocal Frame; Nexorade; Computational Design; Agent-Based System
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id caadria2019_190
id caadria2019_190
authors Chan, Zion and Crolla, Kristof
year 2019
title Simplifying Doubly Curved Concrete - Post-Digital Expansion of Concrete's Construction Solution Space
doi https://doi.org/10.52842/conf.caadria.2019.1.023
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 23-32
summary This action research project develops a novel conceptual method for non-standardised concrete construction component fabrication and tests its validity through a speculative design project. The paper questions the practical, procedural and economic drivers behind the design and construction of geometrically complex concrete architecture. It proposes an alternative, simple and economical fabrication method for doubly curved concrete centred on the robotic manufacturing of casting moulds through 5-axis hotwire foam cutting for the making of doubly-curved fiber-reinforced concrete (FRC) panels. These panels are used as light-weight sacrificial formwork for in-situ concrete casting. The methodology's opportunity space is tested, evaluated and discussed through a conceptual architectural design project proposal that operates as demonstrator. The paper concludes by addressing the advantages of a design-and-build architecture delivery setup, the potential from using computational technology to adapt conventional design and construction procedures and the expanded role within the design and construction process this gives to architects.
keywords Doubly Curved Concrete; Robotic Manufacture; Post-Digital Architecture; Design and Build; Casting Mould Making
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_249
id ecaadesigradi2019_249
authors Chiarella, Mauro, Gronda, Luciana and Veizaga, Martín
year 2019
title RILAB - architectural envelopes - From spatial representation (generative algorithm) to geometric physical optimization (scientific modeling)
doi https://doi.org/10.52842/conf.ecaade.2019.3.017
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 17-24
summary Augmented graphical thinking operates by integrating algorithmic, heuristic, and manufacturing processes. The Representation and Ideation Laboratory (RILAB-2018) exercise begins with the application of a parametric definition developed by the team of teachers, allowing for the construction of structural systems by the means of the combination of segmental shells and bending-active. The main objetive is the construction of a scientific model of simulation for bending-active laminar structures has brought into reality trustworthy previews for architectural envelopes through the interaction of parametrized relational variables. This way we put designers in a strategic role for the building of the pre-analysis models, allowing more preciseness at the time of picking and defining materials, shapes, spaces and technologies and thus minimizing the decisions based solely in the definition of structural typological categories, local tradition or direct experience. The results verify that the strategic integration of models of geometric physical optimization and spatial representation greatly expand the capabilities in the construction of the complex system that operates in the act of projecting architecture.
keywords architectural envelopes; augmented graphic thinking; geometric optimization; bending-active
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id acadia19_156
id acadia19_156
authors Dahy, Hanaa; Baszyñski, Piotr; Petrš, Jan
year 2019
title Experimental Biocomposite Pavilion
doi https://doi.org/10.52842/conf.acadia.2019.156
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 156-165
summary Excessive use of aggregate materials and metals in construction should be balanced by increasing use of construction materials from annually renewable resources based on natural lignocellulosic fibers. Parametric design tools gave here a possibility of using an alternative newly developed biocomposite material, for realization of complex geometries. Contemporary digital fabrication tools have enabled precise manufacturing possibilities and sophisticated geometry-making to take place that helped in obtaining high structural behavior of the overall global geometry of the discussed project. This paper presents a process of realizing an experimental structure made from Natural Fiber-Reinforced Polymers (NFRP)- also referred to as biocomposites, which were synthesized from lignocellulosic flexible core reinforced by 3D-veneer layers in a closed-moulding vacuum-assisted process. The biocomposite sandwich panels parameters were developed and defined before the final properties were imbedded in the parametric model. This paper showcases the multi-disciplinarity work between architects, structural engineers and material developers. It allowed the architects to work on the material development themselves and enabled to apply a new created design philosophy by the first author, namely applying ‘Materials as a Design-Tool’. The erected biocomposite segmented shell construction allowed a 1:1 validation for the whole design process, material development and the digital fabrication processes applied. The whole development has been reached after merging an ongoing industrial research project results with academic education at the school of architecture in Stuttgart-Germany.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_116
id ecaadesigradi2019_116
authors Fernando, Shayani
year 2019
title Collaborative Crafting of Interlocking Structures in Stereotomic Practice
doi https://doi.org/10.52842/conf.ecaade.2019.2.183
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 183-190
summary Situated within the art of cutting solids (stereotomy) and the evolution of machine tools; this research will investigate subtractive fabrication in relation to robotic carving of stone structures. The advancement of the industrial revolutions in the mid to late 19th century saw the rise of new building techniques and materials which were primarily based on structural steel construction. The modern aesthetic of the time further diminished the place of traditional stonework and ornamentation in modern structures within the building arts. This paper will focus on the design and fabrication of three sculptural dry-stone modular prototypes investigating interlocking self-supporting structures in stone. Examining the value of robotic technologies in the design and construction process in relation to collaborative crafting of the hand and machine. Accommodating for material tolerances which are a major factor in this research. Interrogating the value of robotic crafting with material implications and exploring the role of the artisan in machine crafted architectural components.
keywords Collaborative; Crafting; Interlocking; Structures; Robotic Fabrication; Digital Stone
series eCAADeSIGraDi
email
last changed 2022/06/07 07:50

_id caadria2019_478
id caadria2019_478
authors Fingrut, Adam, Crolla, Kristof and Lau, Darwin
year 2019
title Automation Complexity - Brick By Brick
doi https://doi.org/10.52842/conf.caadria.2019.1.093
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 93-102
summary This paper discusses the assembly of brick structures with a Cable Driven Parallel Robot (CDPR). Explored is the impact of using computational design tools and the deployment of robotic equipment for the creation of an expanded architectural design space, based on the limits of material and equipment in place of a skilled labor force.
keywords Cable-Robot; Construction Automation; Digital Fabrication; Construction Complexity; Non-Standard Architecture
series CAADRIA
email
last changed 2022/06/07 07:50

_id acadia23_v1_180
id acadia23_v1_180
authors Huang, Lee-Su; Spaw, Gregory
year 2023
title InterLoop
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 180-187.
summary InterLoop employs previously developed workflows that enable multi-planar robotic bending of metal tubes with high accuracy and repeatability (Huang and Spaw 2022). The scale and complexity is managed by employing augmented reality (AR) technology in two capacities, fabrication and assembly (Jahn et al. 2018; Jahn, Newnham, and Berg 2022). The AR display overlays part numbers, bending sequences, expected geometry, and robot movements in real time as the robot fabrication is occurring. For assembly purposes, part numbers, centerlines, and their expected positional relationships are projected via quick response (QR) codes spatially tracked by the Microsoft Hololens 2 (Microsoft 2019). This is crucial due to the length and self-similarity of complex multi-planar parts that make them difficult to distinguish and orient correctly. Leveraging augmented reality technology and robotic fabrication uncovers a novel material expression in tubular structures with bundles, knots, and interweaving (Figure 1).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id caadria2019_221
id caadria2019_221
authors Ladron de Guevara, Manuel, Borunda, Luis, Ficca, Jeremy, Byrne, Daragh and Krishnamurti, Ramesh
year 2019
title Robotic Free-Oriented Additive Manufacturing Technique for Thermoplastic Lattice and Cellular Structures
doi https://doi.org/10.52842/conf.caadria.2019.2.333
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 333-342
summary This paper presents a novel Additive Manufacturing application of situated Robotic Fused Deposition Modeling (RFDM) for thermoplastic cellular and lattice structures, called Free-Oriented Additive Manufacturing (FOAM), to accommodate variations in spatial conditions, deposition direction, and geometry in order to adapt to complex infrastructure settings, thus, breaking the conventional layer-by-layer stacking principle and the constant constraint of locking the tip of the nozzle to the negative Z direction when fabricating at an architectural scale.
keywords Robotic 3D Printing; Situated Fused Deposition; Thermoplastic Lattice Structures
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2019_658
id caadria2019_658
authors Lange, Christian and Holohan, Donn
year 2019
title CeramicINformation Pavilion - Rethinking structural brick specials through an indexical 3D printing method
doi https://doi.org/10.52842/conf.caadria.2019.1.103
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 103-112
summary Complex brick construction is defined by its relationship to labor; it requires skilled workers in planning, manufacturing and assembly. In the modern era, this has been perceived as a significant drawback, and as such has resulted in brick construction being partially superseded by more rapid methods of fabrication, despite its inherent robustness and longevity. This paper describes the second stage of an ongoing research project which attempts to revitalize the material system of the brick special through the development of an intelligent 3d printing method that works in conjunction with a layman assembly procedure for a new class of self-supporting nonstandard brick structures. In this project, an indexed and geometrically informed jointing system, together with a parametric and digital workflow, enables rapid assembly on site without a requirement for complex site setup or skilled labor.
keywords Digital Fabrication; 3D clay printing; Brick Specials; Computational Design
series CAADRIA
email
last changed 2022/06/07 07:52

_id acadia19_500
id acadia19_500
authors Larsen, Niels Martin; Anders Kruse Aagaard
year 2019
title Exploring Natural Wood
doi https://doi.org/10.52842/conf.acadia.2019.500
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 500-509
summary By investigating methods for using computation and digital manufacturing technologies to integrate material properties with architectural design tools, the research in this paper aims at revealing new potentials for the use of wood in architecture. Through an explorative approach, material particularities and fabrication methods are explored and combined into new workflows and architectural expressions. The research looks into different properties and capacities of wood, but the main part of the experimentation revolves around crooked oak logs. Due to their irregularities, these logs are normally discarded. However, through the methods suggested in this research, they are instead matched with unique processing informed by their divergence. The research presents a workflow for handling the discrete shapes of sawlogs in a system that both involve the collecting of material, scanning/digitization, handling of a stockpile, computer analysis, design, and robotic manufacturing. The workflow includes multiple custom-made solutions for handling the complex and different shapes and data of wood logs in a highly digitized machining and fabrication environment. The suggested method is established through investigations of wood as a natural material, studies of the production lines in the current wood industry, and experimentation in our in-house laboratory facilities. This up-cycling of discarded wood supply establishes a non-standard workflow that utilizes non-standard material stock and leads to a critical articulation of today’s linear material economy. The research thereby gives an example of how the natural forms and properties of sawlogs can be directly used to generate new structures and spatial conditions.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id acadia20_176p
id acadia20_176p
authors Lok, Leslie; Zivkovic, Sasa
year 2020
title Ashen Cabin
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 176-181
summary Ashen Cabin, designed by HANNAH, is a small building 3D-printed from concrete and clothed in a robotically fabricated envelope made of irregular ash wood logs. From the ground up, digital design and fabrication technologies are intrinsic to the making of this architectural prototype, facilitating fundamentally new material methods, tectonic articulations, forms of construction, and architectural design languages. Ashen Cabin challenges preconceived notions about material standards in wood. The cabin utilizes wood infested by the Emerald Ash Borer (EAB) for its envelope, which, unfortunately, is widely considered as ‘waste’. At present, the invasive EAB threatens to eradicate most of the 8.7 billion ash trees in North America (USDA, 2019). Due to their challenging geometries, most infested ash trees cannot be processed by regular sawmills and are therefore regarded as unsuitable for construction. Infested and dying ash trees form an enormous and untapped material resource for sustainable wood construction. By implementing high precision 3D scanning and robotic fabrication, the project upcycles Emerald-Ash-Borer-infested ‘waste wood’ into an abundantly available, affordable, and morbidly sustainable building material for the Anthropocene. Using a KUKA KR200/2 with a custom 5hp band saw end effector at the Cornell Robotic Construction Laboratory (RCL), the research team can saw irregular tree logs into naturally curved boards of various and varying thicknesses. The boards are arrayed into interlocking SIP façade panels, and by adjusting the thickness of the bandsaw cut, the robotically carved timber boards can be assembled as complex single curvature surfaces or double-curvature surfaces. The undulating wooden surfaces accentuate the building’s program and yet remain reminiscent of the natural log geometry which they are derived from. The curvature of the wood is strategically deployed to highlight moments of architectural importance such as windows, entrances, roofs, canopies, or provide additional programmatic opportunities such as integrated shelving, desk space, or storage.
series ACADIA
type project
email
last changed 2021/10/26 08:08

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_279927 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002