CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 628

_id ecaade2022_247
id ecaade2022_247
authors Güntepe, Rahma
year 2022
title Building with Expanded Cork - A novel monolithic building structure
doi https://doi.org/10.52842/conf.ecaade.2022.1.029
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 29–36
summary This research presents the development of a construction system for a solid expanded cork building envelope. The inspiration for this research is the “Cork House” built in 2019 by Matthew Barnett Howland and Oliver Wilton, who developed a Cork Construction Kit for a monolithic dry-jointed cork structure. The goal of this research is to analyze and develop different varieties of construction methods for a dry-joined cork building by combining and applying traditional masonry techniques. The objective is to generate a material-based design for cork construction elements trough prototyping and using a selection of digital tools such as 3D modeling and 3D printing. Expanded cork is a 100% plant-based material which, if applied correctly, has the capacity to be used as a load bearing, insulating and protective structure all at once. It has almost no environmental impact and is completely compostable. To maintain the material's compostable property, this construction system has to be developed without any kind of binders or mortar. Additionally, this more reduced and simplified form of construction will not only make it possible to build without any specific expertise, but at the same time ensure resources to be reused or composted at the end of building life.
keywords Expanded Cork, Cork, Material-Based Design, Masonry, Stereotomy, 3D Modeling, 3D Printing, Sustainable Material, Dry-Joint Construction
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaadesigradi2019_116
id ecaadesigradi2019_116
authors Fernando, Shayani
year 2019
title Collaborative Crafting of Interlocking Structures in Stereotomic Practice
doi https://doi.org/10.52842/conf.ecaade.2019.2.183
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 183-190
summary Situated within the art of cutting solids (stereotomy) and the evolution of machine tools; this research will investigate subtractive fabrication in relation to robotic carving of stone structures. The advancement of the industrial revolutions in the mid to late 19th century saw the rise of new building techniques and materials which were primarily based on structural steel construction. The modern aesthetic of the time further diminished the place of traditional stonework and ornamentation in modern structures within the building arts. This paper will focus on the design and fabrication of three sculptural dry-stone modular prototypes investigating interlocking self-supporting structures in stone. Examining the value of robotic technologies in the design and construction process in relation to collaborative crafting of the hand and machine. Accommodating for material tolerances which are a major factor in this research. Interrogating the value of robotic crafting with material implications and exploring the role of the artisan in machine crafted architectural components.
keywords Collaborative; Crafting; Interlocking; Structures; Robotic Fabrication; Digital Stone
series eCAADeSIGraDi
email
last changed 2022/06/07 07:50

_id ecaadesigradi2019_153
id ecaadesigradi2019_153
authors Gomez-Zamora, Paula, Bafna, Sonit, Zimring, Craig, Do, Ellen and Romero Vega, Mario
year 2019
title Spatiotemporal Occupancy for Building Analytics
doi https://doi.org/10.52842/conf.ecaade.2019.2.111
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 111-120
summary Numerous studies on Space Syntax and Evidence-based Design explored occupancy and movements in the built environment using traditional methods for behavior mapping, such as observation and surveys. This approach, however, has majorly focused on studying such behaviors as aggregated results -totals or averages- to corroborate the idea that people's interactions are outcomes of the influence of space. The research presented in this paper focuses on capturing human occupancy with a high spatiotemporal data resolution of 1 sq.ft per second (0.1 sq.mt./s). This research adapts computer vision to obtain large occupancy datasets in a hospitalization setting for one week, providing opportunities to explore correlations among spatial configurations, architectural programs, organizational activities planned and unplanned, and time. The vision is to develop new analytics for building occupancy dynamics, with the purpose of endorsing the integration of a temporal dimension into architectural research. This study introduces the "Isovist-minute"; a metric that captures the relationship between space and occupancy, towards a point of interest, in a dynamic sequence.
keywords Spatiotemporal Occupancy; Occupancy Analytics; Occupancy Patterns; Building-Organizational Performance; Healthcare Settings
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

_id ecaadesigradi2019_613
id ecaadesigradi2019_613
authors Guedes, Ítalo and Andrade, Max
year 2019
title Automatic Rule-Based Checking for the Approval of Building Architectural Designs of Airport Passenger Terminals based on BIM
doi https://doi.org/10.52842/conf.ecaade.2019.2.333
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 333-338
summary In Brazil, the evaluation processes of building architectural designs of Airports Passenger Terminal (PT) are carried out manually. It depends on the architects' knowledge, leading to possible errors. On the other hand, the rule checking in BIM-modeled building projects opens up new horizons for this type of activity. Based on Code Checking concepts, this paper presents a method for automating rule checking for building code in building architectural design of PT. Following the aspects of Design Science Research, it is developed in two stages: Construction (theoretical foundation, creating rule checking for the PT, implementation of the rules in BIM softwares for code checking and validation) and Evaluation of artefact. This paper shows a series of problems resulting from the evaluation of PT using traditional methods. It can be concluded that the use of rules for regulatory code checking with BIM allows standardization in the evaluation of architectural design of PT.
keywords Code Checking; Passenger Terminal; Building Information Modeling; Rule checking
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

_id ecaadesigradi2019_273
id ecaadesigradi2019_273
authors Hadighi, Mahyar and Duarte, Jose
year 2019
title Using Grammars to Trace Architectural Hybridity in American Modernism - The case of William Hajjar single-family house
doi https://doi.org/10.52842/conf.ecaade.2019.1.529
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 529-540
summary In this paper, mid-century modern single-family houses designed by William Hajjar are analyzed through a shape grammar methodology within the context of the traditional architecture of an American college town. A member of the architecture faculty at the Pennsylvania State University, Hajjar was a practitioner in State College, PA, where the University Park campus is located, and an influential figure in the history of architecture in the area. The residential architecture he designed for and built in the area incorporates many of the formal and functional features typical of both modern European architecture and traditional American architecture. Based on a computational methodology, this study offers an investigation into this hybridity phenomenon by exploring Hajjar's architecture in relation to the traditional American architecture prevalent in the college town of State College.
keywords shape grammar; American architecture; William Hajjar; hybridity; college town
series eCAADeSIGraDi
email
last changed 2022/06/07 07:49

_id caadria2019_245
id caadria2019_245
authors Jiaxin, Zhang, Yunqin, Li, Haiqing, Li and Xueqiang, Wang
year 2019
title Sensitivity Analysis of Thermal Performance of Granary Building based on Machine Learning
doi https://doi.org/10.52842/conf.caadria.2019.1.665
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 665-674
summary The granary building form has significant effects on thermal performance, especially in hot climate regions. This research is focused on exploring the influences of parameters relevant to building form design on thermal performance for granary buildings in Jiangsu and Anhui, China(both provinces belong to the hot summer region). The usual method is to use simulation software to perform a sensitivity analysis of thermal performance to assess the impacts of granary design parameters and identify the essential characteristics. However, many factors are affecting the thermal performance of granary buildings. The use of traditional energy simulation software requires calculation and analysis of a large number of models. In this study, we build a machine learning model to predict the thermal performance of granary buildings and identify the most influential design parameters of thermal performance in granary building. The input parameters include outdoor temperature, building height, aspect ratio, orientation, heat transmission coefficient of the wall and roof, and overall scale. The results show that the overall building scale is the most influential variable to the annual electricity consumption for cooling, whereas the heat transmission coefficient of the roof is the most influential to the change of the indoor temperature.
keywords Sensitivity analysis; Artificial Neural Networks (ANNs); Thermal performance; Granary building
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2019_104
id caadria2019_104
authors Johan, Ryan, Chernyavsky, Michael, Fabbri, Alessandra, Gardner, Nicole, Haeusler, M. Hank and Zavoleas, Yannis
year 2019
title Building Intelligence Through Generative Design - Structural analysis and optimisation informed by material performance
doi https://doi.org/10.52842/conf.caadria.2019.1.371
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 371-380
summary Generative design (GD) is the process of defining high-level goals and constraints and then using computation to automatically explore a range of solutions that meet the desired requirements. Generative processes are intelligent ways to fast-track early design stages. The outcomes are analyzed simultaneously to inform decisions for architects and engineers. Whilst material properties have been defined as a driving agent within generative systems to calculate structure, material performance or structural capacity are not linked with early decision-making. In response, this paper sets a constrained approach upon traditional and non-traditional materials to validate the feasibility of structures. A GD tool is developed within Grasshopper using C-sharp, Karamaba3D, Galapagos and various engineering formulas. The result is a script, which prioritizes the structural qualities of material as a driving factor within generative systems and facilitates communication across different expertise.
keywords Intelligent systems; generative design; material properties; structural analysis; evolutionary algorithms
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2019_273
id caadria2019_273
authors Kado, Keita and Hirasawa, Gakuhito
year 2019
title Three-Dimensional Model and Network-Based Representation of Traditional Japanese Wooden Building System
doi https://doi.org/10.52842/conf.caadria.2019.2.501
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 501-510
summary Traditional Japanese wooden buildings are designed on the basis of a systematised building system. A typical systematised method called "kiwari" sets parametric/algorithmic rules that determine the dimensions and positions of components. These methods, which facilitate traditional wooden architecture, have cultural value. In this work, the authors report a representation method that is aimed at creating a three-dimensional model and a network-based representation of the traditional Japanese wooden building system. A systematised method that enables the construction of a quadruped gate using the traditional Japanese wooden building system is analysed through algorithm creation and visualisation of relations from the variables of the instances by the proposed system.
keywords Parametric Design; Japanese Traditional Wooden Building System; Knowledge Representation
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaadesigradi2019_346
id ecaadesigradi2019_346
authors Kaftan, Martin, Sautter, Sebastian and Kubicek, Bernhard
year 2019
title Integrating BIPV during Early Stages of Building Design
doi https://doi.org/10.52842/conf.ecaade.2019.2.139
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 139-144
summary In the quest to achieve the ambitious climate and clean energy targets the broad implementation of Integrated Photovoltaics (BIPV) is one of the keys. Photovoltaic (PV) modules can be installed above or on current roofing or traditional wall structures. In addition, BIPV devices substitute the skin of the exterior construction frame, i.e. the weather screen, thus simultaneously acting as both a climate screen and an energy producing source. However, while the integral planning strategy to building projects promotes the effective execution of BIPV, the limitation lies in the absence of both instruments and easy-to-use planning aid guidelines, particularly by non-PV experts in the early design stage. This study presents computational methods that help to quickly analyze the BIPV potential for a given building project and to suggest the optimal economical amount and location of the panels based on the building's energy demand profile.
keywords building integrated photovoltaic (BIPV); integral planning; design rules; simplified models; machine learning
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id caadria2019_416
id caadria2019_416
authors Keisen, U, Fujii, Haruyuki and Kobayashi, Yuki
year 2019
title A Study on Interior Light Environment in Japanese Teahouse and its Relation with Tea Ceremony
doi https://doi.org/10.52842/conf.caadria.2019.1.463
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 463-472
summary The lighting of a traditional Japanese tea house mainly relies on natural light introduced through the windows. The light environment is designed very skillfully under influence of both functional consideration and tea ceremony ideology. In order to explore the relation between the lighting strategy and tea ceremony, the paper proposed and examined a new way to study the traditional tea house daylight environment by using CAD and daylight simulation tool. Through the investigation of the daylight environment in various tea houses, the study gained more understanding of how the light environment is composed under the influences of tea house designers and tea ceremony ritual.
keywords Traditional ; Cultural; Tea House; Daylight Study
series CAADRIA
email
last changed 2022/06/07 07:52

_id acadia19_510
id acadia19_510
authors Leder, Samuel; Weber, Ramon; Wood, Dylan; Bucklin, Oliver; Menges, Achim
year 2019
title Distributed Robotic Timber Construction
doi https://doi.org/10.52842/conf.acadia.2019.510
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 510-519
summary Advances in computational design and robotic building methods have the potential to enable architects to author more sustainable, efficient, and geometrically varied systems that shape our built environment. To fully harness this potential, the inherent relationship of design and building processes requires a fundamental shift in the way we design and how we build. High degree of customization in architectural projects and constantly changing conditions of construction environments pose significant challenges for the implementation of automated construction machines. Beyond traditional, human-inspired, industrial robotic building methods, we present a distributed robotic system where the robotic builders are designed in direct relationship with the material and architecture they assemble. Modular, collaborative, single axis robots are designed to utilize standardized timber struts as a basic building material, and as a part of their locomotion system, to create large-scale timber structures with high degrees of differentiation. The decentralized, multi-robot system uses a larger number of simple machines that collaborate in teams to work in parallel on varying tasks such as material transport, placement, and fixing. The research explores related architectural and robotic typologies to create timber structures with novel aesthetics and performances.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id caadria2019_318
id caadria2019_318
authors Martinho, Helena, Belém, Catarina, Leitão, António, Loonen, Roel and Gomes, M. Glória
year 2019
title Algorithmic Design and Performance Analysis of Adaptive Façades
doi https://doi.org/10.52842/conf.caadria.2019.1.685
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 685-694
summary Building performance simulation tools have the potential for aiding the decision-making process in early design stages of an architectural project. As traditional simulation tools are based on a static design and adaptive façades encompass an envisioned movement of construction elements, there is a lack of supporting tools and workflows that can correctly evaluate the performance of such building envelopes at an early stage. The presented ongoing research focuses on developing efficient parametric performance-based approaches for assessing the energy consumption in buildings with adaptive façades, combining generative architectural design and performance analysis in a seamless workflow. To this end, we combine a new algorithmic design research tool with the well-established whole-building simulation engine EnergyPlus. The purpose of linking both tools lies in the possibility of generating and simulating models with adaptive façade mechanisms through a single script, evaluating and using the simulation results to adjust the model's parameters and develop optimized control strategies.
keywords Building performance simulation; Adaptive façades; Algorithmic design; Energy analysis
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaade2024_92
id ecaade2024_92
authors Mayor Luque, Ricardo; Beguin, Nestor; Rizvi Riaz, Sheikh; Dias, Jessica; Pandey, Sneham
year 2024
title Multi-material Gradient Additive Manufacturing: A data-driven performative design approach to multi-materiality through robotic fabrication
doi https://doi.org/10.52842/conf.ecaade.2024.1.381
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 1, pp. 381–390
summary Buildings are responsible for 39% of global energy-related carbon emissions, with operational activities contributing 28% and materials and construction accounting for 11%(World Green Building Council, 2019) It is therefore vital to reconsider our reliance on fossil fuels for building materials and to develop new advanced manufacturing techniques that enable an integrated approach to material-controlled conception and production. The emergence of Multi-material Additive Manufacturing (MM-AM) technology represents a paradigm shift in producing elements with hybrid properties derived from novel and optimized solutions. Through robotic fabrication, MM-AM offers streamlined operations, reduced material usage, and innovative fabrication methods. It encompasses a plethora of methods to address diverse construction needs and integrates material gradients through data-driven analyses, challenging traditional prefabrication practices and emphasizing the current growth of machine learning algorithms in design processes. The research outlined in this paper presents an innovative approach to MM-AM gradient 3D printing through robotic fabrication, employing data-driven performative analyses enabling control over print paths for sustainable applications in both the AM industry and our built environment. The article highlights several designed prototypes from two distinct phases, demonstrating the framework's viability, implications, and constraints: a workshop dedicated to data-driven analyses in facade systems for MM-AM 3D-printed brick components, and a 3D-printed brick facade system utilizing two renewable and bio-materials—Cork sourced from recycled stoppers and Charcoal, with the potential for carbon sequestration.
keywords Data-driven Performative design, Multi-material 3d Printing, Material Research, Fabrication-informed Material Design, Robotic Fabrication
series eCAADe
email
last changed 2024/11/17 22:05

_id acadia21_70
id acadia21_70
authors McAndrew, Claire; Jaschke, Clara; Retsin, Gilles; Saey, Kevin; Claypool, Mollie; Parissi, Danaë
year 2021
title House Block
doi https://doi.org/10.52842/conf.acadia.2021.070
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 70-75.
summary House Block was a temporary housing prototype in East London, UK from April to May 2021. The project constituted the most recent in a series of experiments developing Automated Architecture (AUAR) Labs’ discrete framework for housing production, one which repositions the architect as curator of a system and enables participants to engage with active agency. Recognizing that there is a knowledge gap to be addressed for this reconfiguration of practices to take form, this project centred on making automation and its potential for local communities tangible. This sits within broader calls advocating for a more material alignment of inclusive design with makers and 21st Century making in practice (see, for example, Luck 2018).

House Block was designed and built using AUAR’s discrete housing system consisting of a kit of parts, known as Block Type A. Each block was CNC milled from a single sheet of plywood, assembled by hand, and then post-tensioned on site. Constructed from 270 identical blocks, there are no predefined geometric types or hierarchy between parts. The discrete enables an open-ended, adaptive system where each block can be used as a column, floor slab, wall, or stair—allowing for disconnection, reconfiguration, and reassembly (Retsin 2019). The democratisation of design and production that defines the discrete creates points for alternative value systems to enter, for critical realignments in architectural production.

series ACADIA
type project
email
last changed 2023/10/22 12:06

_id acadia19_586
id acadia19_586
authors Mitterberger, Daniela; Derme, Tiziano
year 2019
title Soil 3D Printing
doi https://doi.org/10.52842/conf.acadia.2019.586
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 586-595
summary Despite, the innovation of additive manufacturing (AM) technology, and in spite of the existence of natural bio-materials offering notable mechanical properties, materials used for AM are not necessarily more sustainable than materials used in traditional manufacturing. Furthermore, potential material savings may be partially overshadowed by the relative toxicity of the material and binders used for AM during fabrication and post-fabrication processes, as well as the energy usage necessary for the production and processing workflow. Soil as a building material offers a cheap, sustainable alternative to non-biodegradable material systems, and new developments in earth construction show how earthen buildings can create light, progressive, and sustainable structures. Nevertheless, existing large-scale earthen construction methods can only produce highly simplified shapes with rough detailing. This research proposes to use robotic additive manufacturing processes to overcome current limitations of constructing with earth, supporting complex three-dimensional geometries, and the creation of novel organic composites. More specifically the research focuses on robotic binder-jetting with granular bio-composites and non-toxic binding agents such as hydrogels. This paper is divided into two main sections: (1) biodegradable material system, and (2) multi-move robotic process, and describes the most crucial fabrication parameters such as compaction pressure, density of binders, deposition strategies and toolpath planning as well as identifying the architectural implications of using this novel biodegradable fabrication process. The combination of soil and hydrogel as building material shows the potential of a fully reversible construction process for architectural components and foresees its potential full-scale architectural implementations.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id acadia19_422
id acadia19_422
authors Morse, Christopher; Soulos, Foteinos
year 2019
title Interactive Facade Detail Design Reviews with the VR Scope Box
doi https://doi.org/10.52842/conf.acadia.2019.422
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 422-429
summary We present the development of the VR Scope Box as an example of the potential for Virtual Reality to enhance the design process as an interactive medium. The opportunities afforded designers by virtual environments should not be limited to simple immersive visualization. The VR scope box is shown to able to visualize details in 3-dimensional space at a 1:1 scale with accurate material representations. This visualization is not restricted to a single typical example detail, but rather allows for the dynamic exploration of the entire facade system. At the same time, the building exterior as a whole is also visible, to allow for a simultaneous understanding of the connections and the consequences of those details on the building as a whole. Additionally, we discuss the importance of user experience on the usability and adoption of new tools within architectural design reviews and the advantages of developing such tools in-house.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id caadria2019_307
id caadria2019_307
authors Nguyen, Binh Vinh Duc, Peng, Chengzhi and Wang, Tsung-Hsien
year 2019
title KOALA - Developing a generative house design system with agent-based modelling of social spatial processes
doi https://doi.org/10.52842/conf.caadria.2019.1.235
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 235-244
summary The paper presents the development of an agent-based approach to modelling the interaction of human emotion and behaviour with built spaces. The study addresses how human behaviour and social relation can be represented and modelled to interact with a virtual built environment composed in parametric architectural geometry. KOALA, a prototype of agent-based modelling of social spatial dynamics at the core of a parametric architectural design environment is proposed. In building KOALA's system architecture, we adapted the PECS (Physical, Emotional, Cognitive, Social) reference model of human behaviour (Schmidt 2002) and introduced the concept of Social Spatial Comfort as a measurement of three key factors influencing human spatial experiences. KOALA was evaluated by a comparative modelling of two contrasting Vietnamese dwellings known to us. As expected, KOALA returns very different temporal characteristics of spatial modifications of the two dwellings over a simulated timeframe of one year. We discuss the lessons learned and further research required.
keywords Parametricism; generative house design system; architectural parametric geometry; human behaviour; social-spatial dynamics
series CAADRIA
email
last changed 2022/06/07 07:58

_id caadria2019_330
id caadria2019_330
authors Pokhrel, M. K., Anderson, T. N. and Lie, T. T.
year 2019
title Maintaining Thermal Comfort of a Single-Sided Naturally Ventilated Model House by Intelligently Actuating Windows
doi https://doi.org/10.52842/conf.caadria.2019.1.705
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 705-714
summary In New Zealand's (NZ) mild climatic conditions, most residential houses are ventilated naturally, mainly by opening windows. However, maintaining the indoor thermal comfort characteristics of a house by modulating natural ventilation is particularly challenging, as the solution is not explicit. Determining a solution requires a technique that adjusts openable window area while encapsulating the complexity, dynamics, and nonlinearity associated with the natural ventilation driving forces and building thermal behavior. By verifying that there exists a significant potential of regulating indoor thermal comfort of a relatively airtight and insulated house by adjusting window openable area; this work additionally confirmed an excellent capability of Artificial Neural Network (ANN) technique in predicting air temperature time-series of the naturally ventilated house. On the basis of these examinations, this work particularly developed a co-simulation strategy between building thermal-airflow model and the ANN model and demonstrated that windows could be regulated intelligently to modulate the natural ventilation and maintain indoor thermal comfort level during the summer period by applying Artificial Neural Network (ANN) based predictive controller technique.
keywords Natural Ventilation; Thermal Comfort ; Artificial Neural Network (ANN) ; Residential House ; Intelligent Windows
series CAADRIA
email
last changed 2022/06/07 08:00

_id ecaadesigradi2019_002
id ecaadesigradi2019_002
authors Sousa, JP, Xavier, JP and Castro Henriques, G (eds.)
year 2019
title Architecture in the Age of the 4th Industrial Revolution, Volume 3
doi https://doi.org/10.52842/conf.ecaade.2019.3
source Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, 374 p.
summary Going back in history, the 1st Industrial Revolution occurred between the 18th and 19th centuries, when water and steam power led to the mechanization period. By then, social changes radically transformed cities and, together with manufactured materials like steel and glass, promoted the emergence of new building design typologies like the railway station. In the end of the 19th century, the advent of electrical power triggered mass production systems. This 2nd Revolution affected the building construction industry in many ways, inspiring the birth to the modern movement. For some, standardization emerged as an enemy of arts and crafts, while, for others, it was an opportunity to embrace new design agendas, where construction economy and quality could be controlled in novel ways. More recently, electronics and information technology fostered the 3rd Revolution with the production automation. In architecture, the progressive use of digital design, analysis and fabrication processes started to replace the traditional means of analogical representation. This opened the door for the exploration of a higher degree of design freedom, complexity and customization. The rise of the Internet also changed the way architects communicated and promoted the emergence of global architectural practices in the planet. Today, in the beginning of the 21th century, we are in a moment of profound and accelerated changes in the way we perceive and interact with(in) the world, which many authors, like Klaus Schwab, do not hesitate to call as the Fourth Industrial Revolution. Extraordinary advancements in areas like mobile communication, artificial intelligence, big data, cloud computing, blockchain, nanotechnology, biotechnology, facial recognition, robotics or additive manufacturing are fusing the physical, biological and digital systems of production. Such technological context has triggered a series of disruptive concepts and innovations, like the smart-phone, social networks, online gaming, internet of things, smart materials, interactive environments, personal fabrication, 3D printing, virtual and augmented realities, drones, selfdriving cars or the smart cities, which, all together, are drawing a radically new world.
series eCAADeSIGraDi
last changed 2022/06/07 07:49

_id ecaadesigradi2019_000
id ecaadesigradi2019_000
authors Sousa, JP, Xavier, JP and Castro Henriques, G (eds.)
year 2019
title Architecture in the Age of the 4th Industrial Revolution, Volume 1
doi https://doi.org/10.52842/conf.ecaade.2019.1
source Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, 835 p.
summary Going back in history, the 1st Industrial Revolution occurred between the 18th and 19th centuries, when water and steam power led to the mechanization period. By then, social changes radically transformed cities and, together with manufactured materials like steel and glass, promoted the emergence of new building design typologies like the railway station. In the end of the 19th century, the advent of electrical power triggered mass production systems. This 2nd Revolution affected the building construction industry in many ways, inspiring the birth to the modern movement. For some, standardization emerged as an enemy of arts and crafts, while, for others, it was an opportunity to embrace new design agendas, where construction economy and quality could be controlled in novel ways. More recently, electronics and information technology fostered the 3rd Revolution with the production automation. In architecture, the progressive use of digital design, analysis and fabrication processes started to replace the traditional means of analogical representation. This opened the door for the exploration of a higher degree of design freedom, complexity and customization. The rise of the Internet also changed the way architects communicated and promoted the emergence of global architectural practices in the planet. Today, in the beginning of the 21th century, we are in a moment of profound and accelerated changes in the way we perceive and interact with(in) the world, which many authors, like Klaus Schwab, do not hesitate to call as the Fourth Industrial Revolution. Extraordinary advancements in areas like mobile communication, artificial intelligence, big data, cloud computing, blockchain, nanotechnology, biotechnology, facial recognition, robotics or additive manufacturing are fusing the physical, biological and digital systems of production. Such technological context has triggered a series of disruptive concepts and innovations, like the smart-phone, social networks, online gaming, internet of things, smart materials, interactive environments, personal fabrication, 3D printing, virtual and augmented realities, drones, selfdriving cars or the smart cities, which, all together, are drawing a radically new world.
series eCAADeSIGraDi
last changed 2022/06/07 07:49

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_140591 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002