CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 617

_id caadria2019_242
id caadria2019_242
authors Davidova, Marie
year 2019
title Intelligent Informed Landscapes - The Eco-Systemic Prototypical Interventions' Generative and Iterative Co-Designing Co-Performances, Agencies and Processes
doi https://doi.org/10.52842/conf.caadria.2019.2.151
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 151-160
summary The work fights for a shift from Anthropocene in urban environment through both, analogue and digital eco-systemic prototypical urban interventions, mixing biological as well as digital performances of post-digital landscape. It directly engages with the local human and non-human communities as well as it offers its online recipes and codes for DIY local iterations tagged in public space. Such intelligent and informed cultural landscape therefore covers several multi-layered generative and iterative agencies for its self-development.
keywords Systemic Approach to Architectural Performance; Intelligent Informed Landscapes; Post-Anthropocene; Eco-Systemic Prototypical Urban Interventions ; DIY
series CAADRIA
type normal paper
email
last changed 2024/01/09 06:23

_id ecaadesigradi2019_645
id ecaadesigradi2019_645
authors Diniz, Nancy, Melendez, Frank, Boonyapanachoti, Woraya and Morales, Sebastian
year 2019
title Body Architectures - Real time data visualization and responsive immersive environments
doi https://doi.org/10.52842/conf.ecaade.2019.2.739
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 739-746
summary This project sets up a design framework that promotes augmenting the human body's interactions exploring methods for merging and blending the users of physical and virtual environments, through the design of wearable devices that are embedded with sensors and actuators. This allows for haptic and visual feedback through the use of data that reflects changes in the surrounding physical environment, and visualized in the immersive Virtual Reality (VR) environment. We consider the Body Architectures project to serve as mechanisms for augmenting the body in relation to the virtual architecture. These wearable devices serve to bring a hyper-awareness to our senses, as closed-loop cybernetic systems that utilize 'digitized' biometric and environmental data through the use of 3D scanning technologies and cloud point models, virtual reality visualization, sensing technologies, and actuation. The design of Body Architectures relies on hybrid design, transdisciplinary collaborations, to explore new possibilities for wearable body architectures that evolve human-machine-environment interactions, and create hyper awareness of the temporal, atmospheric qualities that make up our experience of space, as 'sensorial envelopes' (Lally 2014).
keywords Virtual Reality; Wearable Design; Physical Computing; Data Visualization; Immersive Environments; Responsive Architecture
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id caadria2019_143
id caadria2019_143
authors Kato, Yuri and Matsukawa, Shohei
year 2019
title Development of Generating System for Architectural Color Icons Using Google Map Platform and Tensorflow-Segmentation
doi https://doi.org/10.52842/conf.caadria.2019.2.081
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 81-90
summary In this research, the goal is to develop a generating system for architectural color icons using Google Map Platform and Tensorflow-Segmentation. There has been no case of developing a system that allows users to visualize the color tendency of buildings as architectural color icons for each building element from images of various regions. It is considered meaningful to be able to create criteria for decision making in architecture and the urban design by developing a system to clarify the current state of the architectural colors. It will contribute a rise in the consciousness of landscape conservation and be essential for the design of architectures and public objects. This paper includes the explanation of development method, use experiments, and consideration of five problems among architectural color icons creation. It is assumed that the accuracy of the present system will be better as the technology improves.
keywords Google street view; machine learning; image segmentation; color palette; color analysis
series CAADRIA
email
last changed 2022/06/07 07:52

_id sigradi2023_416
id sigradi2023_416
authors Machado Fagundes, Cristian Vinicius, Miotto Bruscato, Léia, Paiva Ponzio, Angelica and Chornobai, Sara Regiane
year 2023
title Parametric environment for internalization and classification of models generated by the Shap-E tool
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 1689–1698
summary Computing has been increasingly employed in design environments, primarily to perform calculations and logical decisions faster than humans could, enabling tasks that would be impossible or too time-consuming to execute manually. Various studies highlight the use of digital tools and technologies in diverse methods, such as parametric modeling and evolutionary algorithms, for exploring and optimizing alternatives in architecture, design, and engineering (Martino, 2015; Fagundes, 2019). Currently, there is a growing emergence of intelligent models that increasingly integrate computers into the design process. Demonstrating great potential for initial ideation, artificial intelligence (AI) models like Shap-E (Nichol et al., 2023) by OpenAI stand out. Although this model falls short of state-of-the-art sample quality, it is among the most efficient orders of magnitude for generating three-dimensional models through AI interfaces, offering practical balance for certain use cases. Thus, aiming to explore this gap, the presented study proposes an innovative design agency framework by employing Shap-E connected with parametric modeling in the design process. The generation tool has shown promising results; through generations of synthetic views conditioned by text captions, its final output is a mesh. However, due to the lack of topological information in models generated by Shap-E, we propose to fill this gap by transferring data to a parametric three-dimensional surface modeling environment. Consequently, this interaction's use aims to enable the transformation of the mesh into quantifiable surfaces, subject to collection and optimization of dimensional data of objects. Moreover, this work seeks to enable the creation of artificial databases through formal categorization of parameterized outputs using the K-means algorithm. For this purpose, the study methodologically orients itself in a four-step exploratory experimental process: (1) creation of models generated by Shap-E in a pressing manner; (2) use of parametric modeling to internalize models into the Grasshopper environment; (3) generation of optimized alternatives using the evolutionary algorithm (Biomorpher); (4) and classification of models using the K-means algorithm. Thus, the presented study proposes, through an environment of internalization and classification of models generated by the Shap-E tool, to contribute to the construction of a new design agency methodology in the decision-making process of design. So far, this research has resulted in the generation and classification of a diverse set of three-dimensional shapes. These shapes are grouped for potential applications in machine learning, in addition to providing insights for the refinement and detailed exploration of forms.
keywords Shap-E, Parametric Design, Evolutionary Algorithm, Synthetic Database, Artificial Intelligence
series SIGraDi
email
last changed 2024/03/08 14:09

_id sigradi2023_234
id sigradi2023_234
authors Santos, Ítalo, Andrade, Max, Zanchettin, Cleber and Rolim, Adriana
year 2023
title Machine learning applied in the evaluation of airport projects in Brazil based on BIM models
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 875–887
summary In a country with continental dimensions like Brazil, air transport plays a strategic role in the development of the country. In recent years, initiatives have been promoted to boost the development of air transport, among which the BIM BR strategy stands out, instituted by decree n-9.983 (2019), decree n-10.306 (2020) and more recently, the publication of the airport design manual (SAC, 2021). In this context, this work presents partial results of a doctoral research based on the Design Science Research (DSR) method for the application of Machine Learning (ML) techniques in the Artificial Intelligence (AI) subarea, aiming to support SAC airport project analysts in the phase of project evaluation. Based on a set of training and test data corresponding to airport projects, two ML algorithms were trained. Preliminary results indicate that the use of ML algorithms enables a new scenario to be explored by teams of airport design analysts in Brazil.
keywords Airports, Artificial intelligence, BIM, Evaluation, Machine learning.
series SIGraDi
email
last changed 2024/03/08 14:07

_id ecaadesigradi2019_065
id ecaadesigradi2019_065
authors Fukuda, Tomohiro, Novak, Marcos and Fujii, Hiroyuki
year 2019
title Development of Segmentation-Rendering on Virtual Reality for Training Deep-learning, Simulating Landscapes and Advanced User Experience
doi https://doi.org/10.52842/conf.ecaade.2019.2.433
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 433-440
summary Virtual reality (VR) has been suggested for various purposes in the field of architecture, engineering, and construction (AEC). This research explores new roles for VR toward the super-smart society in the near future. In particular, we propose to develop post-processing rendering, segmentation-rendering and shadow-casting rendering algorithms for novel VR expressions to enable more versatile approaches than the normal photorealistic red, green, and blue (RGB) expressions. We succeeded in applying a wide variety of VR renderings in urban-design projects after implementation. The developed system can create images in real time to train deep-learning algorithms, can also be applied to landscape analysis and contribute to advanced user experience.
keywords Super-smart society; Virtual Reality; Segmentation; Deep-learning; Landscape simulation; Shader
series eCAADeSIGraDi
email
last changed 2022/06/07 07:50

_id caadria2022_74
id caadria2022_74
authors Mazza, Domenico, Kocaturk, Tuba and Kaljevic, Sofija
year 2022
title Geelong Digital Outdoor Museum (GDOM) - Photogrammetry as the Surface for a Portable Museum
doi https://doi.org/10.52842/conf.caadria.2022.1.677
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 677-686
summary This paper presents the development and evaluation of the Geelong Digital Outdoor Museum (GDOM) prototype accessible at https://gdom.mindlab.cloud. GDOM is a portable museum‚our novel adaptation of the distributed museum model (Stuedahl & Lowe, 2013) which uses mobile devices to present museum collections attached to physical sites. Our prototype defines a way for intangible heritage associated with tangible landscapes to be accessible via personal digital devices using 360 3D scanned digital replicas of physical landscapes (photogrammetric digital models). Our work aligns with efforts set out in the UN Sustainable Development Goal 11 (SDG 11) to safeguard cultural and natural heritage, by openly disseminating the heritage of physical sites seamlessly through the landscape. Using a research by design methodology we delivered our prototype as a modular web-based platform that leveraged the Matterport digital model platform. We qualitatively evaluated the prototype's usability and future development opportunities with 32 front-end users and 13 potential stakeholders. We received a wide gamut of responses that included: users feeling empowered by the greater accessibility, users finding a welcome common ground with comparable physical experiences, and users and potential stakeholders seeing the potential to re-create physical world experiences with modifications to the digital model along with on-site activation. Our potential stakeholders suggested ways in which GDOM could be integrated into the arts, education, and tourism to widen its utility and applicability. In future we see design potential in breaking out of the static presentation of the digital model and expanding our portable museum experience to work on-site as a complement to the remote experience. However, we recognise the way in which on-site activation integrate into users' typical activities can be tangential (McGookin et al., 2019) and this would necessitate further investigation into how to best integrate the experience on-site.
keywords Cultural Heritage, Intangible Heritage, Digital Heritage, Web Platform, 3D Scanning, Photogrammetry, Digital model, Portable Museum, Distributed Museum, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id acadia23_v1_196
id acadia23_v1_196
authors Bao, Ding Wen; Yan, Xin; Min Xie, Yi
year 2023
title Intelligent Form
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 196-201.
summary InterLoop employs previously developed workflows that enable multi-planar robotic bending of metal tubes with high accuracy and repeatability (Huang and Spaw 2022). The scale and complexity is managed by employing augmented reality (AR) technology in two capacities, fabrication and assembly (Jahn et al. 2018; Jahn, Newnham, and Berg 2022). The AR display overlays part numbers, bending sequences, expected geometry, and robot movements in real time as the robot fabrication is occurring. For assembly purposes, part numbers, centerlines, and their expected positional relationships are projected via quick response (QR) codes spatially tracked by the Microsoft Hololens 2 (Microsoft 2019). This is crucial due to the length and self-similarity of complex multi-planar parts that make them difficult to distinguish and orient correctly. Leveraging augmented reality technology and robotic fabrication uncovers a novel material expression in tubular structures with bundles, knots, and interweaving (Figure 1).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id caadria2020_090
id caadria2020_090
authors Crolla, Kristof and Goepel, Garvin
year 2020
title Designing with Uncertainty - Objectile vibrancy in the TOROO bamboo pavilion
doi https://doi.org/10.52842/conf.caadria.2020.2.507
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 507-516
summary This paper challenges digital preoccupations with precision and control and questions the status of tolerance, allowance and error in post-digital, human-centred architectural production. It uses the participatory action research design-and-build project TOROO, a light-weight bending-active bamboo shell structure, built in Hsinchu, Taiwan, in June 2019, as a demonstrator project to discuss how protean digital design diagrams, named 'vibrant objectiles,' are capable of productively absorbing serendipity throughout project crystallisation processes, increasing designer agency in challenging construction contexts with high degrees of unpredictability. The demonstrator project is then used to discuss future research directions that were exposed by the project. Finally, the applicability of working with 'vibrant objectiles' is discussed beyond its local project use. Common characteristics and requirements are extracted, highlighting project setup preconditions for which the scope covered by the architect needs to be both broadened and relaxed to allow for feedback from design implementation phases.
keywords Post-digital; Bamboo; Bending-active shell structures; Uncertainty; Objectile
series CAADRIA
email
last changed 2022/06/07 07:56

_id acadia23_v1_34
id acadia23_v1_34
authors Gascon Alvarez, Eduardo; Curth, Alexander (Sandy); Feickert, Kiley; Martinez Schulte, Dinorah; Mueller, Caitlin; Ismail, Mohamed
year 2023
title Algorithmic Design for Low-Carbon, Low-Cost Housing Construction in Mexico
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 34-38.
summary Mexico is one of the most urbanized countries in the Global South, and simultaneously faces a rapidly increasing population and a deluge of inadequate housing (URBANET 2019). In 2016, it was estimated that 40 percent of all private residences in Mexico were considered inadequate by UN-Habitat (UN-Habitat 2018). As informal housing constitutes over half of all Mexican housing construction, the most vulnerable groups of the population are particularly impacted. Therefore, there is a serious need to innovate in the area of low-cost building construction for housing in Mexico. This research explores how shape-optimized concrete and earth construction could help provide adequate housing without jeopardizing the country’s commitment to sustainability.
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id caadria2020_426
id caadria2020_426
authors Goepel, Garvin and Crolla, Kristof
year 2020
title Augmented Reality-based Collaboration - ARgan, a bamboo art installation case study
doi https://doi.org/10.52842/conf.caadria.2020.2.313
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 313-322
summary ARgan is a geometrically complex bamboo sculpture that relied on Mixed Reality (MR) for its joint creation by multiple sculptors and used latest Augmented Reality (AR) technology to guide manual fabrication actions. It was built at the Chinese University of Hong Kong in the fall of 2019 by thirty participants of a design-and-build workshop on the integration of AR in construction. As part of its construction workflow, holographic setups were created on multiple devices, including a series of Microsoft HoloLenses and several handheld Smartphones, all linked simultaneously to a single digital base model to interactively guide the manufacturing process. This paper critically evaluates the experience of extending recent AR and MR tool developments towards applications that centre on creative collaborative production. Using ARgan as a demonstrator project, its developed workflow is assessed on its ability to transform a geometrically complex digitally drafted design to its final physically built form, highlighting the necessary strategic integration of variability as an opportunity to relax notions on design precision and exact control. The paper concludes with a plea for digital technology's ability to stimulate dialogue and collaboration in creative production and augment craftsmanship, thus providing greater agency and more diverse design output.
keywords Augmented-Reality; Mixed-Reality; Post-digital; High-tech vs low-tech; Bamboo
series CAADRIA
email
last changed 2022/06/07 07:51

_id acadia23_v1_180
id acadia23_v1_180
authors Huang, Lee-Su; Spaw, Gregory
year 2023
title InterLoop
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 180-187.
summary InterLoop employs previously developed workflows that enable multi-planar robotic bending of metal tubes with high accuracy and repeatability (Huang and Spaw 2022). The scale and complexity is managed by employing augmented reality (AR) technology in two capacities, fabrication and assembly (Jahn et al. 2018; Jahn, Newnham, and Berg 2022). The AR display overlays part numbers, bending sequences, expected geometry, and robot movements in real time as the robot fabrication is occurring. For assembly purposes, part numbers, centerlines, and their expected positional relationships are projected via quick response (QR) codes spatially tracked by the Microsoft Hololens 2 (Microsoft 2019). This is crucial due to the length and self-similarity of complex multi-planar parts that make them difficult to distinguish and orient correctly. Leveraging augmented reality technology and robotic fabrication uncovers a novel material expression in tubular structures with bundles, knots, and interweaving (Figure 1).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id acadia23_v2_340
id acadia23_v2_340
authors Huang, Lee-Su; Spaw, Gregory
year 2023
title Augmented Reality Assisted Robotic: Tube Bending
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 2: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-0-3]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 340-349.
summary The intent of this research is to study potential improvements and optimizations in the context of robotic fabrication paired with Augmented Reality (AR), leveraging the technology in the fabrication of the individual part, as well as guiding the larger assembly process. AR applications within the Architecture, Engineering, and Construction (AEC) industry have seen constant research and development as designers, fabricators, and contractors seek methods to reduce errors, minimize waste, and optimize efficiency to lower costs (Chi, Kang, and Wang 2013). Recent advancements have made the technology very accessible and feasible for use in the field, as demonstrated by seminal projects such as the Steampunk Pavilion in Tallinn, Estonia (Jahn, Newnham, and Berg 2022). These types of projects typically improve manual craft processes. They often provide projective guidelines, and make possible complex geometries that would otherwise be painstakingly slow to complete and require decades of artisanal experience (Jahn et al. 2019). Building upon a previously developed robotic tube bending workflow, our research implements a custom AR interface to streamline the bending process for multiple, large, complex parts with many bends, providing a pre-visualization of the expected fabrication process for safety and part-verification purposes. We demonstrate the utility of this AR overlay in the part fabrication setting and in an inadvertent, human-robot, collaborative process when parts push the fabrication method past its limits. The AR technology is also used to facilitate the assembly process of a spatial installation exploring a unique aesthetic with subtle bends, loops, knots, bundles, and weaves utilizing a rigid tube material.
series ACADIA
type paper
email
last changed 2024/12/20 09:12

_id acadia23_v1_174
id acadia23_v1_174
authors Nejur, Andrei
year 2023
title NoeudAL Pavilion: Ultralight folded nodes for bespoke geometries
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 174-179.
summary This research project, conducted at the University of Montreal School of Architecture, presents an innovative approach to the construction of reticulated structures, focusing on the development and application of a novel, ultralight aluminum node. The node, constructed from a folded, laser-cut, 1-mm aluminum sheet, is designed to accommodate wooden linear members with varied rectangular sections, making it adaptable to bespoke geometries and low valence nodes. This innovative design offers a solution to the long-standing challenge in the construction industry of balancing cost, customization, and weight for reticulated structures through novel node designs (Abdelwahab and Tsavdaridis 2019; Dyvik et al. 2023; Chilton 2007; Rochas 2014; Hassani et al. 2020).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id acadia23_v3_71
id acadia23_v3_71
authors Vassigh, Shahin; Bogosian, Biayna
year 2023
title Envisioning an Open Knowledge Network (OKN) for AEC Roboticists
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 3: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-1-0]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 24-32.
summary The construction industry faces numerous challenges related to productivity, sustainability, and meeting global demands (Hatoum and Nassereddine 2020; Carra et al. 2018; Barbosa, Woetzel, and Mischke 2017; Bock 2015; Linner 2013). In response, the automation of design and construction has emerged as a promising solution. In the past three decades, researchers and innovators in the Architecture, Engineering, and Construction (AEC) fields have made significant strides in automating various aspects of building construction, utilizing computational design and robotic fabrication processes (Dubor et al. 2019). However, synthesizing innovation in automation encounters several obstacles. First, there is a lack of an established venue for information sharing, making it difficult to build upon the knowledge of peers. First, the absence of a well-established platform for information sharing hinders the ability to effectively capitalize on the knowledge of peers. Consequently, much of the research remains isolated, impeding the rapid dissemination of knowledge within the field (Mahbub 2015). Second, the absence of a standardized and unified process for automating design and construction leads to the individual development of standards, workflows, and terminologies. This lack of standardization presents a significant obstacle to research and learning within the field. Lastly, insufficient training materials hinder the acquisition of skills necessary to effectively utilize automation. Traditional in-person robotics training is resource-intensive, expensive, and designed for specific platforms (Peterson et al. 2021; Thomas 2013).
series ACADIA
type field note
email
last changed 2024/04/17 13:59

_id acadia23_v3_77
id acadia23_v3_77
authors Zahiri, Nima
year 2023
title Heigh-active Wood: Elasticity, Anisotropicity, and Hygroscopicity in Timber High-Rises
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 3: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-1-0]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 24-32.
summary The term ‘height-active’ coined by Heino Engel refers to “structure systems, of which the main task is to collect loads from horizontal planes . . . and to vertically transmit them to the base . . . or high-rises accordingly.” (Engel 2013, 14) The focus of this paper is on the characteristics of height-active wood structures due to their vertical extension and susceptibility to horizontal loading. We shall argue that “more innovation can be expected from the advanced understanding of material characteristics, which can be integrated and taken advantage of in the design process, rather than homogenized, approximated or ignored.” (Correa, Krieg and Meyboom 2019, 74) Conventional construction, insofar, has employed linear and planar wood elements in a hierarchical manner. There is an interest to take advantage of wood’s flexibility to innovate free-form high-rise wood structures. Digitized material application of wood has a wide range of technical and functional adaptation. This field notes essay highlights the importance of three main material characteristics of wood – elasticity, anisotropicity, hygroscopicity – for structural design typology of evolving high-rise endeavors.
series ACADIA
type field note
email
last changed 2024/04/17 13:59

_id ecaadesigradi2019_605
id ecaadesigradi2019_605
authors Andrade Zandavali, Bárbara and Jiménez García, Manuel
year 2019
title Automated Brick Pattern Generator for Robotic Assembly using Machine Learning and Images
doi https://doi.org/10.52842/conf.ecaade.2019.3.217
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 217-226
summary Brickwork is the oldest construction method still in use. Digital technologies, in turn, enabled new methods of representation and automation for bricklaying. While automation explored different approaches, representation was limited to declarative methods, as parametric filling algorithms. Alternatively, this work proposes a framework for automated brickwork using a machine learning model based on image-to-image translation (Conditional Generative Adversarial Networks). The framework consists of creating a dataset, training a model for each bond, and converting the output images into vectorial data for robotic assembly. Criteria such as: reaching wall boundary accuracy, avoidance of unsupported bricks, and brick's position accuracy were individually evaluated for each bond. The results demonstrate that the proposed framework fulfils boundary filling and respects overall bonding structural rules. Size accuracy demonstrated inferior performance for the scale tested. The association of this method with 'self-calibrating' robots could overcome this problem and be easily implemented for on-site.
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id cf2019_048
id cf2019_048
authors Argota Sanchez-Vaquerizo, Javier and Daniel Cardoso Llach
year 2019
title The Social Life of Small Urban Spaces 2.0 Three Experiments in Computational Urban Studies
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 430
summary This paper introduces a novel framework for urban analysis that leverages computational techniques, along with established urban research methods, to study how people use urban public space. Through three case studies in different urban locations in Europe and the US, it demonstrates how recent machine learning and computer vision techniques may assist us in producing unprecedently detailed portraits of the relative influence of urban and environmental variables on people’s use of public space. The paper further discusses the potential of this framework to enable empirically-enriched forms of urban and social analysis with applications in urban planning, design, research, and policy.
keywords Data Analytics, Urban Design, Machine Learning, Artificial Intelligence, Big Data, Space Syntax
series CAAD Futures
email
last changed 2019/07/29 14:18

_id caadria2019_234
id caadria2019_234
authors Bamborough, Chris
year 2019
title The Nature of Data in Early Modern Architectural Practice.
doi https://doi.org/10.52842/conf.caadria.2019.2.343
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 343-352
summary In contemporary data-driven society, forces of capital increasingly seek risk-averse decision making through data and digital calculation, aligned to this the discourse around design intelligence in architecture has begun to embrace the role of data and the technical non-human as much as the human. In parallel, the cultural understanding of data, in technologically mediated societies, has become tied to the digital representation of information experienced in everyday life, which in turn influences human practices. A problem exists in the dominance of scientific thought around data in architecture that exerts disciplinary bias towards quantity rather than quality. In contemporary digital practice, data is assumed to offer an objective characterisation of the world and have faithful representation through the mechanisms of the computer. From this shift, a macro question exists concerning the influence of data's conceptualisation on the physical products of architecture. To contribute to this overall question this paper considers the register of data in early modernism identified as a moment when scientific abstraction and the mapping capacity of the machine combine to afford recognisable data practices and infrastructures.
keywords Data; Design Practice; Infrastructure; History; Theory
series CAADRIA
email
last changed 2022/06/07 07:54

_id cf2019_020
id cf2019_020
authors Belém, Catarina; Luís Santos and António Leitão
year 2019
title On the Impact of Machine Learning: Architecture without Architects?
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 148-167
summary Architecture has always followed and adopted technological breakthroughs of other areas. As a case in point, in the last decades, the field of computation changed the face of architectural practice. Considering the recent breakthroughs of Machine Learning (ML), it is expectable to see architecture adopting ML-based approaches. However, it is not yet clear how much this adoption will change the architectural practice and in order to forecast this change it is necessary to understand the foundations of ML and its impact in other fields of human activity. This paper discusses important ML techniques and areas where they were successfully applied. Based on those examples, this paper forecast hypothetical uses of ML in the realm of building design. In particular, we examine ML approaches in conceptualization, algorithmization, modeling, and optimization tasks. In the end, we conjecture potential applications of such approaches, suggest future lines of research, and speculate on the future face of the architectural profession.
keywords Machine Learning, Algorithmic Design, AI for Building Design
series CAAD Futures
type normal paper
email
last changed 2019/07/29 14:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_127675 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002