CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 624

_id ijac202119302
id ijac202119302
authors BuHamdan, Samer; Alwisy, Aladdin; Bouferguene, Ahmed
year 2021
title Generative systems in the architecture, engineering and construction industry: A systematic review and analysis
source International Journal of Architectural Computing 2021, Vol. 19 - no. 3, 226–249
summary Researchers have been extensively exploring the employment of generative systems to support design practices in the architecture, engineering and construction industry since the 1970s. More than half a century passed since the first architecture, engineering and construction industry’s generative systems were developed; researchers have achieved remarkable leaps backed by advances in computing power and algorithms’ capacity. In this article, we present a systematic analysis of the literature published between 2009 and 2019 on the utilization of generative systems in the design practices of the architecture, engineering and construction industry. The present research studies present trends, collaborations and applications of generative systems in the architecture, engineering and construction industry in order to identify existing shortcomings and potential advancements that balance the need for theory development and practical application. It provides insightful observations that are translated into meaningful recommendations for future research necessary to progress the incorporation of generative systems into the design practices of the architecture, engineering and construction industry.
keywords Generative systems, architecture, engineering and construction industry, performative design, generative design, systematic literature review, future directions
series journal
email
last changed 2024/04/17 14:29

_id ecaadesigradi2019_114
id ecaadesigradi2019_114
authors Lee, Gyueun and Lee, Ji-hyun
year 2019
title Sustainable Design Framework for the Anthropocene - Preliminary research of integrating the urban data with building information
doi https://doi.org/10.52842/conf.ecaade.2019.2.561
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 561-568
summary In terms of the efficiency and informatization in the architecture and construction industry, the Fourth Industrial Revolution presents positive aspects of technological development, but we need to discuss the expanded concept, the Anthropocene. The era of the human-made environment having a powerful influence on the global system is called Anthropocene. Since the 1950s, many indicators representing human activity and earth system have shown the 'Great acceleration'. Currently, lots of urban data including building information, construction waste, and GHG emission ratio is indicating how much the urban area was contaminated with artifacts. So, the integrated planning and design approach are needed for sustainable design with data integration. This paper examines the GIS, LCA and BIM tools focusing on building information and environmental load. With the literature review, the computational system for sustainable design is demonstrated to integrate into one holistic framework for the Anthropocene. There were some limitations that data was simplified during the statistical processing, and the framework has limitations that must be demonstrated by actual data in the future. However, this could be an early approach to integrating geospatial and environmental analysis with the design framework. And it can be applied to another urban area for sustainable urban models for the Anthropocene
keywords Anthropocene; Sustainable Design Framework; Urban Data Analysis; GIS; LCA; BIM
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

_id caadria2019_650
id caadria2019_650
authors Papasotiriou, Tania
year 2019
title Identifying the Landscape of Machine Learning-Aided Architectural Design - A Term Clustering and Scientometrics Study
doi https://doi.org/10.52842/conf.caadria.2019.2.815
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 815-824
summary Recent advances in Machine Learning and Deep Learning revolutionise many industry disciplines and underpin new ways of problem-solving. This paradigm shift hasn't left Architecture unaffected. To investigate the impact on architectural design, this study utilises two approaches. First, a text mining method for content analysis is employed, to perform a robust review of the field's literature. This allows identifying and discussing current trends and possible future directions of this research domain in a systematic manner. Second, a Scientometrics study based on bibliometric reviews is employed to obtain quantitative measures of the global research activity in the described domain. Insights on research trends and identification of the most influential networks in this dataset were acquired by analysing terms co-occurrence, scientific collaborations, geographic distribution, and co-citation analysis. The paper concludes with a discussion on the limitations, opportunities and future research directions in the field of Machine Learning-aided architectural design.
keywords Machine Learning; Text mining; Scientometrics
series CAADRIA
email
last changed 2022/06/07 08:00

_id ecaadesigradi2019_473
id ecaadesigradi2019_473
authors Brandao, Filipe, Paio, Alexandra and Lopes, Adriano
year 2019
title Interactive algorithm for generating accurate as-built plans by building owners
doi https://doi.org/10.52842/conf.ecaade.2019.2.069
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 69-78
summary Mass Customization systems in architecture have yet to adequately address the problem of capturing physical context, a fundamental aspect of dealing with building renovation, which has limited their scope of application. Previous research has demonstrated that existing methods of capturing as-built plans of rooms by non-expert users do not produce sufficiently accurate results for digital fabrication. The present paper reports on research into the development of an algorithm for semi-automated survey of convex or non-convex rooms by building owners. The improved workflow is tested by expert and non-expert users in a to-be renovated building and the results are compared with existing methods of survey.
keywords Mass Customization; As-built Plans; Building renovation; Polygon partition;
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_205
id ecaadesigradi2019_205
authors Campos, Filipe Medéia de, Leite, Raquel Magalh?es, Prudencio, Christina Figueiredo, Dias, Maíra Sebasti?o and Celani, Gabriela
year 2019
title Prototyping a Facade Component - Mixed technologies applied to fabrication
doi https://doi.org/10.52842/conf.ecaade.2019.1.179
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 179-186
summary During the last decade, mass customization in developing countries has been rising. The combination of conventional methods and materials with computer numeric control technologies offers a possibility of merging established craftsmanship to the production of personalized components with mass production efficiency. This article aims to present the development of a facade component prototype as a means to prospect possibilities for mixing parametric design and digital fabrication to casting, especially in developing countries like Brazil. This is an applied research with an exploratory and constructive approach, which was a result of a graduate class structured on a research by design basis. The conceptual development and prototyping of the artifact followed iterative cycles, considering its performance, fabrication methods and feasibility. The selection of materials that are commonly used in Brazilian architecture, like concrete, facilitates the component adoption as as a facade solution. The main conclusion emphasizes the need of involvement between academia and industry for the development of innovative products and processes, and highlights different levels of mass customization to include a range of manufacturing agents, from major industries to local craftspeople.
keywords digital fabrication; mass customization; prototyping; facade component
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_176
id ecaadesigradi2019_176
authors Giantini, Guilherme, Negris de Souza, Larissa, Turczyn, Daniel and Celani, Gabriela
year 2019
title Environmental Ceramics - Merging the digital and the physical in the design of a performance -based facade system
doi https://doi.org/10.52842/conf.ecaade.2019.2.749
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 749-758
summary Environmental comfort and space occupancy are essential considerations in architectural design process. Façade systems deeply impact both aspects but are usually standardized. However, performance-based facade systems tackle these issues through computational design to devise non-homogeneous elements. This work proposes a ceramic facade system designed according to a performance-based process grounded on environmental analysis and parametric design to allow adaptation and geometric variation according to specific building demands on environmental comfort and functionality. In this process, the Design Science Research method guided the exploration of both design and evaluation, bridging the gap between theory and practice. Positive facade environmental performance were found from digital and physical models assessment in terms of radiation, illuminance, dampness (with ventilation) and temperature. Computational processes minimized radiation inside the building while maximized illuminance. Their association influenced on operative temperature, which dropped according to local dampness and material absorption. Accordingly, this design process associates not only environmental comfort and functionality concepts but also adaptability, flexibility, mass customization, personal fabrication, additive manufacturing concepts, being an example architectural design changes in the 4th Industrial Revolution.
keywords sustainable design; facade system; computational design; environmental analysis; evolutionary algorithm
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

_id ecaadesigradi2019_002
id ecaadesigradi2019_002
authors Sousa, JP, Xavier, JP and Castro Henriques, G (eds.)
year 2019
title Architecture in the Age of the 4th Industrial Revolution, Volume 3
doi https://doi.org/10.52842/conf.ecaade.2019.3
source Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, 374 p.
summary Going back in history, the 1st Industrial Revolution occurred between the 18th and 19th centuries, when water and steam power led to the mechanization period. By then, social changes radically transformed cities and, together with manufactured materials like steel and glass, promoted the emergence of new building design typologies like the railway station. In the end of the 19th century, the advent of electrical power triggered mass production systems. This 2nd Revolution affected the building construction industry in many ways, inspiring the birth to the modern movement. For some, standardization emerged as an enemy of arts and crafts, while, for others, it was an opportunity to embrace new design agendas, where construction economy and quality could be controlled in novel ways. More recently, electronics and information technology fostered the 3rd Revolution with the production automation. In architecture, the progressive use of digital design, analysis and fabrication processes started to replace the traditional means of analogical representation. This opened the door for the exploration of a higher degree of design freedom, complexity and customization. The rise of the Internet also changed the way architects communicated and promoted the emergence of global architectural practices in the planet. Today, in the beginning of the 21th century, we are in a moment of profound and accelerated changes in the way we perceive and interact with(in) the world, which many authors, like Klaus Schwab, do not hesitate to call as the Fourth Industrial Revolution. Extraordinary advancements in areas like mobile communication, artificial intelligence, big data, cloud computing, blockchain, nanotechnology, biotechnology, facial recognition, robotics or additive manufacturing are fusing the physical, biological and digital systems of production. Such technological context has triggered a series of disruptive concepts and innovations, like the smart-phone, social networks, online gaming, internet of things, smart materials, interactive environments, personal fabrication, 3D printing, virtual and augmented realities, drones, selfdriving cars or the smart cities, which, all together, are drawing a radically new world.
series eCAADeSIGraDi
last changed 2022/06/07 07:49

_id ecaadesigradi2019_001
id ecaadesigradi2019_001
authors Sousa, JP, Xavier, JP and Castro Henriques, G (eds.)
year 2019
title Architecture in the Age of the 4th Industrial Revolution, Volume 2
doi https://doi.org/10.52842/conf.ecaade.2019.2
source Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, 872 p.
summary Going back in history, the 1st Industrial Revolution occurred between the 18th and 19th centuries, when water and steam power led to the mechanization period. By then, social changes radically transformed cities and, together with manufactured materials like steel and glass, promoted the emergence of new building design typologies like the railway station. In the end of the 19th century, the advent of electrical power triggered mass production systems. This 2nd Revolution affected the building construction industry in many ways, inspiring the birth to the modern movement. For some, standardization emerged as an enemy of arts and crafts, while, for others, it was an opportunity to embrace new design agendas, where construction economy and quality could be controlled in novel ways. More recently, electronics and information technology fostered the 3rd Revolution with the production automation. In architecture, the progressive use of digital design, analysis and fabrication processes started to replace the traditional means of analogical representation. This opened the door for the exploration of a higher degree of design freedom, complexity and customization. The rise of the Internet also changed the way architects communicated and promoted the emergence of global architectural practices in the planet. Today, in the beginning of the 21th century, we are in a moment of profound and accelerated changes in the way we perceive and interact with(in) the world, which many authors, like Klaus Schwab, do not hesitate to call as the Fourth Industrial Revolution. Extraordinary advancements in areas like mobile communication, artificial intelligence, big data, cloud computing, blockchain, nanotechnology, biotechnology, facial recognition, robotics or additive manufacturing are fusing the physical, biological and digital systems of production. Such technological context has triggered a series of disruptive concepts and innovations, like the smart-phone, social networks, online gaming, internet of things, smart materials, interactive environments, personal fabrication, 3D printing, virtual and augmented realities, drones, selfdriving cars or the smart cities, which, all together, are drawing a radically new world.
series eCAADeSIGraDi
last changed 2022/06/07 07:49

_id ecaadesigradi2019_000
id ecaadesigradi2019_000
authors Sousa, JP, Xavier, JP and Castro Henriques, G (eds.)
year 2019
title Architecture in the Age of the 4th Industrial Revolution, Volume 1
doi https://doi.org/10.52842/conf.ecaade.2019.1
source Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, 835 p.
summary Going back in history, the 1st Industrial Revolution occurred between the 18th and 19th centuries, when water and steam power led to the mechanization period. By then, social changes radically transformed cities and, together with manufactured materials like steel and glass, promoted the emergence of new building design typologies like the railway station. In the end of the 19th century, the advent of electrical power triggered mass production systems. This 2nd Revolution affected the building construction industry in many ways, inspiring the birth to the modern movement. For some, standardization emerged as an enemy of arts and crafts, while, for others, it was an opportunity to embrace new design agendas, where construction economy and quality could be controlled in novel ways. More recently, electronics and information technology fostered the 3rd Revolution with the production automation. In architecture, the progressive use of digital design, analysis and fabrication processes started to replace the traditional means of analogical representation. This opened the door for the exploration of a higher degree of design freedom, complexity and customization. The rise of the Internet also changed the way architects communicated and promoted the emergence of global architectural practices in the planet. Today, in the beginning of the 21th century, we are in a moment of profound and accelerated changes in the way we perceive and interact with(in) the world, which many authors, like Klaus Schwab, do not hesitate to call as the Fourth Industrial Revolution. Extraordinary advancements in areas like mobile communication, artificial intelligence, big data, cloud computing, blockchain, nanotechnology, biotechnology, facial recognition, robotics or additive manufacturing are fusing the physical, biological and digital systems of production. Such technological context has triggered a series of disruptive concepts and innovations, like the smart-phone, social networks, online gaming, internet of things, smart materials, interactive environments, personal fabrication, 3D printing, virtual and augmented realities, drones, selfdriving cars or the smart cities, which, all together, are drawing a radically new world.
series eCAADeSIGraDi
last changed 2022/06/07 07:49

_id ecaade2023_138
id ecaade2023_138
authors Crolla, Kristof and Wong, Nichol
year 2023
title Catenary Wooden Roof Structures: Precedent knowledge for future algorithmic design and construction optimisation
doi https://doi.org/10.52842/conf.ecaade.2023.1.611
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 611–620
summary The timber industry is expanding, including construction wood product applications such as glue-laminated wood products (R. Sikkema et al., 2023). To boost further utilisation of engineered wood products in architecture, further development and optimisation of related tectonic systems is required. Integration of digital design technologies in this endeavour presents opportunities for a more performative and spatially diverse architecture production, even in construction contexts typified by limited means and/or resources. This paper reports on historic precedent case study research that informs an ongoing larger study focussing on novel algorithmic methods for the design and production of lightweight, large-span, catenary glulam roof structures. Given their structural operation in full tension, catenary-based roof structures substantially reduce material needs when compared with those relying on straight beams (Wong and Crolla, 2019). Yet, the manufacture of their non-standard geometries typically requires costly bespoke hardware setups, having resulted in recent projects trending away from the more spatially engaging geometric experiments of the second half of the 20th century. The study hypothesis that the evolutionary design optimisation of this tectonic system has the potential to re-open and expand its practically available design solution space. This paper covers the review of a range of built projects employing catenary glulam roof system, starting from seminal historic precedents like the Festival Hall for the Swiss National Exhibition EXPO 1964 (A. Lozeron, Swiss, 1964) and the Wilkhahn Pavilions (Frei Otto, Germany, 1987), to contemporary examples, including the Grandview Heights Aquatic Centre (HCMA Architecture + Design, Canada, 2016). It analysis their structural concept, geometric and spatial complexity, fabrication and assembly protocols, applied construction detailing solutions, and more, with as aim to identify methods, tools, techniques, and construction details that can be taken forward in future research aimed at minimising construction complexity. Findings from this precedent study form the basis for the evolutionary-algorithmic design and construction method development that is part of the larger study. By expanding the tectonic system’s practically applicable architecture design solution space and facilitating architects’ access to a low-tech producible, spatially versatile, lightweight, eco-friendly, wooden roof structure typology, this study contributes to environmentally sustainable building.
keywords Precedent Studies, Light-weight architecture, Timber shell, Catenary, Algorithmic Optimisation, Glue-laminated timber
series eCAADe
email
last changed 2023/12/10 10:49

_id acadia19_208
id acadia19_208
authors Baghi, Ali; Baghi, Aryan; Kalantari, Saleh
year 2019
title FLEXI-NODE
doi https://doi.org/10.52842/conf.acadia.2019.207
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 207-218
summary This paper is part of an ongoing research project on flexible molds for use in concrete fabrication. It continues and advances the concept of adjustable molds by creating a flexible system to produce a variety of concrete grid-joints. This reusable and adaptive mold streamlines the process of fabricating inherently diverse nodal joints without the need for cost-intensive mass-customization methods. The paper also proposes a novel way to cope with some of the significant drawbacks of similar mold techniques that have been explored and found wanting in similar projects. The technique used for the mold in the current research is inspired by a flexible mechanism that has been implemented in other manufacturing contexts, such as expansion joints and bendable straws. The outcomes of the project are a platform called “Flexi-node” and relevant software components that allow users to computationally design and fabricate a great variety of concrete joints for grid structures, using just one mold, with minimum material waste and no distortion from hydrostatic pressure.
keywords flexible molds, nodal joints, computational design, concrete fabrication, mass customization, grid structures
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_498
id ecaadesigradi2019_498
authors Bermek, Mehmet Sinan, Shelden, Dennis and Gentry, T. Russel
year 2019
title A Holistic Approach to Feature-based Structural Mapping in Cross Laminated Timber Buildings
doi https://doi.org/10.52842/conf.ecaade.2019.2.789
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 789-796
summary Mass Engineered Timber products provide a unique opportunity in configuring panelized building systems that are suitable for both prefabrication and onsite customization. The structural nature of these large section elements also brings about the need for a coordinated design-fabrication-assembly workflow. These products can assume different geometric configurations and their behaviour can be approximated globally by simplifying framing schemas. Current BIM Interoperability standards such as STEP or IFC already acknowledge and support the interconnected nature of component properties, yet these Data Models are component focused. Expanding on the relationships between components and using sets to define part to whole, or exteriority relationships could yield a more flexible and agile querying of building information.This would be a framework fit for automated feature derivation and rule based design applications. To this end Graph structures and Graph Databases, alongside existing ontology authoring tools are studied to probe new cognitive possibilities in collaborative AEC workflows
keywords Graph theory; BIM; CLT; IFC
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id ecaadesigradi2019_202
id ecaadesigradi2019_202
authors Brasil, Alexander Lopes de Aquino and Franco, Juarez Moara Santos
year 2019
title Customizing Mass Housing in Brazil: Introduction to an Integrated System
doi https://doi.org/10.52842/conf.ecaade.2019.1.605
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 605-612
summary The current work presents an original parameterized wood frame system, a computational simulation of its structural performance and preliminary results of its digital fabrication and assemblage process. The project follows the concept of integration between CAD, CAE and CAM systems, aiming at the automation of the processes that make mass customization of social housing in Brazil practicable.
keywords mass customization; social housing; parametric and algorithmic design; simulation, prediction, and evaluation; digital fabrication; building system
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id acadia19_564
id acadia19_564
authors Chai, Hua; Marino, Dario; So, ChunPong; Yuan, Philip F.
year 2019
title Design for Mass-Customization
doi https://doi.org/10.52842/conf.acadia.2019.564
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 564-572
summary Tradition wood tectonics, like interlocking joints, have regained focus against the background of digital design and fabrication technologies. While research on interlocking joints is quite focused on joint geometries, especially for timber plates, there has been less attention on the design and mass customization of interlocking joints for linear timber elements. In this context, this research addresses the challenges of mass customization of interlocking joints for linear elements through the design and realization of a 9-meterhigh timber structure with fully interlocking joints, without the use of any nails or glue. A customized code generation program was developed for the fabrication process, allowing the rapid programming and fabrication for all the 840 elements and 2592 notches. The project demonstrates how innovative structures are allowed through the synthesis of joint geometry, assembly process, and cutting-edge fabrication technology.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id ecaadesigradi2019_184
id ecaadesigradi2019_184
authors Kwiecinski, Krystian and Duarte, Jose P.
year 2019
title Customers Perspective on Mass-customization of Houses
doi https://doi.org/10.52842/conf.ecaade.2019.2.359
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 359-368
summary This paper presents the results of usability tests of HOPLA (Home Planner), a computer-assisted design system developed to enable customization of house designs. The study aimed to verify whether the proposed method allows non-expert users to configure a house design that meets their expectations in a limited time. The experiments were carried out in two modes of the tool: M mode - modification of a proposed design and S mode - configuration of a design from scratch. The study encompassed two independent experiments carried out on two continents and examined the impact of cultural differences on the expectations of non-expert users towards computer-assisted customization of single-family houses.
keywords mass-customization; house design; participatory design; usability tests
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id caadria2021_251
id caadria2021_251
authors Ma, Chun Yu and van Ameijde, Jeroen
year 2021
title Participatory Housing: Discrete Design and Construction Systems for High-Rise Housing in Hong Kong
doi https://doi.org/10.52842/conf.caadria.2021.1.271
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 271-280
summary There has been a recent increase in the exploration of mereological systems, speculating on how digital design, assembly and reconfiguration of digital materials (Gershenfeld, 2015) enables digitally informed physical worlds that change over time. Besides opportunities for construction and design automation, there is a potential to reimagine how multiple stakeholders can participate in the computational decision-making process, using the benefits of the mass customization of logistics (Retsin, 2019). This paper presents a research-by-design project that applies a digital and discrete material system to high-rise housing in Hong Kong. The project has developed an integrated approach to design, construction, and inhabitation, using a system of discrete parts which can be assembled in various apartment configurations, to incorporate varying occupants requirements and facilitate negotiations and changes over time.
keywords Participatory Design; Generative Design; Adaptable Architecture; High-rise Housing
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaadesigradi2019_118
id ecaadesigradi2019_118
authors Tepavèeviæ, Bojan, Stojakoviæ, Vesna and Mitov, Dejan
year 2019
title Mass Customization of Deployable Origami-based Structures
doi https://doi.org/10.52842/conf.ecaade.2019.1.163
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 163-170
summary In this research we present a design for a mass customization online 3D model for deployable emergency shelter that automatically provides drawings for CNC machines. The main motivation for such research has risen from a global need to provide emergency shelters for people affected by natural disaster. The model is designed to be a flat packable, mono-material based on a double corrugated folding pattern. Based on numerous functional, structural and fabrication constraints the presented model can provide a myriad of similar geometric forms that can reflect personal needs and can be used for different purposes.
keywords Mass customization ; folding pattern; digital fabrication; emergency shelters
series eCAADeSIGraDi
email
last changed 2022/06/07 07:58

_id cdrf2023_526
id cdrf2023_526
authors Eric Peterson, Bhavleen Kaur
year 2023
title Printing Compound-Curved Sandwich Structures with Robotic Multi-Bias Additive Manufacturing
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_44
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
summary A research team at Florida International University Robotics and Digital Fabrication Lab has developed a novel method for 3d-printing curved open grid core sandwich structures using a thermoplastic extruder mounted on a robotic arm. This print-on-print additive manufacturing (AM) method relies on the 3d modeling software Rhinoceros and its parametric software plugin Grasshopper with Kuka-Parametric Robotic Control (Kuka-PRC) to convert NURBS surfaces into multi-bias additive manufacturing (MBAM) toolpaths. While several high-profile projects including the University of Stuttgart ICD/ITKE Research Pavilions 2014–15 and 2016–17, ETH-Digital Building Technologies project Levis Ergon Chair 2018, and 3D printed chair using Robotic Hybrid Manufacturing at Institute of Advanced Architecture of Catalonia (IAAC) 2019, have previously demonstrated the feasibility of 3d printing with either MBAM or sandwich structures, this method for printing Compound-Curved Sandwich Structures with Robotic MBAM combines these methods offering the possibility to significantly reduce the weight of spanning or cantilevered surfaces by incorporating the structural logic of open grid-core sandwiches with MBAM toolpath printing. Often built with fiber reinforced plastics (FRP), sandwich structures are a common solution for thin wall construction of compound curved surfaces that require a high strength-to-weight ratio with applications including aerospace, wind energy, marine, automotive, transportation infrastructure, architecture, furniture, and sports equipment manufacturing. Typical practices for producing sandwich structures are labor intensive, involving a multi-stage process including (1) the design and fabrication of a mould, (2) the application of a surface substrate such as FRP, (3) the manual application of a light-weight grid-core material, and (4) application of a second surface substrate to complete the sandwich. There are several shortcomings to this moulded manufacturing method that affect both the formal outcome and the manufacturing process: moulds are often costly and labor intensive to build, formal geometric freedom is limited by the minimum draft angles required for successful removal from the mould, and customization and refinement of product lines can be limited by the need for moulds. While the most common material for this construction method is FRP, our proof-of-concept experiments relied on low-cost thermoplastic using a specially configured pellet extruder. While the method proved feasible for small representative examples there remain significant challenges to the successful deployment of this manufacturing method at larger scales that can only be addressed with additional research. The digital workflow includes the following steps: (1) Create a 3D digital model of the base surface in Rhino, (2) Generate toolpaths for laminar printing in Grasshopper by converting surfaces into lists of oriented points, (3) Generate the structural grid-core using the same process, (4) Orient the robot to align in the direction of the substructure geometric planes, (5) Print the grid core using MBAM toolpaths, (6) Repeat step 1 and 2 for printing the outer surface with appropriate adjustments to the extruder orientation. During the design and printing process, we encountered several challenges including selecting geometry suitable for testing, extruder orientation, calibration of the hot end and extrusion/movement speeds, and deviation between the computer model and the physical object on the build platen. Physical models varied from their digital counterparts by several millimeters due to material deformation in the extrusion and cooling process. Real-time deviation verification studies will likely improve the workflow in future studies.
series cdrf
email
last changed 2024/05/29 14:04

_id acadia19_510
id acadia19_510
authors Leder, Samuel; Weber, Ramon; Wood, Dylan; Bucklin, Oliver; Menges, Achim
year 2019
title Distributed Robotic Timber Construction
doi https://doi.org/10.52842/conf.acadia.2019.510
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 510-519
summary Advances in computational design and robotic building methods have the potential to enable architects to author more sustainable, efficient, and geometrically varied systems that shape our built environment. To fully harness this potential, the inherent relationship of design and building processes requires a fundamental shift in the way we design and how we build. High degree of customization in architectural projects and constantly changing conditions of construction environments pose significant challenges for the implementation of automated construction machines. Beyond traditional, human-inspired, industrial robotic building methods, we present a distributed robotic system where the robotic builders are designed in direct relationship with the material and architecture they assemble. Modular, collaborative, single axis robots are designed to utilize standardized timber struts as a basic building material, and as a part of their locomotion system, to create large-scale timber structures with high degrees of differentiation. The decentralized, multi-robot system uses a larger number of simple machines that collaborate in teams to work in parallel on varying tasks such as material transport, placement, and fixing. The research explores related architectural and robotic typologies to create timber structures with novel aesthetics and performances.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id acadia23_v1_174
id acadia23_v1_174
authors Nejur, Andrei
year 2023
title NoeudAL Pavilion: Ultralight folded nodes for bespoke geometries
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 174-179.
summary This research project, conducted at the University of Montreal School of Architecture, presents an innovative approach to the construction of reticulated structures, focusing on the development and application of a novel, ultralight aluminum node. The node, constructed from a folded, laser-cut, 1-mm aluminum sheet, is designed to accommodate wooden linear members with varied rectangular sections, making it adaptable to bespoke geometries and low valence nodes. This innovative design offers a solution to the long-standing challenge in the construction industry of balancing cost, customization, and weight for reticulated structures through novel node designs (Abdelwahab and Tsavdaridis 2019; Dyvik et al. 2023; Chilton 2007; Rochas 2014; Hassani et al. 2020).
series ACADIA
type project
email
last changed 2024/04/17 13:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_237689 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002