CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 539

_id ecaadesigradi2019_446
id ecaadesigradi2019_446
authors Worre Foged, Isak, Pasold, Anke and Pelosini, Tommaso
year 2019
title Material Studies for Thermal Responsive Composite Envelopes
doi https://doi.org/10.52842/conf.ecaade.2019.1.207
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 207-214
summary The material-based studies examine through computation and physical prototyping layered composites for thermal responsive building envelopes. Focus is placed on surveying and computing a large series of materials across four groups, for then to test these materials from factors of solar energy reception capacities, internal heating methods, heat isolation coatings and layer bonding. An oak-polyethylene structure is developed based on the first studies and further tested towards implementation as part of an adaptive envelope demonstrator, with these studies focused on fabrication and assembly methods. Results of the developed, tested and applied composite as part of an adaptive envelope shows that the environmental-material composite is strongly influenced by colour and direct solar radiation exposure. This in turn allow a material-fabrication approach to program a responsive system driven by exergy. Reinforcing the responsive reaction of the composite by internal heating does not advance the performance, as coatings are needed to maintain the heat inside the material, which adds weight and isolate the composite from the thermal environment that otherwise is intended to provide the energy for driving the responsive behaviour. Please write your abstract here by clicking this paragraph.
keywords Material Studies; Thermal Responsive; Composites; Building Envelopes
series eCAADeSIGraDi
email
last changed 2022/06/07 07:57

_id ecaadesigradi2019_305
id ecaadesigradi2019_305
authors Kabošová, Lenka, Worre Foged, Isak, Kmeť, Stanislav and Katunský, Dušan
year 2019
title Building envelope adapting from and to the wind flow
doi https://doi.org/10.52842/conf.ecaade.2019.2.131
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 131-138
summary The paper presents research for wind-responsive architecture. The main objective is the digital design methodology incorporating the dynamic, fluctuating wind flow into the shape-generating process of architectural envelopes. These computational studies are advanced and informed through physical prototyping models, allowing a hybrid method approach. The negative impacts of the wind at the building scale (wind loads), as well as urban scale (wind discomfort), can be avoided and even transformed into an advantage by incorporating the local wind conditions to the process of creating architectural envelopes with adaptive structures. The paper proposes a tensegrity-membrane system which, when exposed to the dynamic wind flow, enables a local passive shape adaptation. Thus, the action of the wind pressure transforms the shape of the building envelope to an unsmoothed, dimpled surface. As a consequence, the aerodynamic properties of the building are modified, which contributes to reducing wind suction and drag force. Moreover, the slight shape change materializes and articulates the immaterial wind phenomena. For a better understanding of the dynamic geometric properties, one unit of the wind-responsive envelope is tested through simulations, and through physical prototypes. The idea and material-geometric studies are subsequently applied in a specific case study, including a designed building envelope in an industrial silo cluster in Stockholm.
keywords adaptive envelope; tensegrity; wind flow; digital designing; shape-change
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id acadia19_630
id acadia19_630
authors Ahlquist, Sean
year 2019
title Expanding the Systematic Agencyof a Material System
doi https://doi.org/10.52842/conf.acadia.2019.630
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 630-641
summary Computational design and fabrication have reached an accomplished level of ubiquity and proficiency in the field of architecture, in both academia and practice. Materiality driving structure, responsiveness, and spatial organization can be seen to evolve, in kind, with the capabilities to fabricate deeper material hierarchies. Such maturity of a procedural material-driven approach spurs a need to shift from the dictations of how to explorations of why material efficiencies, bespoke aesthetics, and performativity are critical to a particular architecture, requiring an examination of linkages between approach, techniques, and process. The material system defines a branch of architectural research utilizing bespoke computational techniques to generate performative material capacities that are inextricably linked to both internal and external forces and energies. This paper examines such a self-referential view to define an expanded ecological approach that integrates new modes of design agency and shift the material system from closed-loop relationship with site to open-ended reciprocation with human behavior. The critical need for this capacity is shown in applications of novel textile hybrid material systems—as sensorially-responsive environments for children with the neurological autism spectrum disorder—in ongoing research titled Social Sensory Architectures. Through engaging fabrication across all material scales, manners of elastic responsivity are shown, through a series of feasibility studies, to exhibit a capacity for children to become design agents in exploring the beneficial interrelationship of sensorimotor agency and social behavior. The paper intends to contribute a theoretical approach by which novel structural capacities of a material system can support a larger ecology of social and behavioral agency.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_110
id ecaadesigradi2019_110
authors Bernal, Marcelo, Marshall, Tyrone, Okhoya, Victor, Chen, Cheney and Haymaker, John
year 2019
title Parametric Analysis versus Intuition - Assessment of the effectiveness of design expertise
doi https://doi.org/10.52842/conf.ecaade.2019.2.103
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 103-110
summary This paper explores through professional case studies how design solutions produced by expert teams compares to those developed through systematic parametric analysis. While the expert intuition of either single designer or teams helps to rapidly identify relevant aspects of the design problem and produce viable solutions, it has limitation to address multi-criteria design problems with conflicting objectives and searching for design alternatives. On the other hand, parametric analysis techniques in combination with data analysis methods helps to construct and analyze large design spaces of potential design solutions. For the purpose of this study, the specifications of geometric features and material properties of the building envelopes proposed by the expert design teams define the base line to measure the extent of the performance improvements of two typically conflicting objectives: Daylight quality and energy consumption. The results show consistently significant performance improvement after systematic optimization.
keywords Performance Analysis; Parametric Analysis; Design Space; Design Expertise; Optimization
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id cf2019_038
id cf2019_038
authors El-Dabaa, Rana and Sherif Abdelmohsen
year 2019
title HMTM: Hygromorphic-Thermobimetal Composites as a Novel Approach to Enhance Passive Actuation of Adaptive Façades
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 290-300
summary Typical adaptive facades rely on mechanical actuators that respond to the outdoor climate and regulate its effect on indoor spaces. With the emergence of ubiquitous computing, several studies have independently utilized the latent properties of programmable materials, such as the hygroscopic properties of wood and the difference in expansion coefficient of metals, to passively program material response. Motion stimuli vary for each material however, involving changes in humidity and temperature fluctuation for wood and metals respectively. This paper introduces Hygromorphic-Thermobimetal (HMTM), as a low-tech low-cost passive programmable composite. A series of physical experiments are conducted to deduce design parameters that induce specific actuation mechanisms based on the stimulation of both hygroscopic properties in wood and metal expansion through temperature variation. This allows for an extended implementation of the hygroscopic properties of wood and its actuation configurations in hot arid climates, where variation in temperature, rather than humidity, is more dominant.
keywords Hygroscopic properties of wood, Passive actuation, Thermobimetals, Programmable materials, Adaptive façades
series CAAD Futures
email
last changed 2019/07/29 14:15

_id ijac201917401
id ijac201917401
authors Kabošová, Lenka; Isak Foged, Stanislav Kmet’ and Dušan Katunský
year 2019
title Hybrid design method for wind-adaptive architecture
source International Journal of Architectural Computing vol. 17 - no. 4, 307-322
summary The linkage of individual design skills and computer-based capabilities in the design process offers yet unexplored environment-adaptive architectural solutions. The conventional perception of architecture is changing, creating a space for reconfigurable, “living” buildings responding, for instance, to climatic influences. Integrating the element of wind to the architectural morphogenesis process can lead toward wind-adaptive designs that in turn can enhance the wind microclimate in their vicinity. Geometric relations coupled with material properties enable to create a tensegrity- membrane structural element, bending in the wind. First, the properties of such elements are investigated by a hybrid method, that is, computer simulations are coupled with physical prototyping. Second, the system is applied to basic- geometry building envelopes and investigated using computational fluid dynamics simulations. Third, the findings are transmitted to a case study design of a streamlined building envelope. The results suggest that a wind-adaptive building envelope plays a great role in reducing the surface wind suction and enhancing the wind microclimate.
keywords Wind, computational fluid dynamics, tensegrity structure, responsive envelope, computational design
series journal
email
last changed 2020/11/02 13:34

_id ecaadesigradi2019_521
id ecaadesigradi2019_521
authors Millentrup, Viktoria, Ramsgaard Thomsen, Mette and Nicholas, Paul
year 2019
title Actuated Textile Hybrids - Textile smocking for designing dynamic force equilibria in membrane structures
doi https://doi.org/10.52842/conf.ecaade.2019.2.521
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 521-530
summary This paper introduces Actuated Textile Hybrids, and describes the steps needed to steer the form finding processes necessary for their production. The method presented employs an integration of an "activated" instead of a pre-stressed textile membrane to design different stages of force equilibrium within the Hybrid Structure, and to investigate the potentials of ever flexible shaping of tensile elements. The set-up for the Textile Hybrid consists of three main elements which are digitally and physically analysed in their inextricable interdependence in force, form and material. Together, the bending active beam (rod), the textile membrane and an applied pattern which actively shrinks surface areas of the membrane (activation), create the base for the form finding process.With advanced Finite Element Modelling software and the architects resulting ability to engineer responsive building-systems for a dynamic environment, it is essential to rethink the construction methods and the building-material of the classic building envelope. This is to not only develop a smartly engineered sustainable skin but also a boundary object which, due to its adaptation, develops the potential to interconnect with its surrounding to re-establish the relationships between nature, home and inhabitant.
keywords Textile Hybrid; Kiwi3D; Form-Finding; Material Studies; Structural System; Membrane Structure
series eCAADeSIGraDi
email
last changed 2022/06/07 07:58

_id caadria2019_379
id caadria2019_379
authors Vazquez, Elena, Gursoy, Benay and Duarte, Jose
year 2019
title Designing for Shape Change - A Case study on 3D Printing Composite Materials for Responsive Architectures
doi https://doi.org/10.52842/conf.caadria.2019.2.391
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 391-400
summary This paper presents the initial stages of a research that aims to develop hydroactive architectural skin systems that respond to environmental humidity. As part of this study, we have developed wood-based bio-composite materials that are 3D printed with wood filament. Shape-changing behavior is not predictable in advance. We developed customized 3D printing protocols to systematically study shape-changing behavior. The paper presents this systematic material study and the prototypes that we have developed.
keywords smart materials; responsive architecture; 3D printing; material computation
series CAADRIA
email
last changed 2022/06/07 07:58

_id ijac201917402
id ijac201917402
authors Worre Foged, Isak ; and Anke Pasold
year 2019
title Development of a hybrid behavioural and thermal adaptive building envelope
source International Journal of Architectural Computing vol. 17 - no. 4, 323-335
summary This study focuses on the design of behavioural mechanisms for a hybrid informed adaptive envelope. Based on a full-scale experimental demonstrator, including a material responsive and a sensor–processing–actuation adaptive system, quantitative and qualitative methods are applied to identify, describe and study behavioural modes of the adaptive envelope. Through sensor data values and observations, the study finds that the adaptive response patterns are best based on subjective, human-mapped sensations, rather than prescribed environmental comfort, numeric-based sensor values. Those adaptive response patterns should account for change in tempi of the environment, occupier and envelope to establish advanced cause and effect relations, beyond generic thermal comfort performance metrics.
keywords Adaptive envelope, behavioural logics, material composites, environmental sensing, hybrid systems
series journal
email
last changed 2020/11/02 13:34

_id ecaadesigradi2019_557
id ecaadesigradi2019_557
authors Manríquez, Carla and Sills, Pablo
year 2019
title Evaluation of the energy performance of stilt houses (palafitos) of the Chiloé Island. The role of dynamic thermal simulation on heritage architecture.
doi https://doi.org/10.52842/conf.ecaade.2019.3.159
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 159-168
summary The stilt houses on Chiloé Island, Chile, traditionally built in local timber, are currently in poor conditions and lack of maintenance that contributes on a very poor thermal performance.To carry out interventions and inform decision making to intervene on such unique pieces of cultural heritage in fragile conditions, a computerized dynamic thermal simulation tool (software DesignBuilder®) is used to understand and assess the energy performance of these typology of houses, identifying their annual energy losses, and determining their current annual heating demand of ten case studies.The current annual heating demand of the stilt houses is high, due to the thermal transmittance values of the building envelopes. They exceed in five times the value recommended by Chilean Building Code for the climatic zone under study. Especially critical are heat losses through the ventilated floor (external floor under DesignBuilder® template) and air infiltration, which on average contributed to 30.5% and 28.85% of all energy loss, respectively. According to simulations for ventilated floor, walls, and roofs, the obtained performance could be improved to 65% with thermal reconditioning and measures to enhance airtightness, although the feasibility of such interventions without damaging the heritage houses needs to be carefully considered.
keywords Vernacular Dwellings; Stilt Houses; Energy Simulation; Thermal Envelope
series eCAADeSIGraDi
email
last changed 2022/06/07 07:59

_id cf2019_052
id cf2019_052
authors Abdelmohsen, Sherif ;Passaint Massoud, Rana El-Dabaa, Aly Ibrahim and Tasbeh Mokbel
year 2019
title The Effect of Hygroscopic Design Parameters on the Programmability of Laminated Wood Composites for Adaptive Façades
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 435
summary Typical adaptive façades respond to external conditions to enhance indoor spaces based on complex mechanical actuators and programmable functions. Hygroscopic embedded properties of wood, as low-cost low-tech programmable material, have been utilized to induce passive motion mechanisms. Wood as anisotropic material allows for different passive programmable motion configurations that relies on several hygroscopic design parameters. This paper explores the effect of these parameters on programmability of laminated wood composites through physical experiments in controlled humidity environment. The paper studies variety of laminated configurations involving different grain orientations, and their effect on maximum angle of deflection and its durability. Angle of deflection is measured using image analysis software that is used for continuous tracking of deflection in relation to time. Durability is studied as the number of complete programmable cycles that wood could withstand before reaching point of failure. Results revealed that samples with highest deflection angle have least programmability durability.
keywords Wood, hygroscopic design, lamination, deflection, durability, adaptive façades
series CAAD Futures
email
last changed 2019/07/29 14:18

_id caadria2019_660
id caadria2019_660
authors Aghaei Meibodi, Mania, Giesecke, Rena and Dillenburger, Benjamin
year 2019
title 3D Printing Sand Molds for Casting Bespoke Metal Connections - Digital Metal: Additive Manufacturing for Cast Metal Joints in Architecture
doi https://doi.org/10.52842/conf.caadria.2019.1.133
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 133-142
summary Metal joints play a relevant role in space frame constructions, being responsible for large amount of the overall material and fabrication cost. Space frames which are constructed with standardized metal joints are constrained to repetitive structures and topologies. For customized space frames, the fabrication of individual metal joints still remains a challenge. Traditional fabrication methods such as sand casting are labour intensive, while direct 3D metal printing is too expensive and slow for the large volumes needed in architecture.This research investigates the use of Binder Jetting technology to 3D print sand molds for casting bespoke metal joints in architecture. Using this approach, a large number of custom metal joints can be fabricated economically in short time. By automating the generation of the joint geometry and the corresponding mold system, an efficient digital process chain from design to fabrication is established. Several design studies for cast metal joints are presented. The approach is successfully tested on the example of a full scale space frame structure incorporating almost two hundred custom aluminum joints.
keywords 3D printing; binder jetting; sand casting; metal joints; metal casting; space frame; digital fabrication; computational design; lightweight; customization
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia19_338
id acadia19_338
authors Aviv, Dorit; Houchois, Nicholas; Meggers, Forrest
year 2019
title Thermal Reality Capture
doi https://doi.org/10.52842/conf.acadia.2019.338
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 338-345
summary Architectural surfaces constantly emit radiant heat fluxes to their surroundings, a phenomenon that is wholly dependent on their geometry and material properties. Therefore, the capacity of 3D scanning techniques to capture the geometry of building surfaces should be extended to sense and capture the surfaces’ thermal behavior in real time. We present an innovative sensor, SMART (Spherical-Motion Average Radiant Temperature Sensor), which captures the thermal characteristics of the built environment by coupling laser geometry scanning with infrared surface temperature detection. Its novelty lies in the combination of the two sensor technologies into an analytical device for radiant temperature mapping. With a sensor-based dynamic thermal-surface model, it is possible to achieve representation and control over one of the major factors affecting human comfort. The results for a case-study of a 3D thermal scan conducted in the recently completed Lewis Center for the Arts at Princeton University are compared with simulation results based on a detailed BIM model of the same space.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia19_222
id acadia19_222
authors Birol, Eda Begum; Lu, Yao; Sekkin, Ege; Johnson, Colby; Moy, David; Islam, Yaseen; Sabin, Jenny
year 2019
title POLYBRICK 2.0
doi https://doi.org/10.52842/conf.acadia.2019.222
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 222-233
summary Natural load bearing structures are characterized by aspects of specialized morphology, lightweight, adaptability, and a regenerative life cycle. PolyBrick 2.0 aims to learn from and apply these characteristics in the pursuit of revitalizing ceramic load bearing structures. For this, algorithmic design processes are employed, whose physical manifestations are realized through available clay/porcelain additive manufacturing technologies (AMTs). By integrating specialized expertise across disciplines of architecture, engineering, and material science, our team proposes an algorithmic toolset to generate PolyBrick geometries that can be applied to various architectural typologies. Additionally, comparative frameworks for digital and physical performance analyses are outlined. Responding to increasing urgencies of material efficiency and environmental sensibility, this project strives to provide for designers a toolset for environmentally responsive, case-specific design, characterized by the embedded control qualities derived from the bone and its adaptability to specific loading conditions. Various approaches to brick tessellation and assembly are proposed and architectural possibilities are presented. As an outcome of this research, PolyBrick 2.0 is effectively established as a Grasshopper plug-in, “PolyBrick” to be further explored by designers.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id ecaade2023_138
id ecaade2023_138
authors Crolla, Kristof and Wong, Nichol
year 2023
title Catenary Wooden Roof Structures: Precedent knowledge for future algorithmic design and construction optimisation
doi https://doi.org/10.52842/conf.ecaade.2023.1.611
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 611–620
summary The timber industry is expanding, including construction wood product applications such as glue-laminated wood products (R. Sikkema et al., 2023). To boost further utilisation of engineered wood products in architecture, further development and optimisation of related tectonic systems is required. Integration of digital design technologies in this endeavour presents opportunities for a more performative and spatially diverse architecture production, even in construction contexts typified by limited means and/or resources. This paper reports on historic precedent case study research that informs an ongoing larger study focussing on novel algorithmic methods for the design and production of lightweight, large-span, catenary glulam roof structures. Given their structural operation in full tension, catenary-based roof structures substantially reduce material needs when compared with those relying on straight beams (Wong and Crolla, 2019). Yet, the manufacture of their non-standard geometries typically requires costly bespoke hardware setups, having resulted in recent projects trending away from the more spatially engaging geometric experiments of the second half of the 20th century. The study hypothesis that the evolutionary design optimisation of this tectonic system has the potential to re-open and expand its practically available design solution space. This paper covers the review of a range of built projects employing catenary glulam roof system, starting from seminal historic precedents like the Festival Hall for the Swiss National Exhibition EXPO 1964 (A. Lozeron, Swiss, 1964) and the Wilkhahn Pavilions (Frei Otto, Germany, 1987), to contemporary examples, including the Grandview Heights Aquatic Centre (HCMA Architecture + Design, Canada, 2016). It analysis their structural concept, geometric and spatial complexity, fabrication and assembly protocols, applied construction detailing solutions, and more, with as aim to identify methods, tools, techniques, and construction details that can be taken forward in future research aimed at minimising construction complexity. Findings from this precedent study form the basis for the evolutionary-algorithmic design and construction method development that is part of the larger study. By expanding the tectonic system’s practically applicable architecture design solution space and facilitating architects’ access to a low-tech producible, spatially versatile, lightweight, eco-friendly, wooden roof structure typology, this study contributes to environmentally sustainable building.
keywords Precedent Studies, Light-weight architecture, Timber shell, Catenary, Algorithmic Optimisation, Glue-laminated timber
series eCAADe
email
last changed 2023/12/10 10:49

_id ijac201917404
id ijac201917404
authors Erdolu, Emek
year 2019
title Lines, triangles, and nets: A framework for designing input technologies and interaction techniques for computer-aided design
source International Journal of Architectural Computing vol. 17 - no. 4, 357-381
summary This article serves to the larger quest for increasing our capacities as designers, researchers, and scholars in understanding and developing human-computer interaction in computer-aided design. The central question is on how to ground the related research work in input technologies and interaction techniques for computer-aided design applications, which primarily focus on technology and implementation, within the actual territories of computer-aided design processes. To discuss that, the article first reviews a collection of research studies and projects that present input technologies and interaction techniques developed as alternative or complimentary to the mouse as used in computer-aided design applications. Based on the mode of interaction, these studies and projects are traced in four categories: hand-mediated systems that involve gesture- and touch-based techniques, multimodal systems that combine various ways of interaction including speech-based techniques, experimental systems such as brain-computer interaction and emotive-based techniques, and explorations in virtual reality- and augmented reality-based systems. The article then critically examines the limitations of these alternative systems related to the ways they have been envisioned, designed, and situated in studies as well as of the two existing research bases in human-computer interaction in which these studies could potentially be grounded and improved. The substance of examination is what is conceptualized as “frameworks of thought”—on variables and interrelations as elements of consideration within these efforts. Building upon the existing frameworks of thought, the final part discusses an alternative as a vehicle for incorporating layers of the material cultures of computer-aided design in designing, analyzing, and evaluating computer-aided design-geared input technologies and interaction techniques. The alternative framework offers the potential to help generate richer questions, considerations, and avenues of investigation.
keywords Computer-aided design (CAD), human-computer interaction (HCI), input technologies and interaction techniques, material culture of computer-aided design (CAD), architectural design, engineering design, computational design
series journal
email
last changed 2020/11/02 13:34

_id cdrf2023_526
id cdrf2023_526
authors Eric Peterson, Bhavleen Kaur
year 2023
title Printing Compound-Curved Sandwich Structures with Robotic Multi-Bias Additive Manufacturing
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_44
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
summary A research team at Florida International University Robotics and Digital Fabrication Lab has developed a novel method for 3d-printing curved open grid core sandwich structures using a thermoplastic extruder mounted on a robotic arm. This print-on-print additive manufacturing (AM) method relies on the 3d modeling software Rhinoceros and its parametric software plugin Grasshopper with Kuka-Parametric Robotic Control (Kuka-PRC) to convert NURBS surfaces into multi-bias additive manufacturing (MBAM) toolpaths. While several high-profile projects including the University of Stuttgart ICD/ITKE Research Pavilions 2014–15 and 2016–17, ETH-Digital Building Technologies project Levis Ergon Chair 2018, and 3D printed chair using Robotic Hybrid Manufacturing at Institute of Advanced Architecture of Catalonia (IAAC) 2019, have previously demonstrated the feasibility of 3d printing with either MBAM or sandwich structures, this method for printing Compound-Curved Sandwich Structures with Robotic MBAM combines these methods offering the possibility to significantly reduce the weight of spanning or cantilevered surfaces by incorporating the structural logic of open grid-core sandwiches with MBAM toolpath printing. Often built with fiber reinforced plastics (FRP), sandwich structures are a common solution for thin wall construction of compound curved surfaces that require a high strength-to-weight ratio with applications including aerospace, wind energy, marine, automotive, transportation infrastructure, architecture, furniture, and sports equipment manufacturing. Typical practices for producing sandwich structures are labor intensive, involving a multi-stage process including (1) the design and fabrication of a mould, (2) the application of a surface substrate such as FRP, (3) the manual application of a light-weight grid-core material, and (4) application of a second surface substrate to complete the sandwich. There are several shortcomings to this moulded manufacturing method that affect both the formal outcome and the manufacturing process: moulds are often costly and labor intensive to build, formal geometric freedom is limited by the minimum draft angles required for successful removal from the mould, and customization and refinement of product lines can be limited by the need for moulds. While the most common material for this construction method is FRP, our proof-of-concept experiments relied on low-cost thermoplastic using a specially configured pellet extruder. While the method proved feasible for small representative examples there remain significant challenges to the successful deployment of this manufacturing method at larger scales that can only be addressed with additional research. The digital workflow includes the following steps: (1) Create a 3D digital model of the base surface in Rhino, (2) Generate toolpaths for laminar printing in Grasshopper by converting surfaces into lists of oriented points, (3) Generate the structural grid-core using the same process, (4) Orient the robot to align in the direction of the substructure geometric planes, (5) Print the grid core using MBAM toolpaths, (6) Repeat step 1 and 2 for printing the outer surface with appropriate adjustments to the extruder orientation. During the design and printing process, we encountered several challenges including selecting geometry suitable for testing, extruder orientation, calibration of the hot end and extrusion/movement speeds, and deviation between the computer model and the physical object on the build platen. Physical models varied from their digital counterparts by several millimeters due to material deformation in the extrusion and cooling process. Real-time deviation verification studies will likely improve the workflow in future studies.
series cdrf
email
last changed 2024/05/29 14:04

_id acadia19_90
id acadia19_90
authors Forward, Kristen; Taron, Joshua
year 2019
title Waste Ornament
doi https://doi.org/10.52842/conf.acadia.2019.090
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 90-99
summary The emergence of computational design and fabrication tools has escalated the potentials of architectural ornamentation to become innovative, beautiful, and highly sustainable. Historically, ornament has been known to express character and reveal relationships between materiality, technological advances, and societal evolution. But ornament rapidly declined in the late 1800s in large part due to mechanization and modernist ideals of uniform, unadorned façade components. However, ornamentation in architecture has recently reappeared—a development that can be linked closely to advancements in computational design and digital fabrication. While these advancements offer the ability to create expressive architecture, their potential contribution to the improvement of sustainable architecture has largely been overlooked (Augusti-Juan and Habert 2017). This paper provides a brief revisitation to the history of ornament and investigates the impact of computation and automation on the production of contemporary ornament. The paper also attempts to catalog examples of how designers have used computational technologies to address the growing criticality of environmental concerns. Moreover, the paper presents the Waste Ornament project, a research platform that critically examines how we can leverage technology to augment the visual and sustainable performance of facade ornamentation to reduce energy use in buildings. Three sub-projects are identified as territories for further research into sustainable ornamentation, ranging from material sourcing, to high-performance buildings, to the development of a systematic upcycling process that transforms old facades into new ones. While the examples are not exhaustive, they attempt to interlace the general ideas of waste and ornament by addressing particular issues that converge at building envelopes.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id acadia19_40
id acadia19_40
authors Garcia del Castillo y López, Jose Luis
year 2019
title Robot Ex Machina
doi https://doi.org/10.52842/conf.acadia.2019.040
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 40-49
summary Industrial robotic arms are increasingly present in digital fabrication workflows due to their robustness, degrees of freedom, and potentially large scale. However, the range of possibilities they provide is limited by their typical software control paradigms, specifically offline programming. This model requires all the robotic instructions to be pre-defined before execution, a possibility only affordable in highly predictable environments. But in the context of architecture, design and art, it can hardly accommodate more complex forms of control, such as responding to material feedback, adapting to changing conditions on a construction site, or on-the-fly decision-making. We present Robot Ex Machina, an open-source computational framework of software tools for real-time robot programming and control. The contribution of this framework is a paradigm shift in robot programming models, systematically providing a platform to enable real-time interaction and control of mechanical actuators. Furthermore, it fosters programming styles that are reactive to, rather than prescriptive about, the state of the robot. We argue that this model is, compared to traditional offline programming, beneficial for creative individuals, as its concurrent nature and immediate feedback provide a deeper and richer set of possibilities, facilitates experimentation, flow of thought, and creative inquiry. In this paper, we introduce the framework, and discuss the unifying model around which all its tools are designed. Three case studies are presented, showcasing how the framework provides richer interaction models and novel outcomes in digital making. We conclude by discussing current limitations of the model and future work.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id ecaadesigradi2019_200
id ecaadesigradi2019_200
authors Ghandi, Mona
year 2019
title Cyber-Physical Emotive Spaces: Human Cyborg, Data, and Biofeedback Emotive Interaction with Compassionate Spaces
doi https://doi.org/10.52842/conf.ecaade.2019.2.655
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 655-664
summary This paper aims to link human's emotions and cognition to the built environment to improve the user's mental health and well-being. It focuses on cyber-physical adaptive spaces that can respond to the user's physiological and psychological needs based on their biological and neurological data. Through artificial intelligence and affective computing, this paper seeks to create user-oriented spaces that can learn from occupant's behavioral patterns in real-time, reduce user's anxiety and depression, enhance environmental quality, and promote more flexible human-centered designs for people with mental/physical disabilities. To achieve its objectives, this research integrates tangible computing devices/interfaces, robotic self-adjusting structures, interactive systems of control, programmable materials, human behavior, and a sensory network. Through embedded responsiveness and material intelligence, the goal is to blur the lines between the physical, digital, and biological spheres and create cyber-physical spaces that can "feel" and be controlled by the user's mind and feelings.
keywords AI for Design and Built Environment; Cyber-Physical Spaces; Artificial Emotional Intelligence; Human-Computer Interaction; Affective Computing; Mental Health and Well-Being; Interactive and Responsive Built Environments;
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 26HOMELOGIN (you are user _anon_989189 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002