CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 617

_id acadia19_596
id acadia19_596
authors Anton, Ana; Yoo, Angela; Bedarf, Patrick; Reiter, Lex; Wangler, Timothy; Dillenburger, Benjamin
year 2019
title Vertical Modulations
doi https://doi.org/10.52842/conf.acadia.2019.596
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 596-605
summary The context of digital fabrication allows architects to reinvestigate material, process and the design decisions they entail to explore novel expression in architecture. This demands a new approach to design thinking, as well as the relevant tools to couple the form of artefacts with the process in which they are made. This paper presents a customised computational design tool developed for exploring the novel design space of Concrete Extrusion 3D Printing (CE3DP), enabling a reinterpretation of the concrete column building typology. This tool allows the designer to access generative engines such as trigonometric functions and mesh subdivision through an intuitive graphical user interface. Balancing process efficiency as understood by our industry with a strong design focus, we aim to articulate the unique architectural qualities inherent to CE3DP, energising much needed innovation in concrete technology.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id caadria2019_045
id caadria2019_045
authors Zheng, Hao, Darweesh, Barrak, Lee, Heewon and Yang, Li
year 2019
title Caterpillar - A Gcode translator in Grasshopper
doi https://doi.org/10.52842/conf.caadria.2019.2.253
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 253-262
summary Additive manufacturing has widely been spread in the digital fabrication and design fields, allowing designers to rapidly manufacture complex geometry. In the additive process of Fused Deposition Modelling (FDM), machine movements are provided in the form of Gcode - A language of spatial coordinates controlling the position of the 3D printing extruder. Slicing software use closed mesh models to create Gcode from planar contours of the imported mesh, which raises limitations in the geometry types accepted by slicing software as well as machine control freedom. This paper presents a framework that makes full use of three degrees of freedom of Computer Numerically Controlled (CNC) machines through the generation of Gcode in the Rhino and Grasshopper environment. Eliminating the need for slicing software, Gcode files are generated through user-defined toolpaths that allow for higher levels of control over the CNC machine and a wider range of possibilities for non-conventional 3D printing applications. Here, we present Caterpillar, a Grasshopper plug-in providing architects and designers with high degrees of customizability for additive manufacturing. Core codes are revealed, application examples of printing with user-defined toolpaths are shown.
keywords 3D Printing; Gcode; Grasshopper; Modelling; Simulation
series CAADRIA
email
last changed 2022/06/07 07:57

_id acadia19_360
id acadia19_360
authors Dackiw, Jean-Nicolas Alois; Foltman, Andrzej; Garivani, Soroush; Kaseman, Keith; Sollazzo, Aldo
year 2019
title Cyber-physical UAV Navigation and Operation
doi https://doi.org/10.52842/conf.acadia.2019.360
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 360-367
summary The purpose of this paper is to present a work in progress pertaining to drone pose estimation and flight calibration. This paper intends to underline the increasing importance of determining alternative path planning instruments through accurate localization for Unmanned Aerial Vehicles (UAVs) with the purpose of achieving complex flight operations for the emerging applications of autonomous robotics in surveying, design, fabrication, and on-site operations. This research is based on the implementation of novel technologies such as Augmented Reality (AR), Robot Operating System (ROS), and computational approaches to define a drone calibration methodology, leveraging existing methods for drone path planning. Drones are equipped with measurement systems to provide geo-location and time information such as onboard Global Positioning System (GPS) sensors, and Inertial Measurement Units (IMU). As stated in previous research, to increase navigation capabilities, measurements and data processing algorithms have a critical role (Daponte et al. 2015). The outcome of this work in progress showcases valuable results in calculating and assessing accurate positioning for UAVs, and developing data exchanges in transmission, reception, and tracking.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id caadria2019_184
id caadria2019_184
authors Huangfu, Wenzhi and Chung, Wang Leung Thomas
year 2019
title Computational Measurement of Prospect-Refuge Perception in Two-Dimensional Built Space
doi https://doi.org/10.52842/conf.caadria.2019.2.313
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 313-322
summary Prospect-refuge theory, as a noted environment preference pattern, holds that the environment providing conditions to unimpededly see others without being seen can evoke a psychobiological pleasure for people. Although being an effective approach to understand successful and enduring emotional experience, less special attention has been paid to uncover the concrete degree of "prospect" and "refuge" properties of locations. With this background, this paper develops a computational model, Prospect-Refuge Analysis(PRA), for quantitatively measuring the diverse prospect-refuge perceptions in two-dimensional built space. Then the paper verifies the measuring effectiveness of the PRA via comparatively examining the data-perception consistency in Frank Lloyd Wright's domestic projects.
keywords Simulation and Analysis; Environmental and Behavior Psychology; Prospect and Refuge Theory; Spatio-Visual Analysis Model
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2019_362
id caadria2019_362
authors Lee, Jaejong, Ikeda, Yasushi and Hotta, Kensuke
year 2019
title Comparative Evaluation of Viewing Elements by Visibility Heat Map of 3D Isovist - Urban planning experiment for Shinkiba in Tokyo Bay
doi https://doi.org/10.52842/conf.caadria.2019.1.341
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 341-350
summary This paper presents a visibility analysis for 3D urban environments and its possible applications for urban design. This multi-view visibility analysis tool was generated by 3D isovist in Grasshopper, Rhino. The advantage of this analysis tool is that it can be compared within the measurement area. In addition, setting a visual object different from the existing isovist. The visual object is a landmark of a city space, such as landscape or object. First, the application experimented on the relevance between the calculation time and precision by this analysis tool. Based on the results of this experiment, it applied it to an actual part of an urban space. The multi-view visibility includes confirming the possibility of a comprehensive evaluation on the urban redevelopment and change of the view caused by the building layout plan - by numerical analysis showing the visual characteristics of the area while using 3D isovist theory. The practically applied area is Shinkiba, which is a part of Tokyo's landfill site; and while using the calculated data, multi-view visibility of each plan in the simulation of the visibility map is compared and evaluated.
keywords 3D isovist; Multi-view visibility; Comprehensive integration visibility evaluation; Urban redevelopment; Algorithmic urban design
series CAADRIA
email
last changed 2022/06/07 07:51

_id caadria2019_307
id caadria2019_307
authors Nguyen, Binh Vinh Duc, Peng, Chengzhi and Wang, Tsung-Hsien
year 2019
title KOALA - Developing a generative house design system with agent-based modelling of social spatial processes
doi https://doi.org/10.52842/conf.caadria.2019.1.235
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 235-244
summary The paper presents the development of an agent-based approach to modelling the interaction of human emotion and behaviour with built spaces. The study addresses how human behaviour and social relation can be represented and modelled to interact with a virtual built environment composed in parametric architectural geometry. KOALA, a prototype of agent-based modelling of social spatial dynamics at the core of a parametric architectural design environment is proposed. In building KOALA's system architecture, we adapted the PECS (Physical, Emotional, Cognitive, Social) reference model of human behaviour (Schmidt 2002) and introduced the concept of Social Spatial Comfort as a measurement of three key factors influencing human spatial experiences. KOALA was evaluated by a comparative modelling of two contrasting Vietnamese dwellings known to us. As expected, KOALA returns very different temporal characteristics of spatial modifications of the two dwellings over a simulated timeframe of one year. We discuss the lessons learned and further research required.
keywords Parametricism; generative house design system; architectural parametric geometry; human behaviour; social-spatial dynamics
series CAADRIA
email
last changed 2022/06/07 07:58

_id caadria2019_180
id caadria2019_180
authors Wang, Sining and Crolla, Kristof
year 2019
title Design Practice Complexity in the Post-Digital Age - Theoretical discussion and comparative case study of non-standard building façades
doi https://doi.org/10.52842/conf.caadria.2019.2.481
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 481-490
summary This paper starts by introducing an expression proposed by William J. Mitchell measuring the "complexity" of a designed and constructed architectural project. After reviewing other interpretations of this term, as well as specific peculiarities from the building industry, the article expands this metric from an organisational and technological perspective. This is followed by the case studies of six non-standard façades whose process complexities are driven by their project-specific affordances. By comparing built projects of different architects and implementation environments, the paper suggests specific criteria for non-standard architectural designs. Application of acquired knowledge has the potential to help architects better control their project's design and construction solution space.
keywords project complexity; measurement; non-standard; China
series CAADRIA
email
last changed 2022/06/07 07:58

_id caadria2019_413
id caadria2019_413
authors Ahrens, Chandler, Chamberlain, Roger, Mitchell, Scott, Barnstorff, Adam and Gelbard, Joshua
year 2019
title Controlling Daylight Reflectance with Cyber-physical Systems
doi https://doi.org/10.52842/conf.caadria.2019.1.433
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 433-442
summary Cyber-physical systems increasingly inform and alter the perception of atmospheric conditions within interior environments. The Catoptric Surface research project uses computation and robotics to precisely control the location of reflected daylight through a building envelope to form an image-based pattern of light on the building interior's surfaces. In an attempt to amplify or reduce spatial perception, the daylighting reflected onto architectural surfaces within a built environment generates atmospheric effects. The modification of light patterns mapped onto existing or new surfaces enables the perception of space to not rely on form alone. The mapping of a new pattern that is independent of architectural surfaces creates a visual effect of a formless atmosphere and holds the potential to affect the way people interact with the space. People need different amounts and quality of daylight depending on physiological differences due to age or the types of tasks they perform. This research argues for an informed luminous and atmospheric environment that is relative both to the user and more conceptual architectural aspirations of spatial perception controlled by a cyber-physical robotic façade system.
keywords Contextual; Computation
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_318
id ecaadesigradi2019_318
authors Al Bondakji, Louna, Lammich, Anne-Liese and Werner, Liss C.
year 2019
title ViBe (Virtual Berlin) - Immersive Interactive 3D Urban Data Visualization - Immersive interactive 3D urban data visualization
doi https://doi.org/10.52842/conf.ecaade.2019.3.083
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 83-90
summary The project investigates the possibility of visualizing open source data in a 3D interactive virtual environment. We propose a new tool, 'ViBe'. We programmed 'ViBe' using Unity for its compatibility with HTC VIVE glasses for virtual reality (VR). ViBe offers an abstract visualization of open source data in a 3D interactive environment. The ViBe environment entails three main topics a) inhabitants, b) environmental factors, and c) land-use; acting as representatives of parameters for cities and urban design. Berlin serves as a case study. The data sets used are divided according to Berlin's twelve administrative districts. The user immerses into the virtual environment where they can choose, using the HTC Vive controllers, which district (or Berlin as a whole) they want information for and which topics they want to be visualized, and they can also teleport back and forth between the different districts. The goal of this project is to represent different urban parameters an abstract simulation where we correlate the corresponding data sets. By experiencing the city through visualized data, ViBe aims to provide the user with a clearer perspective onto the city and the relationship between its urban parameters. ViBe is designed for adults and kids, urban planners, politicians and real estate developers alike.
keywords 3D-Visualization; open source data; immersive virtual reality; interactive ; Unity
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id acadia23_v1_196
id acadia23_v1_196
authors Bao, Ding Wen; Yan, Xin; Min Xie, Yi
year 2023
title Intelligent Form
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 196-201.
summary InterLoop employs previously developed workflows that enable multi-planar robotic bending of metal tubes with high accuracy and repeatability (Huang and Spaw 2022). The scale and complexity is managed by employing augmented reality (AR) technology in two capacities, fabrication and assembly (Jahn et al. 2018; Jahn, Newnham, and Berg 2022). The AR display overlays part numbers, bending sequences, expected geometry, and robot movements in real time as the robot fabrication is occurring. For assembly purposes, part numbers, centerlines, and their expected positional relationships are projected via quick response (QR) codes spatially tracked by the Microsoft Hololens 2 (Microsoft 2019). This is crucial due to the length and self-similarity of complex multi-planar parts that make them difficult to distinguish and orient correctly. Leveraging augmented reality technology and robotic fabrication uncovers a novel material expression in tubular structures with bundles, knots, and interweaving (Figure 1).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id caadria2019_196
id caadria2019_196
authors Bekele, Mafkereseb Kassahun and Champion, Erik
year 2019
title Redefining Mixed Reality: User-Reality-Virtuality and Virtual Heritage Perspectives
doi https://doi.org/10.52842/conf.caadria.2019.2.675
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 675-684
summary The primary objective of this paper is to present a redefinition of Mixed Reality from a perspective emphasizing the relationship between users, virtuality and reality as a fundamental component. The redefinition is motivated by three primary reasons. Firstly, current literature in which Augmented Reality is the focus appears to approach Augmented Reality as an alternative to Mixed Reality. Secondly, Mixed Reality is often considered to encompass Augmented Reality and Virtual Reality rather than specifying it as a segment along the reality-virtuality continuum. Thirdly, most common definitions of Augmented Reality (AR), Augmented Virtuality (AV), Virtual Reality (VR) and Mixed Reality (MxR) in current literature are based on outdated display technologies, and a relationship between virtuality and reality, neglecting the importance of the users necessarily complicit sense of immersion from the relationship. The focus of existing definitions is thus currently technological, rather than experiential. We resolve this by redefining the continuum and MxR, taking into consideration the experiential symbiotic relationship and interaction between users, reality, and current immersive reality technologies. In addition, the paper will suggest some high-level overview of the redefinition's contextual applicability to the Virtual Heritage (VH) domain.
keywords Mixed Reality; Reality-Virtuality Continuum; Virtual Heritage
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_381
id ecaadesigradi2019_381
authors Buš, Peter
year 2019
title Large-scale Prototyping Utilising Technologies and Participation - On-demand and Crowd-driven Urban Scenarios
doi https://doi.org/10.52842/conf.ecaade.2019.2.847
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 847-854
summary The paper theorises and elaborates the idea of crowd-driven assemblies for flexible and adaptive constructions utilising automatic technologies and participatory activities within the context of twenty-first century cities. As economic and technological movements and shifts in society and cultures are present and ongoing, the building technology needs to incorporate human inputs following the aspects of customisation to build adaptive architectural and urban scenarios based on immediate decisions made according to local conditions or specific spatial demands. In particular, the paper focuses on large-scale prototyping for urban applications along with on-site interactions between humans and automatic building technologies to create on-demand spatial scenarios. It discusses the current precedents in research and practice and speculates future directions to be taken in creation, development or customisation of contemporary and future cities based on participatory and crowd-driven building activities. The main aim of this theoretical overview is to offer a more comprehensive understanding of the relations between technology and humans in the context of reactive and responsive built environments.
keywords large-scale urban prototyping; on-site participation; human-machine interaction; intelligent cities; responsive cities; urban autopoiesis
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id cf2019_069
id cf2019_069
authors Caetano, Inês ;and António Leitão
year 2019
title Weaving Architectural Façades: Exploring algorithmic stripe-based design patterns
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 565-584
summary With the recent technological developments, particularly, the integration of computational design approaches in architecture, the traditional art techniques became increasingly important in the field. This includes weaving techniques, which have a promising application in architectural screens and façade designs. Nevertheless, the adoption of weaving as a design strategy still has many unexplored areas, particularly those related to Algorithmic Design (AD). This paper addresses the creation of weave-based façade patterns by presenting a Generative System (GS) that aids architects that intend to use AD in the design of façades inspired on traditional weaving techniques. This GS proves to reduce the time and effort spent with the programming task, while supporting the exploration of a wider solution space. Moreover, in addition to enabling the integration of user-generated weaving patterns, the GS also provides rationalization algorithms to assess the construction feasibility of the obtained solutions.
keywords Algorithmic Design, Façade Design, Weaving Patterns, Algorithmic Framework, Rationalization Processes
series CAAD Futures
type normal paper
email
last changed 2019/07/29 14:19

_id caadria2019_647
id caadria2019_647
authors Camacho, Daniel, Dobbs, Tiara, Fabbri, Alessandra, Gardner, Nicole, Haeusler, M. Hank and Zavoleas, Yannis
year 2019
title Hands On Design - Integrating haptic interaction and feedback in virtual environments for enhanced immersive experiences in design practice.
doi https://doi.org/10.52842/conf.caadria.2019.1.563
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 563-572
summary The usability of virtual reality (VR) controller interfaces are often complex and difficult for first time users. Most controllers provide minimal feedback which relegates the potential for heightened interaction and feedback within virtual experiences. This research explores how haptic technology systems partnered with VR can deliver immersive interactions between user and virtual environment (VE). This research involves the development of a haptic glove interface prototype that incorporates a force feedback and vibrotactile feedback system. It focuses on determining a workflow that communicates in real-time user interaction and environmental feedback using Unreal Engine and the produced haptic glove system. Testing and calibrating the prototype feedback system provided a baseline for developers to rationalise and improve accuracy of current real-time virtual feedback systems. The evaluation of this research in industry unfolds new technical knowledge for implementing a wider range of haptic technologies within VR. This further development would involve reviewing the usability and interaction standards for VR users in the design process.
keywords Virtual Environments; Haptic Technologies; Feedback; Interaction; Usability
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_350
id ecaadesigradi2019_350
authors Cheng, Chi-Li and Hou, June-Hao
year 2019
title A highly integrated Horizontal coordinate-based tool for architecture
doi https://doi.org/10.52842/conf.ecaade.2019.3.305
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 305-312
summary In this research, we attempt to develop a tool which integrates certain common geographic information from OpenStreetMap and OpenTopography into Grasshopper. We name it as OSMKIT temporarily. Besides, in order to make the integration in the design process easier, this tool includes the bilateral conversion function of coordinate in Rhinoceros 3D and the coordinate of the World Geodetic System. These characteristics bring about several possibilities for further usage. This paper contains explanations of functions and examples. For instance, it can be employed for data visualization on a map when these data contain coordinate information. Additionally, since this tool is simple and intuitive to convert points into GPS coordinates, it can make users plan drone for photogrammetry and deal with other related tasks on the rhinoceros 3D interface, helping them to gain most current urban models. Moreover, architects or designers can be not only users but also contributors for open source map system such as OpenStreetMap; the process of sharing the mode which user measure is demonstrated in this paper. To sum up, this coordinate system based tool is designed to be multifunctional and suitable for interdisciplinary usages in grasshopper.
keywords open-source maps; data visualization; geographic information system; urban research; parametric design; interdisciplinary
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id ecaadesigradi2019_358
id ecaadesigradi2019_358
authors Cocho-Bermejo, Ana and Navarro-Mateu, Diego
year 2019
title User-centered Responsive Sunlight Reorientation System based on Multiagent Decision-making, UDaMaS
doi https://doi.org/10.52842/conf.ecaade.2019.2.695
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 695-704
summary UDaMaS (Universal Daylight Managing System), is a user-centered responsive system for built scenarios that can reorient sunlight to improve light conditions in specific urban environments.This on-going research is based on developing more efficient energy/light supply methods through IoT (internet of things) and data mining based on the improved relationship with technology.A user centered responsive multi-agent system using norm emergence is proposed for controlling the efficiency of sunlight reoriented society of mirror robots. Society of robots will make decisions about which users to serve, depending on the users' requests through the UdaMas app.
keywords responsive; lighting; user-centric; multi-agent system; artificial intelligence; ambient intelligence
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_561
id ecaadesigradi2019_561
authors Cress, Kevan and Beesley, Philip
year 2019
title Architectural Design in Open-Source Software - Developing MeasureIt-ARCH, an Open Source tool to create Dimensioned and Annotated Architectural drawings within the Blender 3D creation suite.
doi https://doi.org/10.52842/conf.ecaade.2019.1.621
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 621-630
summary MeasureIt-ARCH is A GNU GPL licensed, dimension, annotation, and drawing tool for use in the open source software Blender. By providing free and open tools for the reading and editing of architectural drawings, MeasurIt-ARCH allows works of architecture to be shared, read, and modified by anyone. The digitization of architectural practice over the last 3 decades has brought with it a new set of inter-disciplinary discourses for the profession. An attempt to utilise 'Open-Source' methodologies, co-opted from the world of software development, in order to make high quality design more affordable, participatory and responsible has emerged. The most prominent of these discussions are embodied in Carlo Raitti and Mathew Claudel's manifesto 'Open-Source Architecture' (Ratti 2015) and affordable housing initiatives like the Wikihouse project (Parvin 2016). MeasurIt-ARCH aims to be the first step towards creating a completely Open-Source design pipeline, by augmenting Blender to a level where it can be used produce small scale architectural works without the need for any proprietary software, serving as an exploratory critique on the user experience and implementations of industry standard dimensioning tools that exist on the market today.
keywords Blender; Open-Source; Computer Aided Design ; OSArc
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id caadria2019_241
id caadria2019_241
authors Cristie, Verina and Joyce, Sam Condrad
year 2019
title Capturing Parametric Design Exploration Process - Emperical insights from user activity and design states data
doi https://doi.org/10.52842/conf.caadria.2019.2.491
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 491-500
summary Computational design, especially parametric associative modelling tools, have opened a whole new world of possibility in design exploration. However, their now established use poses further questions regarding how they effect design process and ultimately the quality of the outcomes. Answering those questions requires a better understanding of parametric design process through empirical data. In this paper, we extend a method to systematically capture the design process into a structured data of designer's activity and design states. Analysis of design sessions reveal a unique pattern of parametric modelling and exploration strategies produced by each designer. Capability to save design process into structured design states shows potential to improve process.
keywords Design exploration; Parametric Design; History Recording; Version control; Conceptual Design
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_397
id ecaadesigradi2019_397
authors Cristie, Verina and Joyce, Sam Conrad
year 2019
title 'GHShot': a collaborative and distributed visual version control for Grasshopper parametric programming
doi https://doi.org/10.52842/conf.ecaade.2019.3.035
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 35-44
summary When working with parametric models, architects typically focus on using rather structuring them (Woodbury, 2010). As a result, increasing design complexity typically means a convoluted parametric model, amplifying known problems: 'hard to understand, modify, share and reuse' (Smith 2007; Davis 2011). This practice is in contrast with conventional software-programming where programmers are known to meticulously document and structure their code with versioning tool. In this paper, we argue that versioning tools could help to manage parametric modelling complexity, as it has been showing with software counterparts. Four key features of version control: committing, differentiating, branching, and merging, and how they could be implemented in a parametric design practice are discussed. Initial user test sessions with 5 student designers using GHShot Grasshopper version control plugin (Cristie and Joyce 2018, 2017) revealed that the plugin is useful to record and overview design progression, share model, and provide a fallback mechanism.
keywords Version Control; Parametric Design; Collaborative Design; Design Exploration
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id cf2019_002
id cf2019_002
authors De Luca, Francesco
year 2019
title Environmental Performance-Driven Urban Design Parametric Design Method for the Integration of Daylight and Urban Comfort Analysis in Cold Climates
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 21
summary Shape of built environment and image of cities are significantly influenced by environmental factors such as access to natural light, air temperature and wind. Adequate quantity of daylight in building interiors is important for occupant wellbeing and energy saving. In Estonia minimum quantity of daylight is required by building standards. Wind speed increased by urban environment at northern latitudes can significantly reduce pedestrian perceived temperature during winter inducing strong cold stress. This paper presents a method for the integration of parametric modeling and environmental simulations to analyze interiors and exteriors comfort of tower building cluster variations in different urban areas in Tallinn. Optimal pattern characteristics such as buildings distance and alignment favoring improvement of interiors daylight and decrease of pedestrian cold stress are presented and discussed.
keywords Daylight, Urban Comfort, Environmental Analysis, PerformanceDriven Urban Design, Parametric Design
series CAAD Futures
email
last changed 2019/07/29 14:08

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_896185 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002